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Abstract. This paper analyzes some properties of the parareal algorithm, which can be used
to parallelize the time discretizations of differential equations. The parareal algorithm proceeds as
follows. Firstly, a coarse time step is used to solve the equation sequentially on a given time interval.
Secondly, a fine discretization is used to solve the evolution equation on each coarse time step. This
step may be performed in parallel. Finally, the local errors between the coarse and fine solutions are
propagated through the whole time interval by using the sequential coarse algorithm. The latter two
steps may be repeated k− 1 times. The main result is that this two-level parallel algorithm replaces
a discretization of order m by a discretization of order km. Convergence is analyzed for ordinary
differential equations and for the Euler discretization of stochastic ordinary differential equations.
Optimal implementations that maximize speedup or system efficiency are then considered for the
two-level as well as more general multi-level parareal algorithms. Some examples of application of
the algorithm, such as the integration of equations over long times or the filtering problem, are then
analyzed numerically.
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1. Introduction. Evolution equations posed on an interval [0, T ] with initial
condition at time t = 0 require the knowledge of the solution at time τ > 0 to calculate
the solution at a later time t > τ . This obvious fact is an impediment to “classical”
parallelizations, where N independent processors would be used to solve the equation
on N subsets of the whole interval of time [0, T ]. Because of computational time
and memory issues, parallelization has become an indispensable tool in the solution
of large scale problems. Several techniques have thus been developed to address the
parallelization of time discretizations. An interesting but somewhat limited technique
consists of parallelizing the computations required at every time step for high order
methods [9, 18, 21]. Another approach is based on replacing the initial value problem
by a boundary value problem that is more amenable to parallelization [1, 2, 8, 16, 22].
The waveform relaxation technique may also be used to parallelize the numerical
simulation of ODE systems. It is a parallelism across the ODE system, using the
notation in [20], obtained by splitting the ODE system into smaller sub-systems. We
refer to [9, 11, 20] for details on the method.

We consider here the parareal algorithm, which was pioneered in [13], subsequently
modified in [6], and used in several applications including control theory [14], molec-
ular dynamics [4], and fluid-structure interactions [10] for instance. The algorithm
consists of discretizing an interval of time by using a fine time step, which governs
the required final accuracy of the method, and a coarse time step, introduced e.g. to
maximize speedup (maximal gain in time) or to optimally use a given number of pro-
cessors (system efficiency). The algorithm is described as follows. The first time step
consists of solving the evolution equation on the coarse discretization iteratively. This
step cannot be done in parallel (although the techniques described in the literature
cited above could be applied here). The evolution equation is then solved in parallel
on each coarse interval. This step is fully parallelizable provided that we have as many
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processors as we have coarse time intervals. The last step consists of propagating the
error between the coarse and fine discretizations through the whole time interval by
using one more time the non-parallel coarse discretization. The latter two steps may
be repeated sequentially k − 1 times. The main advantage of the algorithm is that
it replaces a scheme of order m on the coarse grid by a scheme of order km on that
same grid.

This paper concentrates on the parallelization in time of ordinary differential
equations and a simple stochastic ordinary differential equation. Convergence is pre-
sented for sufficiently regular ordinary differential equations. It is also interesting to
see how the parareal algorithm deals with “stiff” equations. The stochastic ordinary
differential equations act as a proxy for such stiff equations. We show that the “paths”
of the stochastic solutions are indeed well captured by the parareal algorithm, which
shows its robustness. An interesting application, where one is interested in stochastic
paths, is optimal filtering. Note that the parareal algorithm is not useful when one
is interested in the law of the stochastic solution. Indeed, natural parallelization over
stochastic realizations, as in Monte Carlo method, is optimal as far as system efficiency
is concerned, and is much more efficient than parallelization based on the parareal
algorithm. As in the case of deterministic ordinary differential equations, the advan-
tage of the parareal algorithm is that it allows us to approximate the “path” of the
solution faster than with sequentially-based method provided that a sufficient number
of processors is available. Note also that although some of the analysis presented here
may apply to partial differential equations, high frequency modes generated by spatial
discretizations require special treatment, as is shown for instance in [5, 6], and will
not be dealt with here.

In its simplest implementation, the parareal algorithm briefly described above
involves four main parameters: a fine time step δT that is eventually tied to the
accuracy we expect from the algorithm, a coarse time step ∆T , which we can choose
freely, a number k of iterations of the algorithm, and a number M of successive
times the parareal algorithm is used on intervals of size τ/M to solve an equation
on the interval [0, τ ]. This paper describes how the parameters should be chosen
to maximize speedup and system efficiency of the parareal algorithm. When τ is
of order O(1) independent of δT , optimal speedups are obtained for k = 2. The
coarse time step is then chosen as the square root of the fine time step. For evolution
on longer times, where τ may be modeled as (δT )−γ , other choices lead to optimal
speedups or system efficiencies. With these optimal choices of parameters, the parareal
algorithm may be particularly adapted to the solution of small systems of ordinary
differential equations over very long times, where other parallelization techniques such
as waveform relaxation may not be as efficient.

The organization of the paper is as follows. Section 2 recalls well-known results
on ordinary differential equations and introduces the notation used in subsequent sec-
tions. The parareal algorithm is analyzed in the framework of ordinary differential
equations in section 3. Section 4 generalizes the results to a simple stochastic ordi-
nary differential equation. To simplify the presentation, only the Euler discretization
is considered. Section 5 is concerned with the practical implementation of the algo-
rithm either to maximize the speedup provided that a sufficient number of processors
is available, or to maximize the relative time where processors are active (system
efficiency). The two-level algorithm considered so far is generalized to a multi-level
algorithm, which allows for higher maximal speedup. Finally, section 6 presents very
simple numerical simulations that indicate where the algorithm may prove valuable.
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Among them are the solution of highly oscillatory problems over long intervals of time
and the filtering problem, where some quantities of interest are reconstructed from
noisy measurements.

2. Ordinary Differential Equations. This section recalls well-known results
on the discretization of ordinary differential equations. It also serves as an introduc-
tion to the notation used in subsequent sections. We consider a system of ordinary
differential equations of the form

dX(t) = b(t,X(t))dt, t ∈ [0, T ]
X(0) = X0,

(2.1)

for T > 0. Here, X(t) is a vector in Rd and b a function from [0, T ] × Rd to Rd

satisfying the regularity constraints

|b(t, x)| ≤ C(1 + |x|), x ∈ Rd, t ∈ [0, T ],
|b(t, x)− b(t, y)| ≤ C|x− y|, x, y ∈ Rd, t ∈ [0, T ], (2.2)

where | · | is any norm on Rd. Here and below, C denotes a positive universal constant.
It is a classical result [3] that the above restrictions on b(t, x) ensure existence and
uniqueness of a solution to (2.1).

