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Summary. This paper concerns the analysis of approximations of transport equations in diffusive media.
Firstly, we consider a variational formulation for the first-order transport equation that has the correct diffusive
behavior in the limit of small mean free paths. The associated bilinear form is shown to be coercive on a
classical Hilbert space in transport theory with a constant of coercivity independent of the mean free path.
This allows us to obtain the diffusion approximation of transport as an orthogonal projection onto a subspace of
functions that are independent of the angular variable. Similarly, projections onto functions that are independent
of the angular variable only in subsets of the full domain can be interpreted as a transport-diffusion coupling
method. Convergence results based on averaging lemmas and error estimates are presented. Secondly, we address
the problem of extended non-scattering layers or filaments surrounded by highly scattering media and derive
generalized diffusion equations to model transport in such geometries.

1 Introduction

The solution of linear transport equations of Boltzmann type describing the phase-space density of par-
ticles, is of interest in many applications ranging from neutron transport in nuclear reactor physics [14]
and photon transport in human tissues to wave propagation in highly heterogeneous media [10, 18, 31].
Among the many deterministic methods available [23], several numerical schemes have been obtained
recently by using a variational framework. Variational methods have a long history in transport theory,
both in the analytical and numerical approaches of source term and eigenvalue transport problems.
A very short and incomplete list of bibliographical references includes [8, 11, 14, 30, 32]. Although
variational methods that involve symmetric positive definite forms have been known for a long time
in the even-parity formulation of transport (see e.g. [1, 23, 27]), their derivations for the first-order
Boltzmann equation are more recent [7, 24, 25, 26].

Among the variational formulations involving a symmetric positive definite form over a Hilbert
space defined in [7, 25], some enjoy the property that the constant of coercivity is independent of the
transport mean free path, which measures (locally) the main distance between successive interactions
of the particles with the underlying media. This property ensures that discretizations of solutions of the
variational problem are accurate in the transport regime, characterized by mean free paths comparable
to the typical length of variation of the geometrical components of the transport equation, as well as in
the diffusive regime, characterized by much smaller mean free paths. For references on the approximation
of transport by diffusion, see e.g. [12, 19].

We consider in this paper the SAAF (Self-adjoint angular flux) method presented in [26] and char-
acterized explicitly in [7] as a variational method equivalent to the solution of the first-order transport
equation. We show that the symmetric bilinear form associated to the variational problem has indeed
a constant of coercivity independent of the mean free path over a Hilbert space that is also defined
independently of the mean free path.

One of the main advantages of symmetric variational formulations is that approximations of the
solutions can be obtained by orthogonal projection (with respect to the bilinear form and onto a
subspace of the considered Hilbert space). This is analyzed in detail in [24, 25] in the framework of
first-order system least squares (FOSLS). In this paper we show that the diffusion approximation of
transport may be obtained as such an orthogonal projection (this already appears in [26]) and show
that the error between the transport and the diffusion equations are linear in the mean free path (and
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quadratic in certain circumstances) as expected. The use of the variational formulation in conjunction
with averaging lemmas allows us to obtain that the above error converges to zero in the limit of small
mean free paths even when the limiting solution is not very regular. The advantage of the proposed
method is that there is no need to construct any scaling transformation as in [24] or adding any terms
accounting for boundary conditions as in [25] as both can be deduced directly from the variational
formulation.

In many applications, the mean free path will be small (compared to variations of the geometrical
environment) in certain areas but not necessarily in the whole domain. A possible numerical approach
consists then of solving the diffusion approximation where it is valid and the transport equation else-
where. The main difficulty is then to couple both models at their common interface. Such a coupling was
considered in the even-parity formulation of transport in [5]. See [16, 22, 33, 34] for additional references
on the coupling problem. We consider here the transport-diffusion coupling as the orthogonal projec-
tion of the exact transport solution onto the subspace of the underlying Hilbert space of functions that
depend only on the spatial variable in the diffusive domain but depend on both the spatial and angular
variables in the rest of the domain. We also show the convergence of the coupled transport-diffusion
solution (with appropriate error estimates) to the exact transport solution when diffusion is valid on
the domain treated by the diffusion equation. It is interesting to observe that the first-order transport
equation is not exactly satisfied on the transport area (as opposed to the case where the full domain
is modeled by transport as mentioned earlier; see [7]). Rather the coupling involves a second-order
transport equation in the transport area. This exemplifies the influence of the boundary and interface
conditions in the variational formulation of first-order transport.

Many more details on the full discretization of the transport equation using variational approaches
can be found in [24, 25, 26]. We do not consider the discretization problem here except for a brief
remark in section 2.7.

For general geometries of embedded domains where the diffusion approximation does not hold, the
coupling mentioned above may be a useful alternative to solving the full transport equations. In certain
situations however, a more macroscopic model can be derived. Initiated by the analysis of clear layers
in optical tomography [13], generalized diffusion models have been derived in [4, 6] to account for the
propagation of photons along straight lines in non-scattering clear layers. In this paper we generalize
the analysis to non-scattering filaments in three dimensional geometries and obtain new generalized
diffusion models. Possible applications in which similar models may be useful include γ ray propagation
in astrophysics and radiation in atmospheric clouds.

The rest of the paper is structured as follows. Section 2 presents the variational formulation of
the first-order transport equation. General symmetric scattering operators are considered in the two-
dimensional model only where the decomposition over spherical harmonics is particularly simple as
shown in section 2.1. The variational formulation in the diffusive regime and its main properties are
presented in section 2.2. The diffusion approximation is derived in section 2.3 and analyzed in the
spherical harmonics expansion in section 2.4. Convergence results and error estimates are given in
sections 2.5 and 2.6. The transport-diffusion coupling is addressed in section 3. Seen as an orthogonal
projection in section 3.1 the resulting local equations are show in section 3.2. Finally error estimates are
given in section 3.3. The derivation of generalized diffusion models to account for thin non-scattering
inclusions is addressed in section 4.

2 Variational formulation for transport

We start with the steady-state transport equation written in the form

ω · ∇u+Gu = q, X = Ω × V

u = g, Γ− = {(x,ω) ∈ ∂Ω × V, ω · ν(x) < 0}. (1)

Here u(x,ω) is the particle density in phase space, q(x,ω) is a volume source term, g(x,ω) is a boundary
source term, Ω ⊂ Rn for n = 2 or n = 3 is the spatial domain, ν(x) is its outward unit normal at
x ∈ ∂Ω, and V = Sn−1 is the unit sphere in the monogroup-approximation of transport. As usual Γ−
denotes the set of incoming conditions. The operator G is defined as

Gu(x,ω) = σ(x)u(x,ω)−
∫

Sn−1
k(x,ω′ − ω)u(x,ω′)dµ(ω′). (2)
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The integration measure is the normalized Lebesgue measure so that µ(Sn−1) = 1. The total absorption
σ(x) and the scattering coefficient k(x,ω′−ω) are positive bounded functions. The scattering coefficient
satisfies k(x,v) = k(x,−v) and is sufficiently small so that G is a symmetric positive definite operator
on L2(Sn−1) with bounded inverse G−1.

We now consider the variational formulation presented in [7] and mentioned in [26]. We first recast
the equation as

G−1(ω · ∇u) + u = G−1(q), X

u = g, Γ−.
(3)

We now multiply the first equation above by ω · ∇v for a smooth test function v(x,ω) and integrate
over X to get:∫

X

G−1(ω · ∇u)ω · ∇v dp−
∫

X

ω · ∇uv dp+
∫

∂Ω×V

uvω · ν dq =
∫

X

G−1(q)ω · ∇v dp.