To solve this equation numerically on [0, T ], we set a time step ∆T > 0 and a
discretization Tn = n∆T of the interval [0, T ] = [T 0, TN ]. We introduce the solution
function g(t, X) = g(t,X;∆T ) defined by

g(t,X) = X(t + ∆T ), (2.3)

where

dX(τ) = b(τ,X(τ))dτ, τ ≥ t
X(t) = X.

(2.4)

The ordinary differential equation (2.1) is solved numerically by approximating
the function g by a discretized version g∆(t,X). We then define X0 = X0 and
iteratively

Xn+1 = g∆(Tn, Xn) for 0 ≤ n ≤ N − 1. (2.5)

The accuracy of the approximation is obtained by analyzing

X(Tn+1)−Xn+1 = g(Tn, X(Tn))− g∆(Tn, Xn) (2.6)

iteratively. Let us assume for instance that we have a discretization of order m > 0
so that

sup
1≤n≤N ;x∈Rd

|g(Tn, x)− g∆(Tn, x)| ≤ C(∆T )m+1(1 + |x|). (2.7)

This might require additional regularity assumptions on the function b, which we do
not dwell on. We deduce from (2.2) the following Lipschitz regularity

sup
t∈[0,T ];x,y∈Rd

|g(t, x)− g(t, y)| ≤ (1 + C∆T )|x− y|. (2.8)
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From (2.7) and (2.8), we see that a similar result to (2.8) also holds for g∆. This
implies that |Xn| ≤ C(1 + |X0|) for all 0 ≤ n ≤ N . We can then use (2.7) and (2.8)
to deduce from (2.6) that

|X(Tn+1)−Xn+1| ≤ (1 + C∆T )|X(Tn)−Xn|+ C(∆T )m+1(1 + |Xn|). (2.9)

From this we obtain that

|X(Tn)−Xn| ≤ C(1+C∆T )nn(∆T )m+1(1+ |X0|) ≤ Cn(∆T )m+1(1+ |X0|), (2.10)

and, for instance, that

|X(T )−XN | ≤ CT (∆T )m(1 + |X0|). (2.11)

This concludes the analysis of the iterative algorithm (2.5) to approximately solve the
system (2.1).

3. Parallelization in Time. Let us now assume that we have as many pro-
cessors to calculate fine solutions as we have coarse intervals [Tn, Tn+1]. Solving the
problem accurately on every interval [Tn, Tn+1] could then theoretically be done in
parallel. Since the solution X(Tn) (or an approximation of it) is required to calculate
X(t) on [Tn, Tn+1], parallelizing time discretizations is however not straightforward.

As an adaptation of an algorithm pioneered in [13], a two-level parallelization
scheme has been proposed in [6] This section analyzes this algorithm to solve general
systems of ordinary differential equations. The parallelization scheme is defined as
follows. The scheme is initialized by the solution of the iterative algorithm (2.5) of
the preceding section

Xn+1
1 = g∆(Tn, Xn

1 ) for 0 ≤ n ≤ N − 1, (3.1)

with X0
1 = X0. We then define more accurate solutions as the following two-level

iterative process. Let us assume that k ≥ 1 and that Xn
k is known for 0 ≤ n ≤ N .

First, we calculate jumps by solving local problems “exactly”,

Sn
k = g(Tn−1, Xn−1

k )−Xn
k , 1 ≤ n ≤ N. (3.2)

The jump Sn
k is the difference between the local “exact” solution at time Tn starting

from Xn−1
k at Tn−1 and the predictor Xn

k obtained after k parareal iterations. Second,
we propagate these jumps by using the coarse solver

Xn+1
k+1 =

k∑
l=1

Sn+1
l + g∆(Tn, Xn

k+1), 0 ≤ n ≤ N − 1, (3.3)

with initial condition X0
k+1 = X0.

This is the form implemented in the numerical simulations to calculate Xn
k+1

from Xn
k , requiring to use a non-parallel coarse discretization to propagate the jumps

and a parallel local fine discretization to calculate these jumps. In practice, the local
calculations also need to be discretized. To simplify the presentation, we assume that
the local calculations are performed exactly. The generalization to the discrete case
is straightforward; see section 5.

The above form can be simplified. We indeed verify the following recurrence
relation (see Fig.3.1)

Xn+1
k+1 = g∆(Tn, Xn

k+1) + δg(Tn, Xn
k ), (3.4)
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Fig. 3.1. The recurrence relation (3.4).

where we have introduced the difference operator

δg(Tn, X) = g(Tn, X)− g∆(Tn, X). (3.5)

This prediction-correction formula was already used in [4, 6]. We can recast the
above relation as

Xn+1
k+1 −X(Tn+1) = [g∆(Tn, Xn

k+1)− g∆(Tn, X(Tn))]
+ [δg(Tn, Xn

k )− δg(Tn, X(Tn))].
(3.6)

Let us assume that δg verifies the following regularity hypothesis

sup
1≤n≤N ;x,y∈Rd

|δg(Tn, x)− δg(Tn, y)| ≤ C(∆T )m+1|x− y|. (3.7)

This hypothesis means that g∆ not only is a discretization of order m of g as in (2.7),
but also verifies a Lipschitz regularity in its initial condition. Again, this requirement
relies on a sufficient regularity of the function b(t, x) and the discretization scheme.
We deduce from (2.8) and (3.7) that

sup
t∈[0,T ];x,y∈Rd

|g∆(t, x)− g∆(t, y)| ≤ (1 + C∆T )|x− y|. (3.8)

Introducing the error between the exact solution and the iterative solution at step k

εn
k = Xn

k −X(Tn), (3.9)

we deduce from (3.6), (3.7) and (3.8) that

|εn+1
k+1 | ≤ (1 + C∆T )|εn

k+1|+ C(∆T )m+1|εn
k |. (3.10)

Let us now define

θn
k = (1 + C∆T )k−nC(∆T )−k(m+1)|εn

k |. (3.11)
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We observe that (3.10) implies

θn+1
k+1 ≤ θn

k+1 + θn
k .