Here, dp = dxdµ(ω) and dq = dσ(x)dµ(ω), where dσ(x) is the surface measure on ∂Ω. Upon using the
transport equation (1) we recast the above equality as finding u ∈W such that

a(u, v) = L(v), ∀v ∈W, (4)

where
a(u, v) =

∫
X

(
G−1(ω · ∇u)ω · ∇v +Guv

)
dp+

∫
Γ+

uvω · ν dq,

L(v) =
∫

X

(
G−1(q)ω · ∇v + qv

)
dp+

∫
Γ−

gv|ω · ν| dq

W =
{
u ∈ L2(X), ω · ∇u ∈ L2(X), uΓ± ∈ L2(Γ±; |ω · ν|dq)

}
.

(5)

The set Γ+ = {(x,ω) ∈ ∂Ω × V, ω · ν(x) > 0}. It is easy to verify that with our assumptions on G,
a(u, v) is a continuous, coercive, and symmetric bilinear form on the Hilbert space W (equipped with
its natural norm) [12] and that L is continuous in the same sense. The above equation (4) thus admits
a unique solution by the Lax-Milgram theory.

2.1 Harmonic decomposition

It is interesting to analyze the above variational formulation using the spherical harmonics decomposi-
tion. We concentrate on the two dimensional case n = 2 so that the velocity space V = S1 is the unit
circle. Generalizations to n = 3 using “classical” spherical harmonics are straightforward though more
tedious computationally [25, 26]. In this setting, directions are parameterized by ω = (cos θ, sin θ) for
0 ≤ θ < 2π. We identify u(ω) ≡ u(θ).

Define the harmonic decomposition

Fu(n) = ûn =
1
2π

∫ 2π

0

e−inθu(ω)dθ(ω), F−1û(θ) = u(θ) =
∑
n∈Z

einθûn. (6)

In this basis, the operator G may be written as a (diagonal) Fourier multiplier:

G = F−1(σ − kn)F , (7)

where the coefficients σ and kn are such that |kn| < k0 < σ for |n| ≥ 1. Also, since G is a real-
valued operator, we verify that k−n = k̄n, where the upper bar denotes complex conjugation. Because
G is symmetric, we have here k−n = kn real-valued. The above decomposition means that Geinθ =
(σ − kn)einθ and implies that

G−1 = F−1(σ − kn)−1F . (8)

We also verify the following convenient expression for the differential operator

ω · ∇ = eiθ∂ + e−iθ∂̄, ∂ =
1
2

( ∂

∂x
− i

∂

∂y

)
, ∂̄ =

1
2

( ∂

∂x
+ i

∂

∂y

)
. (9)
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This implies that ̂(ω · ∇v)n = ∂v̂n−1 + ∂̄v̂n+1. We finally identify x = (x, y) with z = x + iy in the
complex plane.

With this notation, we verify that the transport equation is equivalent to(
eiθ∂ + e−iθ∂̄

)
u+Gu = q (10)

with appropriate boundary conditions. In the Fourier domain this is nothing but

∂ûn−1 + ∂̄ûn+1 + (σ − kn)ûn = q̂n, Ω × Z. (11)

Recall the Parseval relation
∫

S1 uvdµ =
∑

n∈Z ûnv̂n =
∑

n∈Z ûnv̂−n since u and v are real-valued
functions. The variational formulation (4) still holds with a(u, v) and L(v) recast as:

a(u, v) =
∫

Ω

∑
n∈Z

( 1
a− kn

(∂ûn−1 + ∂̄ûn+1)(∂v̂−n−1 + ∂̄v̂−n+1) + (σ − kn)ûnv̂−n

)
dµ(z)

+
∫

Γ+

uvω · ν dq,

L(v) =
∫

Ω

∑
n∈Z

( 1
a− kn

q̂n(∂v̂−n−1 + ∂̄v̂−n+1) + q̂nv̂−n

)
dµ(z) +

∫
Γ−

gv|ω · ν| dq.

(12)

The above formulae prove very useful in the analysis of the transport solution in the diffusive regime.

2.2 Variational formulation in the diffusive regime

We now consider the regime of high collisions and small absorption. This regime is characterized by
replacing G, q and g by [12]

Gεu(x,ω) =
1
ε

∫
Sn−1

k(x,ω′ − ω)
(
u(x,ω)− u(x,ω′)

)
dµ(ω′) + εσau,

qε = εq, gε = εg.
(13)

Here gε is of order ε to avoid the presence of boundary layers at the leading order [12] (we will see
below that a term of order ε1/2 rather than ε would have been sufficient). We recast Gε = ε−1Q+ εσa,
where σa is uniformly bounded from below by a positive constant so that G−1

ε is bounded on L2(X)
though not uniformly in ε. The local first-order transport equation (1) reads in this regime:

ω · ∇uε +Gεuε = εq. (14)

We recast (4) in this regime as finding u ∈W such that

aε(u, v) = Lε(v), ∀v ∈W, (15)

where
aε(u, v) =

∫
X

(
(εGε)−1(ω · ∇u)ω · ∇v + ε−1Gε(u)v

)
dp+

1
ε

∫
Γ+

uvω · ν dq,

Lε(v) =
∫

X

(
G−1

ε (q)ω · ∇v + qv
)
dp+

∫
Γ−

gv|ω · ν| dq.
(16)

We now derive some properties of the above variational formulation and the above bilinear form
that make them attractive theoretically and computationally. We first assume that Gε is invertible (in
L2(V )) with inverse given by

G−1
ε u =

1
εσa

ū+ εHεu, Hεu = 0, (17)

where Hεu is a symmetric and bounded operator in L2(X) with norm bounded by α−1 < ∞, and
ū =

∫
Sn−1 u(ω)dµ(ω) is the angular average of u. This property holds when Gε is decomposed over

spherical harmonics; see for instance (37) and (41) below. This allows us to recast (16) as
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aε(u, v) =
∫

X

( 1
ε2σa

ω · ∇u ω · ∇v +Hε(ω · ∇u)ω · ∇v +
Gε

ε
uv

)
dp+

1
ε

∫
Γ+

uvω · ν dq

Lε(v) =
∫

X

( 1
εσa

ω · ∇v + εHε(ω · ∇v) + v
)
q dp+

∫
Γ−

gvω · ν dq.
(18)

Let us assume that Q and Hε are coercive on L2(X) with coercivity constants α and σ−1
0 , respec-

tively, in the sense that:

(Qu, u) ≥ α‖u‖2, (Hεu, u) ≥
1
σ0
‖u‖2. (19)

Here ‖f‖ is the L2(X) norm of f . These are reasonable assumptions when Gε can be diagonalized
in the basis of spherical harmonics; see (37) and (41) below. Let us also assume that the absorption
0 < σa1 ≤ σa(x) ≤ σa0 on Ω. We then verify that

1
σ0
‖ω · ∇uε‖2 +

1
ε2σa0

‖ω · ∇uε‖2 +
α

ε2
‖uε − uε‖2 + σa1‖uε‖2 +

1
ε
‖uε|Γ+‖

2
b ≤ aε(uε, uε). (20)

Here ‖f‖b denotes the L2(Γ±; |ω ·ν|dq) norm of f defined on Γ±. This implies that aε is coercive on W
with constant of coercivity independent of ε. The constant of coercivity also depends on the scattering
kernel only through the constants α and σ−1

0 .
It is also straightforward to observe that aε(u, v) is continuous on W ×W , though with a continuity

constant that depends on ε. In order to obtain a constant of continuity independent of ε, the Hilbert
space may be equipped with a norm ‖ · ‖Wε

defined as the (square root of the) left-hand side of (20);
this is in essence the norm introduced in [24]. On Wε (i.e., W equipped with ‖ · ‖Wε

) the form aε is
coercive and continuous with constants of coercivity and continuity independent of ε (see also section
2.7). The source term is also bounded on Wε with a constant independent of ε, and bounded on W
with a constant that depends on ε:

|Lε(uε)| .
ε

α
‖ω · ∇uε‖‖q‖+

1
εσa1

‖q̄‖‖ω · ∇uε‖+ ‖q‖‖uε‖+ ‖uε|Γ+‖b‖g‖b. (21)

The notation a . b stands for a ≤ Cb for some constant C independent of ε. We deduce from the
constraints on aε and Lε that the unique solution uε of the variational formulation (15) satisfies the (a
priori) estimate

‖ω · ∇uε‖+
1
ε
‖ω · ∇uε‖+ ‖uε‖ . ‖q‖+

√
ε‖g‖b. (22)

This implies that
|Lε(uε)| . ‖q‖2 + ε‖g‖2b , (23)

so that from (20),
‖uε − ūε‖L2(X) .