Since θn
0 is bounded (above and below) as well as (1 + C∆T )N , we deduce that

|εn
k | = |Xn

k −X(Tn)| ≤ C(∆T )k(m+1)

(
n

k

)
. (3.12)

For n = N and k = O(1), this implies that

|XN
k −X(T )| ≤ CT k(∆T )km|X0|. (3.13)

This error is to be compared with (2.11). The iterative scheme (3.4) replaces a
discretization of order m by a discretization of order km after k−1 iterations, involving
k coarse solutions and k − 1 fine solutions calculated in parallel.

This iterative algorithm allows for substantial gains in computational time pro-
vided that a sufficiently large number of processors is available. The analysis of this
speedup is postponed to section 5.

4. Parallelization for Stochastic Ordinary Differential Equations. The
analysis performed in the preceding section concerns smooth systems of ordinary dif-
ferential equations. It is unclear how the technique can be adapted to stiff equations.
We show in this section that the parareal algorithm still works for a simple discretiza-
tion of stochastic ordinary differential equations.

We consider here the system of stochastic ordinary differential equations:

dX(t) = b(t, X(t))dt + σ(t, X(t))dB(t), t ∈ [0, T ].
X(0) = X0,

(4.1)

where, b and X are defined as in the preceding section, B(t) is m−dimensional Brow-
nian motion defined on a probability space (Ω,F , P ), and σ(t, X) maps [0, T ]×Rd to
Md×m, the set of d×m matrices. We assume that b and σ are such that

|b(t, x)|+ |σ(t, x)| ≤ C(1 + |x|), x ∈ Rd, t ∈ [0, T ]
|b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ C|x− y|, x, y ∈ Rd, t ∈ [0, T ]. (4.2)

This implies existence and uniqueness of a strong solution X(t) to the above stochastic
ordinary differential equation [19]. We denote by Ft a filtration adapted to Brownian
motion B(t) (see [19]). To simplify the presentation we assume that the dimensions
d = 1 and m = 1. The generalization to higher values of d and m present no theoretical
difficulty for the numerical scheme considered here (see [12, 17]).

In integral form, (4.1) between Tn and Tn+1 is equivalent to

X(Tn+1) = X(Tn) +
∫ T n+1

T n

b(t,X(t))dt +
∫ T n+1

T n

σ(t, X(t))dB(t)

= g(Tn, X(Tn)).
(4.3)

To solve (4.1) numerically, we consider in this paper only the explicit Euler scheme,
defined by

Xn+1 = Xn + b(Tn, Xn)∆T + σ(Tn, Xn)(B(Tn+1)−B(Tn))
= g∆(Tn, Xn). (4.4)
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The accuracy of this scheme has been analyzed in the literature [12, 15, 17]. We aim
at generalizing the analysis of section 3 on the time parallelization scheme to the dis-
cretization (4.4) of (4.1). More accurate schemes than the Euler explicit discretization
can also be analyzed using the techniques of this paper and of the above references
although we do not consider them here.

Let us define the operators

Lf =
∂f

∂t
+ b

∂f

∂x
+

1
2
σ2 ∂2f

∂x2
, Λf = σ

∂f

∂x
. (4.5)

We deduce from the Itô formula [19] that

db(t, X(t)) = Lb(t, X(t))dt + Λb(t, X(t))dB(t)
dσ(t, X(t)) = Lσ(t, X(t))dt + Λσ(t, X(t))dB(t).

We use these relations to recast (4.3) as

X(Tn+1) = X(Tn) + b(Tn, X(Tn))∆T + σ(Tn, X(Tn))(B(Tn+1)−B(Tn))

+
∫ T n+1

T n

∫ t

T n

(
Lb(s,X(s))dsdt + Λb(s,X(s))dB(s)dt

)
+

∫ T n+1

T n

∫ t

T n

(
Lσ(s,X(s))dsdB(t) + Λσ(s,X(s))dB(s)dB(t)

)
.

(4.6)

The local error between (4.3) and (4.4), or equivalently the difference

δg(Tn, X(Tn)) = g(Tn, X(Tn))− g∆(Tn, X(Tn)),

is then given by the two integral terms in (4.6).
With these generalized definitions for g and g∆, we define Xn

k as the solution to
the time parallelization scheme (3.1)-(3.3). Recall from (3.6) that

Xn+1
k+1 −X(Tn+1) = [g∆(Tn, Xn

k+1)− g∆(Tn, X(Tn))]
+ [δg(Tn, Xn

k )− δg(Tn, X(Tn))].

We now aim at estimating the quantity

ηn
k = E[(Xn

k −X(Tn))2]. (4.7)

Here E denotes expectation with respect to the probability measure P . We have

ηn+1
k+1 ≤ E

[(
g∆(Tn, Xn

k+1)− g∆(Tn, X(Tn))
)2

]
+E

[(
δg(Tn, Xn

k )− δg(Tn, X(Tn))
)2

]
+2

∣∣∣E[(
g∆(Tn, Xn

k+1)− g∆(Tn, X(Tn))
)(

δg(Tn, Xn
k )− δg(Tn, X(Tn))

)]∣∣∣(4.8)

Let us define a(Tn) = b(Tn, Xn
k+1) − b(Tn, X(Tn)) and γ(Tn) = σ(Tn, Xn

k+1) −
σ(Tn, X(Tn)). We compute

E
[(

g∆(Tn, Xn
k+1)− g∆(Tn, X(Tn))

)2]
= E

[(
Xn

k+1 −X(Tn) + a(Tn)∆T + (γ(Tn))(B(Tn+1)−B(Tn))
)2]

= E
[(

Xn
k+1 −X(Tn) + a(Tn)∆T

)2] + ∆TE
[
γ2(Tn)

]
≤ (1 + C∆T )E

[(
Xn

k+1 −X(Tn)
)2] = (1 + C∆T )ηn

k+1.
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Here we have used (4.2) and E[B(Tn+1)−B(Tn)|FT n ] = 0.
Let us now recast δg(Tn, Xn

k )− δg(Tn, X(Tn)) as∫ T n+1

T n

∫ t

T n

(
a1(s)dsdt + a2(s)dB(s)dt + a3(s)dsdB(t) + a4(s)dB(s)dB(t)