√
α(ε‖q‖+ ε3/2‖g‖b). (24)

To summarize we have the following result:

Lemma 1. Provided that (19) holds, the unique solution uε of (15) verifies that

‖ω · ∇uε‖+ ‖uε‖+
1
ε
‖ω · ∇uε‖+

1
ε
‖uε − ūε‖L2(X) +

1√
ε
‖uε|Γ+‖b . ‖q‖+

√
ε‖g‖b (25)

provided that q ∈ L2(X) and g ∈ L2(Γ−; |ω · ν|dq). We recognize the above left-hand side as ‖uε‖Wε
.

Least-Square formulation.

Let us introduce the operator
Lε = (εGε)−1/2(ω · ∇+Gε). (26)

Using the divergence theorem on ∇ · (uvω) = (ω · ∇u)v + uω · ∇v, we verify that

aε(u, v) = (Lεu,Lεv) +
1
ε
〈u, v〉, (27)
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where (·, ·) is the usual inner product on L2(X) and 〈·, ·〉 is the inner product on L2(Γ−, |ω · ν|dq). We
also have

Lε(v) = (qε,Lεv) + 〈g, v〉, qε = ε1/2G−1/2
ε (q). (28)

Since Gε, whence aε, is symmetric, the variational formulation (15) is equivalent to minimizing the
functional:

arg min
v∈W

1
2
aε(v, v)− Lε(v), (29)

which is also equivalent to minimizing the following least-square problem

arg min
u∈W

1
2
‖Lεu− qε‖2L2(X) +

1
2ε
‖u− εg‖2L2(Γ−;|ω·ν|dq), (30)

as can easily be verified.
We have thus recast solving the transport solution as minimizing the least-square problem associated

to a variational form aε that is W -coercive with constant of coercivity independent of ε. The boundary
conditions are also accounted for in a variational sense as the functions in the space W need not satisfy
the boundary conditions exactly. These very important properties are a central element in the numerical
methods developed in [24, 25], which are based on Galerkin projections; see also section 2.7. Note that
the scaling operator S used in the above references is replaced in our analysis by (εGε)−1/2. The method
developed in this paper may thus be seen as a case of first-order system least-squares (FOSLS) [24, 25].

Because of (20), Galerkin methods, which are orthogonal projections onto subspaces of W with
respect to the bilinear form aε, provide lower-dimensional approximations that are expected to be valid
both in the transport regime (ε ∼ 1) and the diffusive regime (ε � 1) as in [24, 25]. We now consider
two Galerkin methods, which are not discretizations of the transport solution, but rather projections
onto smaller subsets of W that are physically relevant in the diffusive regime. The first method consists
of projecting the transport solution onto functions that only depend on space and not on the angular
variable. The resulting diffusion approximation is analyzed in the rest of this section. In the next section
we project the transport solution onto functions that depend on the spatial variable only in parts of the
domain. This allows us to couple the diffusion approximation to the full transport solution in regions
where diffusion may not be valid.

2.3 Diffusion by orthogonal projection

We want to use the above variational formulation to deduce the limit of the transport solution in
the diffusion limit. Diffusion is characterized by high scattering and small absorption. High scattering
implies that the initial directional content of the particles is quickly lost through interactions. It is
therefore reasonable to assume that u(x,ω) does not depend on ω in a first approximation. Such a
condition is easy to implement in a variational setting: we orthogonally (with respect to aε(·, ·)) project
the solution u of (4) onto functions that depend only on x. Let us define

WD =
{
f ∈W, f = f(x)

}
≡ H1(Ω), W⊥

Dε =
{
f ∈W, aε(f, v) = 0 ∀v ∈WD

}
. (31)

We verify that W = WD ⊕ W⊥
Dε since aε(·, ·) is an inner product on W [5]. Then the orthogonal

projection Πε of W to WD for the inner product aε(u, u) allows us to define the “diffusion” solution

Uε = Πεuε, (32)

where uε is the solution to (15). By definition, we have that Uε is the solution in WD of

aε(Uε, v) = Lε(v), v ∈WD. (33)

We may recast the above equation as∫
Ω

(
Dε∇U · ∇V + σaUV

)
dx +

∫
∂Ω

cn
1
ε
UV dσ(x)

=
∫

Ω

[( ∫
Sn−1

G−1
ε (q)ωdµ(ω)

)
· ∇V + qV

]
dx +

∫
Γ−

gV |ω · ν| dq,
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for all V ∈WD, where

Dε =
∫

Sn−1
(εGε)−1(ω)⊗ ωdµ(ω)

cn =
1
2

∫
Sn−1

|ω · ν|dµ(ω).
(34)

We verify that c2 = 2
π and that c3 = 1

2 . After classical integrations by parts, this means that Uε is the
solution of the following diffusion equation:

−∇ ·Dε∇Uε + σaUε = q −∇ ·
( ∫

Sn−1
G−1

ε (q)ωdµ(ω)
)

ν ·Dε∇Uε +
cn
ε
Uε = J(x) ≡

∫
ω·ν<0

g(x,ω)|ω · ν|dµ(ω).
(35)

Here we assume that q vanishes at the domain boundary ∂Ω to simplify. This is consistent with our
choice of incoming conditions of size εg as O(1) source terms at the domain boundary result in boundary
layer analyses that we do not want to dwell into here; see [12].

It remains to understand whether the solution Uε, which is obviously uniquely defined, is uniformly
bounded in H1(Ω) and to obtain an error estimate for uε−Uε and for similar diffusion approximations
of uε.

Let us first consider the simpler case where scattering is isotropic, which implies that

Gεu =
k0

ε
(u− ū) + εσau, (36)

where ū =
∫

Sn−1 u(ω)dµ(ω) and where k0(x) = k(x,ω − ω′). In this context we verify that

G−1
ε u =

1
ε

k0

σaσε
ū+

ε

σε
u, σε = k0 + ε2σa. (37)

Assuming that q = q̄ and that g ≡ 0 to simplify, this implies that the transport equation takes the form∫
X

[( 1
σε

ω · ∇u+
1
ε2

k0

σaσε
ω · ∇u

)
ω · ∇v +

k0

ε2
(u− ū)v + σauv

]
dp

+
1
ε

∫
Γ+

uvω · ν dq =
∫

X

q
(ω · ∇v

εσa
+ v

)
dp.

(38)

Upon choosing u and v in WD in the above equation, we find the variational formulation for Uε:∫
Ω

( 1
nσε

∇U · ∇V + σaUV
)
dx +

1
ε
cn

∫
∂Ω

UV dσ =
∫

Ω

qV dx. (39)

This is nothing but the variational formulation of (35) with the diffusion coefficient given by Dε =
(nσε)−1 as usual and the right-hand side given by q(x). We thus obtain the classical diffusion equation
[19].