)
,

where

a1(s) = Lb(s,X(s))− Lb(s, Y (s)), a2(s) = Λb(s,X(s))− Λb(s, Y (s))
a3(s) = Lσ(s,X(s))− Lσ(s, Y (s)), a4(s) = Λσ(s,X(s))− Λσ(s, Y (s)),

where X(s) and Y (s) solve (4.1) with initial conditions given by Xn
k and X(Tn),

respectively. We assume that all the functions involved in the definition of the terms
ai(s) are Lipschitz with respect to their second variable:

|Lb(t, x)− Lb(t, y)|+ |Lσ(t, x)− Lσ(t, y)|+ |Λb(t, x)− Λb(t, y)|
+|Λσ(t, x)− Λσ(t, y)| ≤ C|x− y|, x, y ∈ R, t ∈ [0, T ], (4.9)

for some constant C. We deduce from this Lipschitz regularity and from the stability
of the solution to (4.1) that for all s ∈ [Tn, Tn+1],

E[(ai(s))2] ≤ CE[|Xn
k −X(Tn)|2] = Cηn

k . (4.10)

Let us also recall that for non-anticipating functions f(t, ω) and g(t, ω) (see [19]), we
have the Itô isometry

E
[ ∫ τ

t

f(s, ω)dB(s)
∫ τ

t

g(s, ω)dB(s)
]

= E
[ ∫ τ

t

f(s, ω)g(s, ω)ds
]
, t < τ.

Several applications of this Itô isometry, the Cauchy-Schwarz inequality, and the above
bounds show then that

E[|δg(Tn, Xn
k+1)− δg(Tn, Xn

k )|2] ≤ C(∆T )αηn
k , (4.11)

with α = 2 in general, α = 3 if a4 = 0, and α = 4 if a2 = a3 = a4 = 0 (as in the
deterministic case or the linear case, i.e., b and σ constant).

Interestingly enough, the cross term in (4.8) cannot be estimated satisfactorily
from the two other terms and an estimate of the form (E[(a + b)2])1/2 ≤ (E[a2])1/2 +
(E[b2])1/2 would imply that the Euler scheme does not converge when α = 2 above.
The reason is that the biggest terms vanish in the expectation of the cross term, given
by

E
[(

g∆(Tn, Xn
k+1)− g∆(Tn, X(Tn))

)(
δg(Tn, Xn

k )− δg(Tn, X(Tn))
)]

= E
[(

(Xn
k+1 −X(Tn)) + ∆Ta(Tn)

) ∫ T n+1

T n

∫ t

T n

a1(s)dsdt
]

+E
[
γ(Tn)

( ∫ T n+1

T n

dB(t)
)(

δg(Tn, Xn
k )− δg(Tn, X(Tn))

)]
.

The first term is bounded by

C(∆T )2
√

ηn
k+1η

n
k ≤ C(∆T )ηn

k+1 + C(∆T )3ηn
k ,
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thanks to (4.9), (4.10), and the Cauchy-Schwarz inequality. Using now the relation
(E[ab])2 ≤ E[a2]E[b2], we obtain for the second term as estimate of the form

C(∆T )1/2
√

ηn
k+1(C∆T )α/2

√
ηn

k ≤ C(∆T )ηn
k+1 + C(∆T )αηn

k .

The above bounds and (4.8) show that

ηn+1
k+1 ≤ (1 + C∆T )ηn

k+1 + C(∆T )α∧3ηn
k . (4.12)

Here, a ∧ b = min{a, b}. The same results as (3.12) show that

ηn
k ≤ C(∆T )k(α∧3)

(
n

k

)
. (4.13)

For n = N and k � N , this implies that

ηN
k ≤ C(∆T )k(α∧3−1)E[(X0)2]. (4.14)

We deduce the following estimate at the final time T for the root-mean-square (RMS)
error (

E[(XN
k −X(T ))2]

)1/2

≤ C(∆T )
k(α∧3−1)

2

(
E[(X0)2]

)1/2

. (4.15)

When α ≥ 3, for instance when σ(t) is independent of x, we obtain a method of order
k after k iterations of the parallel scheme. When α = 2, we obtain a method of order
k/2. The Euler scheme without parallel acceleration is respectively of order 1 when
α ≥ 3 and 1/2 when α = 2. We thus recover similar results to those of section 3.

Note that the Euler discretization is one of the few schemes that does not require
to estimate integrals of the form

∫ t

0
Bi(s)dBj(s). When m = 1 (and i = j = 1), such

integrals can be calculated explicitly. In higher dimensions however, these integrals
may be difficult to estimate (see [17]). An advantage of the parallelization scheme is
that it is a high-order scheme without estimating these integrals, provided that we
have a sufficiently large number of processors to solve the equations on the fine grid.

The main result of this section is that the good behavior of the parareal algorithm
observed in (3.13) extends to the discretization of stochastic ordinary differential
equations insofar as (4.15) holds. The latter result means “strong” convergence (in
the L2(Ω,F , P ) sense) of the discrete process to the continuous one, in the sense
that the continuous paths of X(t) are indeed well approximated by Xn

k . If one is
interested is stochastic paths, as in the filtering application considered in section 6,
then indeed the parareal algorithm may be efficiently used to accelerate convergence.
Note however that the parareal algorithm is probably not useful when one is interested
in the law of the process X(t). In that case, “weak” convergence estimates of the form
|E[f(XN

k )]−E[f(X(T ))]| for compactly supported continuous functions f(·) are likely
to be much smaller than the bounds in (4.15) (see [12] for instance). Yet numerical
simulations of E[f(X(T ))] are usually based on Monte Carlo methods, which are
trivially parallelizable over realizations of the stochastic process, and which will thus
be much more efficient than parallelizations based on the parareal algorithm

5. Speedup, system efficiency, multi-level parallelization. This section
shows in which situations the parallel algorithm introduced in section 3 may be useful
and which speedup and system efficiency are to be expected. The speedup is the ratio
between the full fine resolution and the parallel algorithm. The system efficiency is
the ratio of this speedup with the number of required processors. Ideally, we want the
speedup to be as large as possible and the system efficiency as close to 1 as possible.
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5.1. Speedup and system efficiency. We assume that the coarse discretiza-
tion is of order 1 in ∆T (so that m = 1). The theory of the preceding sections
can be generalized to a fine discretization that is not exact, but rather of order 1 in
δT ∼ (∆T )k for a fixed value of k on the interval (0, T ). In the context of section 3,
this amounts to replacing the operator g by gδ (with obvious notation) and observing
that the new difference operator δg = gδ − g∆ still satisfies the required regularity
hypothesis (3.7), as an application of the triangle inequality.