2.4 Harmonic decomposition and diffusion approximation

The generalization of the derivation of the above diffusion solution to arbitrary scattering kernels is
relatively straightforward as long as G−1

ε can be explicitly characterized. We restrict ourselves here to
the two-dimensional case with scattering kernel of convolution type and use explicitly the variational
form written in the harmonic basis. Within this context and in the diffusive regime, Gε is given by

Gε = F−1
(k0 − kn

ε
+ εσa

)
F . (40)

We recall that the Fourier transform is considered in the angular variable only. The inverse of Gε is
then

G−1
ε = F−1 ε

k0 − kn + ε2σa
F ≡ F−1 ε

σε − kn
F (41)
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where σε = k0 + ε2σa, This yields (37) when kn = 0 for |n| ≥ 1 and (17) in general, where Hεu is a
bounded operator in L2(X). Let us introduce the spectral gap of Q:

α = min
n≥1,x∈Ω

(k0(x)− kn(x)) > 0, (42)

and the minimum of σε:
σ0 = min

x∈Ω
σε(x) > 0. (43)

We then verify that the coercivity constraints (19) are verified.
With this explicit form for Gε, the terms of the variational equation (15) now take the form

aε(u, v) =
∫

Ω

∑
n∈Z

[ 1
k0 − kn + ε2σa

̂(ω · ∇u)n
̂(ω · ∇v)−n +

(k0 − kn

ε2
+ σa

)
ûnv̂−n

]
dx

+ε−1

∫
Γ+

uvω · ν dq,

Lε(v) =
∫

Ω

∑
n∈Z

[ εq̂n ̂(ω · ∇v)−n

k0 − kn + ε2σa
+ q̂nv̂−n

]
dx +

∫
Γ−

gv|ω · ν| dq.

(44)

The generalization of (39) to more general scattering terms may easily be carried out thanks to the
above formulae. Indeed, U and V belong to WD if and only if all their Fourier coefficients Ûn and V̂n

vanish for |n| ≥ 1. As a result, U is the unique solution to the following variational problem∫
Ω

(∂Û0∂̄V̂0 + ∂̄Û0∂V̂0

k0 − k1 + ε2σa
+ σaÛ0V̂0

)
dx +

c2
ε

∫
∂Ω

UV dσ

=
∫

Ω

(
ε
q̂1∂̄V̂0 + q̂−1∂V̂0

k0 − k1 + ε2σa
+ q̂0V̂0

)
dx +

∫
∂Ω

V
( ∫

ω·ν<0

g(x,ω)|ω · ν|dµ(ω)
)
dσ.

(45)

We have used here the symmetry of G implying that k−1 = k1. We denote by q̂−1 = 1
2 (qx + iqy) and

identify it with the vector q = (qx, qy) in Cartesian coordinates. The above variational formulation
shows that U is the (weak) solution in WD of the following diffusion equation:

−∇ ·Dε∇U + σaU = q − ε∇ ·Dεq, Ω

Dε
∂U

∂n
+
c2
ε
U = J, ∂Ω.

(46)

The diffusion coefficient is given by

Dε =
1

2(σε − k1)
=

1
2(k0 − k1 + ε2σa)

. (47)

This is the usual expression for the diffusion coefficient.

Remark 1. The property that the constant of coercivity of aε is independent of the mean free path ε
is very important to obtain the diffusion solution by orthogonal projection. Consider for instance the
transport problem

Tεuε ≡
1
ε
ω · ∇uε +

1
ε
Gεuε = q(x) in X, uε = 0 on Γ−, (48)

and the variational formulation: find uε such that

ãε(uε, v) = (wεTεuε, Tεv) = (q, wεTεv), ∀v ∈W. (49)

Here wε(x) is a weight function that could take the value 1 as in the introduction in [24] or σ−1
ε as in [7].

The above problem is equivalent to (48) for wε uniformly bounded from above and below by positive
constants as is shown in [7]. This results from the fact that ãε(uε, v) is coercive on W . However the
constant of coercivity is not independent of ε. The equivalence between (48) and (49) thus somewhat
degrades as ε → 0. The consequence is that (49) becomes inaccurate in the diffusive regime with dire
consequences when it comes to discretizations as pointed out in [24]. The same consequence arises when
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the natural orthogonal projection Π̃ε of uε onto WD is considered. Assuming that Gε is isotropic as in
(36) to simplify, we obtain that Ũε = Π̃εuε solves the equation

−∇ · wε

n
∇Ũε + wεσ

2
aŨε = wεσaq, in Ω. (50)

Here n = 2, 3 is the spatial dimension. Although the local equilibrium Ũε ≈ σ−1
a q is verified in the limit

of very strong absorption and sources, the diffusion tensor is not correct, independently of the choice
of the weight wε. This indicates that variational formulations of the form (49) should not be used in
the diffusive regime and should be replaced by (4) or by rescaled formulations as in [24].

2.5 Convergence result and error estimates

Let uε(x,ω) be the solution of the transport equation (15) and Uε = Πεuε the diffusion approximation
solution of (33). Define δuε = uε−Uε. We first show that δuε converges to 0 in W as ε→ 0. The proof
is similar to that in [5].

Thanks to the orthogonal projection, we first obtain that δuε ∈W⊥
Dε. Consequently, we have

aε(δuε, δuε) = aε(uε, δuε) = Lε(δuε).

We then deduce from (20) and (21) that

‖δuε‖W +
1
ε
‖δuε − δuε‖ . ‖q‖+

√
ε‖g‖b.

Since δuε is uniformly bounded in W , which is a Hilbert space with a unit ball compact for the weak
topology, we deduce the existence of a subsequence of δuε converging to w. However the subsequence
of δuε converges to the same limit so that w = w ∈WD. This implies that

aε(δuε, w) = 0.

Upon passing to the limit in the above expression, we find that∫
Ω

( 1
k0 − k1

∣∣∣ ̂(ω · ∇w)1
∣∣∣2 + σa|w|2

)
dx = 0

and that w|∂Ω = 0. This implies that w = 0, whence that δuε converges to 0. Note that all we have
used to get this convergence result is that ‖q‖ and ‖g‖b are bounded (in the L2−sense).

In order to obtain error estimates for δuε, additional regularity of the solutions and source terms is
required. Let us recall (18):

aε(u, v) =
∫

X

( 1
ε2σa

ω · ∇u ω · ∇v +Hε(ω · ∇u)ω · ∇v +
Gε

ε
uv

)
dp+

1
ε

∫
Γ+

uvω · ν dq,

Lε(v) =
∫

X

(
q − ω · ∇ q

εσa
− εω · ∇Hε(q)

)
v dp+

∫
Γ−

gvω · ν dq,
(51)

assuming that q vanishes on ∂Ω to simplify. We split the source term as

Lε = L0 + L1,

L0(v) =
∫

X

qv dp−
∫

X

εω · ∇Hε(q)v dp+
∫

Γ−

gvω · ν dq,

L1(v) =
∫

X

−ω · ∇ q

εσa
v dp.

(52)

The term appearing in L1(v) is of order ε−1 and cannot be estimated from the variational formulation.
In order to estimate it explicitly, we define W1 as the subspace of W of functions u(x,ω) such that
ûn(x) = 0 for |n| 6= 1. This is thus the Hilbert space of functions linear in ω. Let Π1ε be the orthogonal
projection of W onto W1 with respect to aε(·, ·). We define U1ε = Π1εuε, i.e.,

aε(U1ε, V1) = Lε(V1), ∀V1 ∈W1. (53)
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Thanks to the two terms of order ε−2 in aε in (51), we verify that

‖U1ε‖+ ‖ω · ∇U1ε‖ . ε‖q‖W + ε3/2‖g‖b. (54)

In what follows, we need a similar estimate for the following solution:

aε(Ũ1ε, V1) = L1(V1), ∀V1 ∈W1. (55)

We verify as above that
‖Ũ1ε‖+ ‖ω · ∇Ũ1ε‖ . ε‖∇q‖+ ε3/2‖g‖b. (56)

In order to estimate the error coming from the source term L0(v), we define ψ2ε as(
(εGε)ψ2ε, v

)
= L0(v)− aε(Uε, v), ∀v ∈W

ψ2ε = 0.
(57)

Here (·, ·) is the usual inner product of L2(X). We verify that ψ2ε is well-posed and is given by

ψ2ε(x,ω) = Hε

(
ω · ∇Hε(ω) · ∇Uε −∇ ·Dε∇Uε

+εω · ∇Hε(q)− 2Dεε∇ · q
)
.

(58)

The term within brackets in the above expression is mean zero by construction so that all equalities in
(57) are verified. Let us now decompose the exact solution as

uε = u0ε + u1ε, aε(ukε, v) = Lk(v), ∀v ∈W, k = 0, 1. (59)

We introduce the following decompositions:

u0ε = Uε + ε2ψ2ε + δ0ε, u1ε = Ũ1ε + δ1ε, (60)

and estimate both terms δkε for k = 0, 1. We start with k = 0 and obtain from the transport equation
aε(u0ε, δ0ε)− L0(δ0ε) = 0 that

aε(δ0ε, δ0ε) = −ε2
(
aε(ψ2ε, δ0ε)−

1
ε2

(
(εGε)ψ2ε, δ0ε

))
= −ε2

( ∫
X

( 1
ε2σa

ω · ∇ψ2ε ω · ∇δ0ε +Hε(ω · ∇ψ2ε)ω · ∇δ0ε

)
dp+

1
ε

∫
Γ+

ψ2εδ0εω · ν dq
)
.

By the Cauchy-Schwarz inequality, this implies that

aε(δ0ε, δ0ε) . ‖ω · ∇ψ2ε‖‖ω · ∇δ0ε‖+ ε2‖ω · ∇ψ2ε‖‖ω · ∇δ0ε‖+ ε‖ψ2ε|Γ+‖b‖δ0ε|Γ+‖b.

We verify that ‖ω · ∇ψ2ε‖ . ε thanks to its expression in (58). This shows that provided that q and
Uε, whence ψ2ε, are sufficiently regular, we obtain that

a1/2
ε (δ0ε, δ0ε) . ε‖ψ2ε|Γ+‖b + ε2

(
‖ω · ∇ψ2ε‖+ ε−1‖ω · ∇ψ2ε‖

)
. (61)

This implies for instance that
‖u0ε − Uε‖W . ε. (62)

It remains to address the term u1ε = Ũ1ε + δ1ε. We verify that

aε(Ũ1ε, δ1ε) =
∫

X

( 1
ε2σa

ω · ∇Ũ1ε ω · ∇δ1ε +Hε(ω · ∇Ũ1ε)ω · ∇δ1ε +
Gε

ε
Ũ1εδ1ε

)
dp

+
1
ε

∫
Γ+

Ũ1εδ1εω · ν dq = L1(δ1ε) +
∫

X

Hε(ω · ∇Ũ1ε)ω · ∇δ1εdp

= aε(u1ε, δ1ε) +
∫

X

Hε(ω · ∇Ũ1ε)ω · ∇δ1εdp,

because ω · ∇v depends only on v̂±1 and Ũ1εδ1ε = Π1ε(Ũ1εδ1ε). Now however, ‖Hε(ω · ∇Ũ1ε)‖ . ε
thanks to (56). This implies that

aε(δ1ε, δ1ε) . ε‖δ1ε‖W . ε2. (63)

In summary we have proved using a variational approach that:
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Theorem 1. Let uε and Uε be the transport and diffusion solutions. Then we have

‖uε − Uε‖W . ε, (64)

provided that the source term q and the solution U are sufficiently regular.

How regular the solution U and source term q need to be can be explicitly read off the previous formulae.
We do not dwell on the details.

2.6 Better error estimates in infinite domains

The accuracy of order O(ε) cannot be improved in general; see e.g. [12]. Indeed, we know that in
the presence of boundaries, boundary layer terms need be accounted for by other means than vol-
ume asymptotic expansions and diffusion-like approximations. We refer e.g. to [3] for two-dimensional
numerical simulations quantifying the role of the boundary layers.

In the absence of boundaries however, i.e., when Ω = R2, the above method provides more accurate
approximations of the transport solution than O(ε). Indeed we verify from (61) that

‖u0ε − Uε‖W . ε2. (65)

The same type of variational arguments (based on explicit test functions similar to ψ2ε) allows us to
show that

‖u1ε − Ũ1ε‖W . ε2

as well, which accounts for the source term −(εσa)−1ω · ∇q. This type of estimates hinges on the fact
that u0ε only involves polynomials that are even in θ (in the sense that û0εn = 0 for n odd) whereas
u1ε only involves odd polynomials in θ as can been seen from the variational formulations (12) and
(44). We finally observe, as is done in the Appendix, that

Ũ1ε(x,ω) = −εHε(ω) · ∇Uε(x), (66)

up to terms that can be estimated to be of order O(ε2). In the absence of boundaries, whence of
boundary layers, we therefore obtain the following classical result:

uε(x,ω) = Uε(x)− εHε(ω) · ∇Uε(x) +O(ε2), (67)

which can be shown to be equivalent to the expression

uε(x,ω) = Uε(x)− ε

k0 − k1
ω · ∇Uε(x) +O(ε2). (68)

Here the error terms are O(ε2) for the ‖ · ‖W norm for instance.

2.7 A remark on discretizations in the diffusive regime

The variational formulation (15) for transport allows us to easily construct discretizations of the trans-
port solution uε by Galerkin approximation. Indeed let Wh be a discrete subspace of W . We may then
define Πh as the orthogonal projection onto Wh for the inner product aε(·, ·). Denoting by uh = Πhuε,
we have the equivalent characterization:

aε(uh, v) = Lε(v), ∀v ∈Wh. (69)

Let us equip W with the norm ‖ · ‖Wε
whose square is defined on the left-hand side of (20). For this

norm, aε is not only coercive but also continuous with constants independent of ε as we noted earlier.
Céa’s lemma [9] then implies that

‖uε − uh‖Wε ≤ C min
v∈Wh

‖uε − v‖Wε , (70)

where C is independent of ε. The error estimate then becomes an approximation theory problem as
in [24, 25], where the main difficulty arises because the Wε norm depends on ε. Although it was more
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convenient to equip W with its natural norm in the analysis of diffusion approximations, it is natural
to introduce the norm ‖ · ‖Wε

in the analysis of discretizations (as in [24, 25]).
In the numerical solution of transport problems, it is very often useful to obtain discretizations that

behave well in the diffusive regime. This is not always satisfied and is usually characterized by ensuring
that the diffusive limit of the discretized transport equation is indeed a consistent discretization of the
diffusion equation [15, 20, 21]. We note here the following corollary of orthogonal projections:

ΠhΠε = ΠεΠh. (71)

This asserts that discretizing and taking the diffusive limit are commuting operations so that indeed
the discretization of the diffusion limit is indeed the same as the ε→ 0 limit of the discretized transport
equation.

3 Transport-diffusion coupling

We want to generalize the results obtained in the preceding section to the physical situation where the
diffusive regime is valid in large parts of the domain but not everywhere. We refer to [5] for possible
applications, which typically include large domains compared to the mean free path so that the diffusion
approximation holds everywhere except for localized areas where the scattering or absorption coefficients
may vary too fast.

3.1 Orthogonal projection

A plausible solution to this issue consists of solving the diffusion equation where it is valid and the
transport equation elsewhere. It thus remains to find a method that couples both equations at the
interface separating their domains of definition. As was shown in [5] in the simplified setting of the
even-parity formulation of the transport equation, orthogonal projection is a natural approach when a
variational formulation is available.

Let Ω be the physical domain and Ωdi and Ωtr a non-overlapping partition of Ω. We denote by γ
the common interface shared by Ωdi and Ωtr and assume that it does not overlap with ∂Ω. We denote
by νdi(x) the outward normal to Ωdi at x ∈ γ. Since the diffusion approximation is valid on Ωdi by
assumption, we expect the transport solution u(x,ω) to depend only on x on Ωdi, but to depend on
the full phase-space variables x,ω on Ωtr. This justifies the introduction of the following spaces

WC =
{
f ∈W, f = f(x) on Ωdi

}
, W⊥

Cε = {f ∈W, aε(f, v) = 0 ∀v ∈WC

}
. (72)

Let now ΠCε be the orthogonal (for aε) projector onto the Hilbert subspace WC of W . For uε the
solution of the transport solution of (15) we then define the coupled transport-diffusion solution as

uCε = ΠCεuε. (73)

Variationally, this means that
aε(uCε, v) = Lε(v) ∀v ∈WC . (74)

Because aε is an inner product on W , whence on WC , the above solution is uniquely defined.