To calculate the speedup, we assume that the cost of one coarse step and the cost
of one fine time step are identical and equal to 1. We denote by τ the final time and
want to solve the system of (possibly stochastic) ordinary differential equations on
(0, τ). We want to consider times τ = O(1) and τ � 1. For the Euler discretization
of time step δT , we have that the error εn = |Xn −X(Tn)| satisfies

εn+1 ≤ (1 + C0δT )εn + (δT )2|Xn|.

Since |Xn| < (1 + C0δT )n, we deduce that

εn ≤ (1 + C0δT )nn(δT )2|X0|. (5.1)

When n ≤ C(δT )−1, we obtain an accuracy of order δT . When n � (δT )−1 however,
the term (1 + C0δT )n blows up exponentially. To avoid this effect, which is not
physical in many instances, we assume that C0 is arbitrary when τ = O(1), and that
C0 = 0 when τ � 1. This allows us to consider the large time solution of problems
with no growing modes, for instance for problems such that

|g(t, x)− g(t, y)| ≤ |x− y| and |g∆(t, x)− g∆(t, y)| ≤ |x− y|.

We will consider the case of a linear isometry in the next section. With these restric-
tions, we introduce the following notation.

• τ is the final time
• M is the number of successive use of the parallel algorithm between 0 and τ

(this means that the parallel algorithm is used M times on intervals of size
T = τ/M)

• P is the number of processors
• S is the speedup
• E is the system efficiency of the calculation, given by the ratio of the speedup

over the number of processors E = S/P
• T is the length of the intervals of time on which the parallel algorithm is used

and is such that τ = MT .
The accuracy of the fine discretization at the final time (5.1) is given by

(δT )2
τ

δT
= τδT.

This allows us to get convergence of the numerical simulation for times τ as large as
(δT )−α for all 0 ≤ α < 1.

The accuracy of the parallel scheme is deduced on each interval of size T from
(3.12) and is given by

|εn
k | ≤ C(T∆T )k.

Since the errors made at different time steps do not grow by more than a constant
factor thanks to our hypothesis on C0, the final error after M steps of the parallel
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algorithm is given by

M(T∆T )k.

Both accuracies must be equivalent so that the fine discretization and the parallel
algorithm can be compared. This implies that

M(T∆T )k ∼ τδT = MTδT i.e., (T∆T )k ∼ TδT. (5.2)

Here, a ∼ b means that a/b = O(1) as δT and ∆T tend to 0.
Let us now calculate the respective time costs of the methods. The fine solution

cost is simply

τ

δT
.

The time cost of the parallel algorithm is

M
[ T

∆T
+ (k − 1)

( T

∆T
+

∆T

δT

)]
.

Notice that the CPU cost over all processors is much higher. This implies that the
speedup is

S =

T

δT

k
T

∆T
+ (k − 1)

∆T

δT

=
1

k
δT

∆T
+ (k − 1)

∆T

T

. (5.3)

The number of processors is P = T (∆T )−1 so that the system efficiency is

E =
S

P
=

1

(k − 1) + k
TδT

(∆T )2

. (5.4)

We see that the system efficiency cannot be better than (k−1)−1, which is the number
of iterations of the fine discretization required in the parallel algorithm.

5.2. Maximization of speedup or system efficiency. To fix ideas let us
assume that

τ = (δT )−β for 0 ≤ β < 1,

so that the final accuracy of the calculation at τ is (δT )1−β .
Let us assume moreover that

T ∼ (δT )−γ for γ ≤ β,

where the constant γ is a free parameter. We deduce from the two contributions on
the denominator of (5.3) that the speedup is optimal provided that

δT

∆T
= µ

∆T

T
, (5.5)

where µ is a constant of order O(1). Using (5.2), we finally deduce that optimally

k =
2(1− γ)
1− 3γ

, and S ∼ (δT )−(1+γ)/2.
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We should thus choose γ as large as possible but less than 1/3, which corresponds
to k = +∞. Optimizing the speedup is thus realized as follows. Let us assume that
β = (k0 − 2)/(3k0 − 2) for some 2 ≤ k0 ∈ N when β < 1/3 to simplify (and β is
arbitrary when 1/3 ≤ β < 1). Then we have the optimal values

β <
1
3
, S ∼ (δT )−(1+β)/2, k =

2(1− β)
1− 3β

= k0, M = 1,

β ≥ 1
3
, S ∼ (δT )−2/3, k = +∞, M ∼ (δT )1/3−β .

(5.6)

When β < 1/3 there is an optimal value of k ≥ 2 such that the maximal speedup is
attained without restart (M = 1). When β > 1/3 however, the maximal speedup is
bounded by (δT )−2/3 independent of the number of processors P and the algorithm
is optimal at k = ∞ and should be restarted (δT )1/3−β times. The optimal number
of processors Po required is of the same order as S here. When β = 0, i.e. when the
final time τ = O(1), we obtain that

S ∼ (δT )−1/2, k = 2, M = 1, ∆T ∼ (δT )1/2. (5.7)

The corresponding efficiency of the algorithm is then given by

E =
1

k − 1 + µk
< 1.

It is not optimal since k ≥ 2 and µ = O(1). Instead of maximizing the speedup we
can try to maximize the speedup knowing the number of processors P � Po. To fix
ideas, let us assume that

P =
T

∆T
=

1
(δT )α

(5.8)

for some 0 < α < 1/2. To obtain an efficiency close to 1 we choose k = 2 (for α > 1/2
we need k > 2, which we do not considered here). We deduce from (5.2) that

T = (δT )
1−2α

3 , ∆T = (δT )
1+α

3 . (5.9)

The speedup and system efficiency are then found to be

S =
1

(δT )α
E, E =

1

1 + 2(δT )
2(1−2α)

3

. (5.10)

Here, the speedup is therefore roughly equal to the number of processors, which is
equivalent to saying that the system efficiency is close to 1. Notice that the speedup
is however smaller than in (5.6). The number of successive occurrences of the parallel
algorithm is given by M ∼ (δT )

2α−1
3 τ � τ . Maximizing the system efficiency requires

to restart the parallelization algorithm many times.

5.3. Multi-level parallelization. The maximal speedup obtained in the pre-
vious section is proportional to (δT )−1/2 provided that we have enough processors
when β = 0, which we now assume for simplicity. When the number of processors is
larger, the two-level method cannot be used to obtain an optimized speedup. Instead,
we need to consider a multi-level algorithm.
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The previous section shows that k = 2 is optimal for both the maximization of
speedup and system efficiency. This actually also holds in the multi-level paralleliza-
tion so we anticipate that result to simplify. The mechanism to describe three-level
parallelization is to apply the two-level procedure to the solution of the fine discretiza-
tion on every interval of size ∆T . Let us assume that

dT � δT � ∆T � T ≤ τ.

We now compute the order of the maximal speedup that can be obtained.
The accuracy of the fine solution is again τdT . The accuracy of the parallel solu-

tion is also still given by M(T∆T )2 = τT (∆T )2, where T and ∆T are still unknown.
Both accuracies are comparable provided that

dT ∼ T (∆T )2.

The cost of the fine solution is τ/dT , whereas that of the three-level parallel algorithm
is

M
[
2

T

∆T
+ 2

∆T

δT
+

δT

dT

]
.

This implies the following expression for the speedup

S =

T

dT

2
T

∆T
+ 2

∆T

δT
+

δT

dT

.

Upon maximizing the above expression, we find that

∆T =
√

δTT , δT =
√

4∆TdT .

Upon taking dT = T (∆T )2, we obtain

T =
(dT

16

)1/7

, ∆T = 4
(dT

16

)3/7

, δT = 162/7(dT )5/7.

This implies that the number of processors and the speedup are both of order

S ∼ (dT )−4/7 � (dT )−1/2, P ∼ (dT )−4/7.

The corresponding system efficiency equals a constant smaller than 1 that we do not
reproduce. Provided that the number of processors is less than the above estimate,
the system efficiency can be made arbitrarily close to 1 as for the two-level parallel
algorithm.

More generally, let us define the multi-level parallelization algorithm as follows.
We assume that we have a scale of time steps such that

∆mT � ∆m−1T � · · · � ∆1T � ∆0T � τ.

At each scale, the ordinary differential equation is solved by using a two-level parallel
algorithm involving the next finer scale.

The accuracy of the fine solution is given by τ∆mT . The accuracy of the parallel
algorithm is given by M(∆0T∆1T )2. Here again, we have τ = M∆0T . This implies
that

∆0T (∆1T )2 ∼ ∆mT. (5.11)
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The speedup of the multi-level algorithm is given by

S =

τ

∆mT

M
(
2(

∆0T

∆1T
+ · · ·+ ∆m−2T

∆m−1T

)
+

∆m−1T

∆mT

) .

At ∆mT and ∆m−2T fixed, we again have that 2∆m−2T
∆m−1T + ∆m−1T

∆mT is minimized pro-
vided that (∆m−1T )2 ∼ ∆m−2T∆mT . More generally, S is maximized provided that
asymptotically

∆nT

∆n+1T
∼ ∆n+1T

∆n+2T

for 0 ≤ n ≤ m− 2. Upon taking the product of these relations, we find that

∆0T

∆nT
∼

(∆0T

∆1T

)n

, 0 ≤ n ≤ m. (5.12)

We deduce then from the above relation and (5.11) that

∆0T = (∆mT )
m−2
3m−2 , ∆1T = (∆mT )

m
3m−2 .

Using (5.12) one more time, we deduce from the relation nm − (n − 1)(m − 2) =
m + 2(n− 1) that

∆nT = (∆mT )
m+2(n−1)

3m−2 , 0 ≤ n ≤ m.

We obtain that the optimal speedup and the number of required processors are then
of order

S ∼ ∆1T

∆mT
∼ (∆mT )−

2m−2
3m−2 , P ∼ (∆mT )−

2m−2
3m−2 . (5.13)

We recover (∆2T )−1/2 = (δT )−1/2 when m = 2 and (∆3T )−4/7 = (dT )−4/7 when
m = 3. Notice that the speedup tends to (dt)−2/3 when m → ∞, where dt is the
finest available time discretization. The number of occurrences of the multi-level
algorithm is M ∼ (dt)−1/3. So on each interval of size ∆0T ∼ (dt)1/3, the number
of points of the finest discretization and the number of processors are asymptotically
equivalent, which is optimal. The multi-level algorithm needs however to be restarted
(dt)−1/3 times to reach the required accuracy.

6. Examples and numerical simulations. This section presents numerical
simulations that illustrate the type of solutions obtained by the parareal algorithm
and confirm the theoretical predictions obtained in previous sections. These numeri-
cal simulation are performed for extremely simple equations and on a single processor
machine using low order schemes to allow for comparison with theory. Since commu-
nication between the processors occurs only at the beginning and the end of the coarse
steps we do not expect any surprise in the implementation on parallel machines. This
however remains to be studied more carefully. We also refer to the existing literature
on the parareal algorithm for more challenging applications than the simple equations
considered here.
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6.1. Exponential function. The simplest example consists of solving the equa-
tion

dX(t) = X(t)dt, t ∈ (0, 1), X(0) = 1. (6.1)

We obtain that X(1) = e and consider the explicit Euler scheme to solve it:

Xn+1 = (1 + δT )Xn = (1 + δT )n+1.

The advantage of such a simple equation is that we obtain an explicit expression
for the solution of the parallel scheme. Assuming that a fine time step dT and a
coarse time step ∆T are used, and that the parallel algorithm is restarted M times
on intervals of size 1/M , we obtain after some algebra the expression

X2 = (1 + ∆T )1/∆T
(
1 +

(1 + dT )∆T/dT − (1 + ∆T )
M∆T (1 + ∆T )

)M

. (6.2)

In order to calculate the speedup of the method, we require that the final errors at
time τ = 1 be the same (say 10−8) for the classical explicit scheme and the parallel
scheme:

|X(1)−X1/δT | = |X(1)−X2| = 10−8. (6.3)

Some algebra shows that δT is roughly (2/e)10−8. We now have the choice of ∆T and
dT in (6.2) provided that the constraint (6.3) remains satisfied. After optimization,
we obtain for M = 1 that

dT = 7.21 10−9, ∆T = 9.67 10−5, P = 10341, S = 3987, E = 0.40,

and for M = 20 that

dT = 7.21 10−9, ∆T = 4.35 10−4, P = 114.9, S = 112.3, E = 0.98.

In order to obtain an accuracy of 10−8, the maximal speedup we can expect is of
the order of 4000 provided that we have 104 processors. If we have access to 115
processors, we can increase the efficiency of the parallelization to 0.98 provided that
we use the parallel algorithm on intervals of size T = τ/M = 1/20.