3.2 Local equations

The solution of (74) can directly be estimated numerically by Galerkin (orthogonal) projection onto
finite dimensional subspaces. This is one of the main advantages of variational formulations [24, 25, 26].
It turns out that (74) does not seem to admit any simple “local” representation involving first-order
and diffusion equations. In order to better exhibit the nature of the coupling at the interface γ, we
introduce the notation

utr(ω,x) = uCε|Ωtr(ω,x), udi(x) = uCε|Ωdi(x) (75)
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for the solution uCε of (74). Because uCε ∈ W , we directly obtain the continuity relation utr(ω,x) =
udi(x) for x ∈ γ. The other relations are obtained as follows. We first observe that we may recast
aε(u, v)− Lε(v) as

aε(u, v)− Lε(v) =
∫

X

(
ω · ∇u+Gεu− εq

)1
ε

(
I +G−1

ε ω · ∇
)
vdp

+
∫

Γ−

(g − u

ε
)vω · νdq

=
1
ε

∫
(Ωdi∪Ωtr)×V

(I − ω · ∇G−1
ε )(ω · ∇u+Gεu− εq)vdp

+
∫

γ×V

(
εGε)−1

(
ω · ∇+Gε

)
(udi − utr)

)
vω · νdidq

+
1
ε

∫
∂X

(ω · ∇u+Gεu− εq)ω · νvdq +
∫

Γ−

(g − u

ε
)vω · νdq.

(76)

Upon restricting the support of v on Ωtr and Ωdi, we find that utr and udi satisfy the following equations

(I − ω · ∇G−1
ε )(ω · ∇utr +Gεutr − εq) = 0, Ωtr × V

−∇ ·Dε∇udi + σaudi = q − ε∇ ·Dεq, Ωdi.
(77)

Once the volume source terms in (76) have vanished, we obtain the following boundary conditions on
∂Ω:

(ω · ∇utr +Gεutr − εq) + (g − utr) = 0, Γ− ∩ (∂Ωtr × V )
ω · ∇utr +Gεutr − εq = 0, Γ+ ∩ (∂Ωtr × V )
νdi ·Dε∇udi +

cn
ε
udi = J(x), ∂Ω ∩ ∂Ωdi.

(78)

We observe that Gε(utr− udi) = 0 on γ since uεC ∈W . The coupling condition on γ is then equivalent
to: ∫

V

ω · ∇utrω · νdidµ(ω) = νdi ·Dε∇udi on γ. (79)

In the absence of coupling, i.e., when Ωtr = Ω, the above equations may be somewhat simplified
on Ωtr as follows (see also [7]). Let ϕ ∈ L2(Ωtr × V ) be an arbitrary test function and let us define
v ∈W (Ωtr) as the solution to

ω · ∇v +Gεv = G−1
ε ϕ, Ωtr × V

v = 0, Γ−(Ωtr),
(80)

where Γ±(Ωtr) andW (Ωtr) are defined as Γ± andW withΩ replaced byΩtr. Classical transport theories
[12] show that v is uniquely defined and belongs to W (Ωtr). Upon multiplying the first equation in (77)
by v and integrating by parts, we obtain using the second equation in (78) that∫

Ωtr×V

(
ω · ∇utr +Gεutr − εq)ϕdp+

∫
γ×V

G−1
ε

(
ω · ∇utr +Gεutr − εq

)
vω · νdidq = 0. (81)

When Ωtr = Ω so that γ = ∅, the above formulation implies that

ω · ∇utr +Gεutr − εq = 0, Ωtr × V. (82)

The above equality holds in the L2(Ωtr × V )-sense, which implies that it holds almost everywhere.
However, the variational formulation does not allow us to obtain that it also holds at the boundary of
the domain, so that the first equation in (78) does not simplify. Only when regularity of the solution can
be obtained, so that (82) holds in a stronger sense implying that it still holds at the domain boundary
can one conclude that u = g on Γ−.

In the transport-diffusion coupling, the situation is more complicated as ω · ∇utr + Gεutr − εq
has no reason to vanish on Γ+(Ωtr). The first-order transport equation (82) then no longer holds and
needs to be replaced by the equation for utr in (77). As in the even-parity formulation considered in
[5], we obtain the coupling of the diffusion equation with the second-order transport equation, not
the first-order transport equation. This further exemplifies the importance of the boundary conditions
(or of the interface conditions in the transport-diffusion coupling) when using second-order variational
formulations of first-order transport equations (see also [25, 26]).
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3.3 Convergence and error estimates

The convergence results and error estimates are very similar to those for the diffusion approximation
and the even-parity formulation developed in [5]. We outline the differences. Let uε be the transport
solution, uCε the coupled transport-diffusion solution, and δuε = uε − uCε. We obtain as before that
δuε ∈W⊥

Cε so that
aε(δuε, δuε) = aε(uε, δuε) = Lε(δuε).

From (20) and (21), we still obtain that

‖δuε‖W +
1
ε
‖δuε − δuε‖ . ‖q‖+

√
ε‖g‖b.

This implies the convergence of δuε to w (after possible extraction of a subsequence) and w = w so
that w ∈ WC ; whence aε(δuε, w) = 0. Passing to the limit ε → 0 in the above variational formulation
yields that w ≡ 0.

In order to obtain convergence results, we still split Lε as in (52). The contribution coming from L1

is of order O(ε) as before and we thus concentrate on the contribution from L0. Let us define ψ2ε as(
(εGε)ψ2ε, v

)
= L0(v)− aε(uCε, v), ∀v ∈W

ψ2ε = 0.
(83)

We verify that ψ2ε is given by

ψ2ε(x,ω) = χdi(x)
[
Hε

(
ω · ∇Hε(ω) · ∇uCε −∇ ·Dε∇uCε

+εω · ∇Hε(q)− 2Dεε∇ · q
)]
.

(84)

This is the main difference with respect to the diffusion case. Because the (second-order) transport
solution is calculated on Ωtr, the correction term only involves errors made on Ωdi. So when the
coefficients σa and kn wildly oscillate or do not have the correct behavior to justify the diffusion
approximation on Ωtr, they will generate errors only through the behavior of uCε, whence ψ2ε, on Ωdi,
where the validity of the diffusion approximation renders these errors much smaller.

The rest of the derivation is then as in section 2.5. We obtain that δuε is of order ε in W provided
that ψ2ε is sufficiently regular on Ωdi. Let us define W1C as the subspace of W of functions u(x,ω)
such that ûn(x) = 0 for |n| 6= 1 on Ωdi. When the boundary conditions are treated with the transport
equation so that ψ2ε|Γ+ , and the corrector u1Cε given by the orthogonal projection of uε onto W1C is
added to uCε, we obtain an approximation of order ε2 provided that ψ2ε is sufficiently regular as in [5].

4 Generalized diffusion models

When the diffusion approximation does not hold in an area relatively large compared to the transport
mean free path but still small compared to the overall size of the domain, the transport-diffusion cou-
pling presented above may be the only alternative to the more costly full transport solution. There are
cases however where the area of invalidity of diffusion is sufficiently specific so that more macroscopic
models may be defined. An example is the treatment of clear layers in optical tomography, where diffu-
sion does not hold locally although modified (generalized) diffusion models can still be used efficiently.
We refer to [4, 6] for the derivation of such a model and to [2, 3, 13, 17, 29] for additional references
on the problem.