These results are consistent with the theoretical analysis of the preceding sec-
tion. Similar results would also hold for the examples of application of the parallel
algorithm considered below. Since the optimization of the speedup and efficiency pre-
sented in section 5 requires the control of constants appearing in front of the order of
convergence of the numerical methods, which are not easily estimated, even numeri-
cally, we shall focus in the subsequent sections on the numerical analysis of the theory
presented in sections 3 and 4, and show that the convergence in (∆T )k is very well
observed numerically, even for small values of ∆T .

6.2. Harmonic oscillator. We consider in this section the harmonic oscillator,
which solves the following 2× 2 system

dX(t) =
(

0 −1
1 0

)
X(t)dt, t ∈ [0, T ]

X(0) =
(

1
0

)
.

(6.4)
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The solution g(t, x) corresponding to the system (6.4) is given by

g(t, x) =
(

x1 cos ∆T − x2 sin∆T
x1 sin∆T + x2 cos ∆T

)
. (6.5)

We verify that it is an isometry in the sense that

y2
1 + y2

2 = x2
1 + x2

2

for y = g(t, x). This implies that the constant C0 = 0 in (5.1) and that no exponen-
tially growing mores are present in the continuous solution.

We consider the Euler implicit scheme to solve this problem, given by

g∆(t, x) =
(

1 ∆T
−∆T 1

)−1

x. (6.6)

For z = g∆(t, x), we easily verify that

z2
1 + z2

2 = (1 + (∆T )2)−1(x2
1 + x2

2).

The implicit Euler scheme is therefore quite dissipative and should not be used in
practice for long time calculations. We shall see that the parallel algorithm still
allows us to use this low-order scheme satisfactorily even for long time calculations.

The parallel algorithm presented in section 3 is considered on an interval of size
T = 2π. Since we have access to the exact solution, the implementation of the
algorithm is exactly as given in section 3. We consider the numerical solution for
values of 1 ≤ k ≤ K = 5 for discretizations N = 25, N = 50, N = 100 and N = 200.

The results of the numerical simulation for |εN
k |, the error at final time T between

the exact solution and the approximation of order k XN
k , are given in Tab. 6.1. A

plot of the different solutions Xn
k for ∆T = T/25 is given in Fig. 6.1. In the theory

k = 1 k = 2 k = 3 k = 4 k = 5
N = 25 5.53 10−1 1.83 10−1 4.02 10−2 6.29 10−3 7.30 10−4

radius 0.33 0.22 0.16 0.12
N = 50 3.30 10−1 6.01 10−2 7.35 10−3 6.64 10−4 4.69 10−5

radius 0.18 0.12 0.090 0.071
N = 100 1.80 10−1 1.72 10−2 1.09 10−3 5.20 10−5 1.69 10−6

radius 0.095 0.064 0.048 0.038
N = 200 9.44 10−2 4.58 10−3 1.49 10−4 3.60 10−6 6.96 10−8

radius 0.049 0.032 0.024 0.019
Table 6.1

Errors at final time T of the error |X(T N ) − XN
k | for several values of k and ∆T = T/N for

the harmonic oscillator of section 6.2.

of section 3, the ratio between the error at level k and the error at level k + 1 is
proportional to ∆T . The radius in Tab. 6.1 should decrease by a factor 2 when the
number of coarse time steps doubles. This is very well confirmed numerically.

6.3. Harmonic oscillator over long times. Let us now consider the same
harmonic oscillator as in the preceding section, but over a much longer time. The
solutions Xn

1 , Xn
2 , Xn

6 , and X(Tn) are represented over the interval [0, 12π] for a
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Fig. 6.1. Exact solution X(T n) and approximate solutions Xn
k for 1 ≤ n ≤ N = 25 and

1 ≤ k ≤ 4. Xn
1 : solid line with circles. Xn

2 : dot-dashed line. Xn
3 : dashed line. Xn

4 : dotted line.
Exact solution X(T ): solid line.

number of discretization N = 150 = 6×25 in Fig.6.2. Since the implicit Euler scheme
is dissipative, the solution Xn

1 is quickly very far off the exact solution. Notice that
the algorithm still converges to the exact solution as k → ∞. However, to obtain
a reasonable accuracy at T = 12π, at least 6 iterations of the parallel scheme are
necessary, which would require a time discretization of time step δT ∼ (∆T )6, i.e.,
approximately 6× 256 ≈ 109 discretization points.
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Fig. 6.2. Exact solution X(T n) and approximate solutions Xn
k for 1 ≤ n ≤ 6N = 150 and

k = 1, 2, 6. Xn
1 : solid line. Xn

2 : dash-dotted line. Xn
6 : dashed line. Exact solution X(T ): solid

line.
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M 5 10 20 40
error 0.796 0.400 0.198 0.0983
radius 0.503 0.495 0.497

Table 6.2
L2 error of the discrete solutions on the last period of the computation interval.

Instead, we can use the parallel algorithm on smaller intervals and restart the
process until final time. Consider for instance the solution of (6.4) on a domain of
size τ = 2πM , where M = N/5 and N is the number of discretization points of the
coarse discretization on (0, 2π). We use the parallel algorithm with k = 2, which is

0 1 2 3 4 5 6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
HARMONIC OSCILLATOR

TIME ON LAST PERIOD

X
1

Fig. 6.3. Exact solution X(T n) (solid line) and approximate solution Xn
2 on the last period of

computation [2π(M − 1), 2πM ] for different values of M : M = 5 (solid line), M = 10 (dotted line),
M = 20 (dash-dotted line), M = 40 (dashed line). Notice that the exact solution is periodic and
takes therefore the same value on the last period of the computation interval independently of M .

optimal to maximize system efficiency according to the theory of the preceding section.
Since the method with k = 2 is of order 2 and the whole domain (0, τ) is of size N ,
the accuracy at final time τ should be of order 1/N also. This is confirmed by the
results presented in Fig. 6.3 and Tab. 6.2. In Fig. 6.3, the exact and approximate
solutions are represented on the last loop (2π(M − 1), 2πM) for values of M = 5,
M = 10, M = 20, and M = 40. In Tab. 6.2 are shown the L2 error between the exact
and approximate solutions on [2π(M − 1), 2πM ] for the same values of M as above.
The accuracy of the error between the exact solution and the solution of the parallel
algorithm on [2π(M − 1), 2πM ] is theoretically of order N−1. This is extremely well
reproduced numerically as can be seen on the last row of the table.

If we assume that δT = 2π/N2 and ∆T = 2π/N according to (5.5) with µ = 1 and
T = 2π, the speedup is given by S = N/2 provided that we have P = N processors.
For N = 200, a speedup of order 100 is quite valuable and may allow us to compute the
dynamics of oscillatory systems quite accurately even over a large number of periods.
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N = 25 N = 50 N = 100 N = 200
k = 1 2.5 10−1 4.3 10−2 6.1 10−3 7.9 10−4

radius 0.63 0.72 0.66
k = 2 1.6 10−1 1.8 10−2 1.8 10−3 1.5 10−4

radius 0.42 0.50 0.50
k = 3 1.1 10−1 8.9 10−3 6.1 10−4 3.8 10−5

radius 0.29 0.35 0.34
k = 4 7.5 10−2 4.5 10−3 2.1 10−5 9.6 10−6

radius 0.19 0.25 0.25
Table 6.3

RMS error between the exact solution X(3) given by (6.8) and the discrete solutions XN
k at

final time for k = 1, 2, 3, 4.

6.4. Geometric Brownian Motion. The last two numerical simulations are
devoted to stochastic equations and illustrations of the theoretical result obtained in
(4.15). We do not try to maximize speedup and system efficiency here and thus choose
the non-optimal M = 1. We consider here Geometric Brownian motion, defined as
the solution to

dX(t) = rX(t)dt + σX(t)dB(t), t ∈ [0, T ]
X(0) = 1.

(6.7)

There is an explicit solution to this equation given by

X(t) = exp
(
σB(t) + (r − σ2

2
)t

)
. (6.8)

We assume that the final time T = 3. We use the Euler scheme given by (4.4) to solve
(6.7) and the parallelization scheme defined by (3.4) to obtain more accurate solutions
Xn

k for k = 1, 2, 3, 4. Notice that we calculate δg exactly since we have access to the
exact solution (6.8).

We consider ensemble averages (over Nr = 1000 realizations so the results pre-
sented have an accuracy of order

√
Nr ≈ 3 10−2) for a number of discretization points

N = 25, N = 50, N = 100, and N = 200. Since the Euler scheme has an accuracy of
order 1/2 (since a4 6= 0; see section 4), we expect

εN
k =

√
E[(X(T )−XN

k )2]

at final time T = 3 to be of order N−k/2. The results are reported in Tab. 6.3. They
agree very well with theory. The exact ratios of convergence are 1/

√
2 ≈ 0.71 for

k = 1; 1/2 for k = 2; 1/(2
√

2) ≈ 0.35 for k = 3; and 1/4 for k = 4. We display on
Fig. 6.4 an example of convergence of XN

k to X(T ) as k increases although XN
1 is

very far from approximating the true solution.

6.5. Filtering problem. The above example shows how the parallel scheme
can be used to solve stochastic ordinary differential equations. Let us repeat however
that when only statistical averages of the solution are required, such as E[f(X(T ))],
it might be better to use the available number of processors to run independent real-
izations of the random process using the fine time step δT . Indeed, the corresponding
speedup is exactly given by the number of processors (S = P and E = 1), which beats
the expected speedup of the parallel algorithm.
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Fig. 6.4. One realization of geometric Brownian motion on (0, 3) with N = 25. Exact solution
X(T n) (solid line), approximate solutions Xn

1 (dashed line), Xn
2 (dotted line), Xn

3 (dash-dotted
line). The fourth approximation Xn

4 is indistinguishable from X(T n).

One interesting application where the solution of a stochastic equation for one
realization of the random process matters is the filtering problem. We refer to [19] for
a presentation of the filtering problem and consider here the simple example of the
noisy observation of a population growth.

We consider the growth model

dX(t) = rX(t)dt, t ∈ [0, T ]
X(0) = X0(ω), E[X0] = b > 0, E[(X0 − b)2] = a2,

(6.9)

where r is a constant growth rate, and a and b are constants. The unknown quantity
is therefore the size of the population at time T = 0. The filtering problem is as
follows. Let us assume that we have access to noisy observations of the population
modeled by

dZ(t) = X(t)dt + mdB(t), Z(0) = 0. (6.10)

In the absence of noise in the measurements, the population is given by X(t) = Z ′(t).
In the presence of noise, we want to find the best estimator X̂(t) of X(t) based on the
measured realization of the random process Z(t). In mathematical terms, this means
that we are looking for the random process

X̂(t) = E[X(t)|Gt],

where Gt is the σ-algebra generated by {Z(s), X(s); s ≤ t}, and E[·] is expectation
with respect to the probability measure P associated with B(·) and X0.

This problem can be answered by solving a stochastic ordinary differential equa-
tion and an ordinary differential equation of Riccati type [7, 19]. In our context, these
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N = 25 N = 50
k = 1 4.2 10−2 2.1 10−2

radius 0.49
k = 2 1.6 10−3 3.9 10−4

radius 0.24
Table 6.4

RMS error between the exact solution X(T ) for the filtering problem and the discrete solutions
XN

k at final time for k = 1, 2, T = 2, and σ = 0.6.

equations are given by

dX̂(t) =
(
r − S(t)

m2

)
X̂(t)dt +

S(t)
m2

dZ(t), X̂(0) = b,

dS(t) =
(
2rS(t)− S2(t)

m2

)
dt, S(0) = a2.

(6.11)

Since the diffusion constant in front of dB in (6.11) is independent of x, we
expect the Euler scheme (4.4) to be of order 1 (see section 4). Two iterations of
the parallel scheme make then (X̂N

2 , SN
2 ) an approximation of order 2 of the exact

solution (X̂(T ), S(T )) (in the sense of (4.15)).
We consider the following example. We assume that r = 2, that X0 is uniformly

distributed over (0, 2) so that b = 1 and a2 = 4/3. The results of the numerical
simulations are given in Tab. 6.4 for σ = 0.6 and T = 2. The graph of the renormalized
solution e−rtX̂(t) for one realization of B(t) is given in Fig. 6.5 for σ = .6, T = 2
(left) and σ = 6, T = 5 (right).

To calculate the RMS errors, 500 realizations have been used. Since the exact
solution operator g(T,X) is not known in general (although the solution of the Riccati
equation is known explicitly), it has been approximated by using a discretization with
O(N3) points. The “exact” solution has been calculated by using a discretization
with O(N3) points.

The error estimates given in Tab. 6.4 are according to theory: the theoretical
radius of convergence is 1/2 for k = 1 when the number of discretization points is
halved. The corresponding radius is (1/2)2 for k = 2. When σ is small, there is little
noise in the measurements and the estimate X̂(t) is quickly close to X(t). When σ
increases, so does noise in the measurements and the accuracy of X̂(t) decreases.
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