It is not clear how to derive the generalized diffusion models presented in [6] by purely variational
means and orthogonal projections. Our objective in this section is rather to extend the models developed
in [4, 6] to more general geometries of non-scattering inclusions. From the application’s viewpoint, the
main novelty of the following derivation is the treatment of narrow non-scattering tubes or filaments
in three-dimensional geometry surrounded by highly scattering media. This may have applications in
radiation problems in astrophysics and atmospheric cloud modeling. We consider non-scattering and
non-absorbing inclusions to simplify the presentation although the results can be generalized to weakly
scattering and absorbing media as in [4].
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The framework we consider here is the following. Let Ω be a smooth compact domain in Rn and
Ωε a smooth non-scattering subset of Ω. We consider the transport problem: find uε ∈W such that

ω · ∇uε +Gεuε = εq(x), in Ω\Ωε × V

ω · ∇uε = 0, in Ωε × V

uε = 0, on Γ−.
(85)

It is understood that the jump of uε across Σε = ∂Ωε vanishes since uε ∈W . We consider the case where
Gε is isotropic and given by (36) to simplify. The diffusion approximation holds in Ω\Ωε but not in Ωε.
Because scattering and absorption are supposed to vanish in Ωε, the variational formulations defined
in earlier sections need to be regularized (see [26] for more details on this problem). Yet independently
of this issue, we claim that for specific forms of Ωε, there are simpler methods to approximate uε than
the transport-diffusion coupling introduced in the previous section.

4.1 A non-local diffusion equation

We model Ωε as follows. Let Σ be a smooth (non self-intersecting) closed (to simplify) surface of co-
dimension d in the n−dimensional domain Ω. Then Ωε is the subset of Ω of points that are sufficiently
close to Σ:

Ωε = {x ∈ Ω; d(x, Σ) < Lε}, (86)

where d(x, Σ) is the Euclidean distance from x to Σ and Lε is a constant that depends on ε. We may
thus parameterize Ωε as Σ × BLε , where BLε is the d− dimensional ball of radius Lε, at least for
sufficiently small Lε.

Let TxΣ be the n − d dimensional vector space of vectors tangent to Σ at x ∈ Σ and NxΣ the d
dimensional vector space of vectors normal to Σ at x ∈ Σ. The tangent and normal bundles TΣ and
NΣ are as usual the unions of TxΣ and NxΣ, respectively, where x runs over Σ. We also define N as
the subset (x,n(x)) ∈ NΣ such that |n| = 1 and Nx as the subset n ∈ NxΣ such that |n| = 1. The
latter set is isomorphic to the sphere Sd−1. It is the unit circle when Σ is a curve in three dimensions
and is restricted to two points when Σ is a surface in three dimensions or a curve in two dimensions.
We then realize that ∂Ωε = Σ + LεN is a smooth co-dimension one surface for sufficiently small Lε.

When Lε is a positive constant independent of ε, it is shown in [4] that uε converges as ε → 0 to
the solution U of a diffusion equation on Ω\Ωε (which is in fact independent of ε) with the boundary
condition on ∂Ωε that U is constant on ∂Ωε and the average of ∂U

∂n over ∂Ωε vanishes. This essentially
means that nothing much happens insideΩε. Because no scattering hampers the propagation of particles
within Ωε, an equilibrium is reached which stipulates that uε is approximately constant in Ωε.

A more interesting regime may be obtained when Lε is allowed to depend on ε. We assume that
Lε converges to 0 with ε. If Lε converges too slowly to 0, then we are back to the case where the
transport solution equilibrates to a constant inside Ωε. If Lε converges too fast to 0, then the non-
scattering inclusion is too small to have any effect and the approximate solution Uε of uε becomes the
solution of a diffusion equation with no inclusion. There is an intermediate regime where the physics
is richer. Because Lε � 1 in the regime of interest, we can assume that Uε becomes constant on the
d−dimensional cross-section Bx = x + τLεNx for 0 ≤ τ ≤ 1 as in [4]. This means that Uε(y) on ∂Ωε

depends only on x ∈ Σ, where |x− y| = Lε and generalizes the condition that the jump of Uε across a
co-dimension one surface vanishes as in [4].

Let us now consider the response operator Rε on the non-scattering inclusion Ωε, which maps
u|Γ−(∂Ωε) to u|Γ+(∂Ωε) solution of ω ·∇u = 0 in Ωε. Here, Γ±(∂Ωε) = {(x,ω) ∈ ∂Ωε×V,±ω ·ν(x) > 0}.
We also define Γ±(x) = {ω ∈ V,±ω · ν(x) > 0} for x ∈ ∂Ωε and note that ∂Bx for x ∈ Σ is the
subset of ∂Ωε at a distance Lε from x. We decompose the response operator applied to functions Uε

as Rε = R0 + εR1, where R0 maps Uε(x) on Γ−(∂Ωε) to Uε(x) on Γ+(∂Ωε). The correction εR1 will
be of order O(ε) provided that Lε is suitably chosen.

Following the same procedure as in [4], we obtain that an approximation Uε of order O(ε) of uε

satisfies the following equation
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−∇ ·Dε∇Uε + σaUε = q, Ω\Ωε

Dε
∂Uε

∂n
+
cn
ε
Uε = 0, ∂Ω

Uε(x + τLεn) = Uε(x), (τ,n) ∈ (0, 1)×Nx, x ∈ Σ∫
∂Bx

Dε
∂Uε

∂n
dσ =

∫
∂Bx

∫
Γ+(x)

ω · ν(R1Uε)dµ(ω)dσ, x ∈ Σ.

(87)

The first two equations are the usual diffusion equation with boundary conditions on Ω\Ωε where
the diffusion approximation is valid. The third equation indicates that the solution Uε is constant on
Bx for all x ∈ Σ. The fourth equation, which is necessary to evaluate the latter constant, ensures
the conservation of the particle current through the interface ∂Bx for each x ∈ Σ. The left-hand side
models ε−1 times the current coming into the non-scattering inclusion, while the right-hand side is ε−1

times the current going out of the non-scattering inclusion:∫
∂Bx×V

ω · νvεdq =
∫

∂Bx

∫
Γ−(x)

ω · νUεdq +
∫

∂Bx

∫
Γ+(x)

ω · νRεUεdq,

where vε solves ω · ∇vε = 0 in Ωε and vε = Uε on Γ−(∂Ωε). Because R0 is the identity operator on
functions of the form Uε(x), ε−1 times the transport current takes the form given on the right-hand
side of the fourth equation in (87).

We thus obtain an equation for Uε(x), which is much less expensive to solve numerically than the
full transport solution uε. Note however that the boundary conditions in the fourth equation of (87) are
non-local and require us to estimate R1 explicitly. In the case where Σ is a co-dimension one surface,
then ∂Bx and Nx reduce to two points for x ∈ Σ and it is shown in [4] that (87) admits a unique
solution for ε sufficiently small.

4.2 Generalized diffusion equation

It remains to find the value of Lε for which R1 is indeed an O(1) operator and to see whether the
non-local conditions in (87) can be localized. Both questions are answered by the same asymptotic
expansions as follows.

We first need to evaluate R1Uε(x + Lεn,ω). For each (x + Lεn,ω) ∈ Γ+(x), we have a unique
y(x,n,ω) ∈ ∂Ωε\{x + Lεn} such that x + Lεn− y = |x + Lεn− y|ω, by following the characteristics
of the operator ω · ∇. Let us define x̄(x,n,ω) as the closest point to y on Σ. Then we have

R1Uε(x + Lεn,ω) =
1
ε

(
Uε

(
x̄(x,n,ω)

)
− Uε(x)

)
. (88)

Assuming to simplify that Σ has positive curvature (in the sense that each curve in Σ has positive
curvature), then |x− x̄| � 1 when Lε � 1. Let us define the tangent vector τ (ω) ∈ TxΣ such that x̄
is on the (unique) geodesic starting at x with direction τ (ω), and let d(x, x̄) be the geodesic distance
(on Σ) between x and x̄. Geodesics are meant here with respect to the induced metric on Σ seen as a
submanifold of Rn equipped with the Euclidean metric. Then we verify by Taylor expansion that

Uε(x̄)− Uε(x) = τ (ω) · ∇Σ

(d2(x, x̄)
2

τ (ω) · ∇ΣUε

)
(x) +O(d3(x, x̄)). (89)

Here ∇Σ is the restriction (projection) of ∇ to TxΣ. We also define ∇⊥
Σ as the restriction of ∇ to NxΣ.

Neglecting the smaller-order term O(d3(x, x̄)), we see that the operator R1 is now local in x. Moreover,
it will be of order O(1) provided Lε is chosen so that

1
ε

∫
∂Bx

∫
Γ+(x)

ω ·ντ (ω) ·∇Σ

(d2(x, x̄)
2

τ (ω) ·∇ΣUε

)
(x)dµ(ω)dσ = ∇Σ ·DΣ(x)∇ΣUε(x) = O(1). (90)

In other words, we want the (positive definite) second-order tensor DΣ(x), defined explicitly in (90)
for a given geometry, to be of order O(1).

Tedious calculations similar to those in [4] show that for an interface Σ of co-dimension d ≥ 1 in a
n = 2, 3 dimensional domain Ω, the domain Ωε must be characterized by a radius Lε such that
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Ld+1
ε | lnLε| = O(ε). (91)

The result probably holds for larger values of n although this was not considered in detail. In the
physically interesting case n = 3, we therefore obtain that clear layers (where d = 1) of thickness
Lε ≈

√
ε (neglecting logarithmic terms) and tubes (where d = 2) of radius Lε ≈ ε1/3 will have an

order O(1) effect on the diffusion solution. The case of clear layers is treated in [4, 6]. In the case of a
non-scattering tube, the limiting equation for Uε as the thickness of the tube tends to 0 is thus given
by the local generalized diffusion model:

−∇ ·Dε∇Uε + σaUε = q, Ω\Σ

Dε
∂U

∂n
+
cn
ε
Un = 0, ∂Ω

Dε(x) lim
η→0+

∫
Nx

θ · ∇⊥
ΣUε(x + ηθ)dµ(θ) = −∇Σ ·DΣ(x)∇ΣUε, Σ.

(92)

It may be easier to understand the solution of the above equation by recasting it in a variational form:
Find the unique solution U ∈ H1

Σ(Ω) such that for all V ∈ H1
Σ(Ω), we have:∫

Ω

(Dε∇U · ∇V + σaUV )dx +
cn
ε

∫
∂Ω

UV dσ(x) +
∫

Σ

DΣ∇ΣU∇ΣV dl(x) =
∫

Ω

V gdx. (93)

When n = 3 and d = 2, then l(x) is the (one-dimensional) arclength along the curve Σ and ∇Σ is
nothing but ∂

∂l . The Hilbert space H1
Σ(Ω) is defined as the completion of the pre-Hilbert space of

functions of class C1 on Ω such that 〈U,U〉Σ <∞, where the inner product 〈·, ·〉Σ is defined as:

〈U, V 〉Σ =
∫

Ω

(∇U · ∇V + UV )dx +
∫

Σ

∇ΣU∇ΣV dl(x). (94)

We know that H1
Σ(Ω) is a Hilbert space [28] and that thanks to the uniform positiveness of Dε, σa,

and DΣ on their domains of definition, the variational formulation (93) admits a unique solution by
the Lax Milgram theory.

Note that functions in H1(Ω), defined in (31) as the natural space for the classical diffusion approx-
imation, do not necessarily admit traces on one-dimensional curves (though functions in H1+δ(Ω) do
for all δ > 0). This renders the use of the above completion argument necessary to construct H1

Σ(Ω).
This issue does not arise for (co-dimension one) surfaces as functions in H1(Ω) indeed admit traces
on surfaces. In any event, from the numerical viewpoint, we observe that the non-scattering filament
is simply modeled by one additional integration over Σ in the variational formulation (93). This ren-
ders its numerical simulation rather straightforward and much less costly computationally than the full
transport equation or the non-local diffusion model (87).
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A Local second-order equation and linear corrector

This appendix provides some useful calculations related to the variational formulations introduced in
the text and sketches the derivation of the expression for the corrector of order ε. We first verify that
by choosing a test function with support in Ω and by integrations by parts that the solution uε of (15)
also solves

(I − ω · ∇G−1
ε )(ω · ∇u+Gεu− εq) = 0. (95)

Let us introduce the shift operators
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S± = F−1Ŝ±F , (Ŝ±û)n = ûn±1. (96)

We then verify that
ω · ∇ = ∂S− + ∂̄S+.

Thanks to (40) and the above equalities, we deduce that (95) is equivalent to:

−
[
∂

∂ûn−2

σε − kn−1
+ ∂̄

∂ûn

σε − kn+1
+ ∂

∂̄ûn

σε − kn−1
+ ∂̄

∂̄ûn+2

σε − kn+1

]
+
σε − kn

ε2
ûn

= q̂n − ε
[
∂

q̂n−1

σε − kn−1
+ ∂̄

q̂n+1

σε − kn+1

]
.

(97)

Let u be the transport solution. The equation for its orthogonal projection over linear functions in
the angular variable Π1u is thus

−
[
∂
∂û−1

σε − k0
+ ∂̄

∂û1

σε − k2
+ ∂

∂̄û1

σε − k0

]
+
σε − k1

ε2
û1 = q̂1 − ε

[
∂

q̂0
σε − k0

+ ∂̄
q̂2

σε − k2

]
.

Up to terms of smaller order that can be estimated, this is

−
[
∂
∂û−1

σε − k0
+ ∂

∂̄û1

σε − k0

]
+
σε − k1

ε2
û1 = −∂ q̂0

εσa
.

We check that this is also the equation verified by

U1 = −G−1
ε (ω · ∇Uε),

up to smaller-order terms, which may be written in the Fourier domain as

̂(G−1
ε (ω · ∇Uε)1 = ε

∂Ûε

σε − k1
,

where Uε is the diffusion approximation. Therefore, the expression for the corrector is:

U1(x,ω) = −εHε(ω) · ∇Uε(x). (98)

This is the usual expression for the first-order corrector to the transport solution in the absence of
boundaries.
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27. J. Planchard, Méthodes mathématiques en neutronique (in French), Collection de la Direction des Etudes

et Recherches d’EDF, Eyrolles, 1995.
28. M. Reed and B. Simon, Methods of modern mathematical physics. I. Functional analysis, Academic Press,

Inc., New York, second ed., 1980.
29. J. Ripoll, M. Nieto-Vesperinas, S. R. Arridge, and H. Dehghani, Boundary conditions for light

propagation in diffuse media with non-scattering regions, J. Opt. Soc. Amer. A, 17(9) (2000), pp. 1671–
1681.

30. R. P. Rulko, D. Tomasevic, and E. W. Larsen, Variational P1 Approximations of General-Geometry
Multigroup Transport Problems, Nucl. Sci. Eng., 121 (1995), p. 393.

31. H. Sato and M. C. Fehler, Seismic wave propagation and scattering in the heterogeneous earth, AIP
series in modern acoustics and signal processing, AIP Press, Springer, New York, 1998.

32. W. M. Stacey, Variational Methods in Nuclear Reactor Physics, Academic Press, New York, 1974.
33. M. D. Tidriri, Asymptotic analysis of a coupled system of kinetic equations, C.R. Acad. Sci. Paris, t.328,

Série I Math., (1999), pp. 637–642.
34. , Rigorous derivation and analysis of coupling of kinetic equations and their hydrodynamic limits for

a simplified boltzmann model, J. Statist. Phys., 104 (2001).


