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Abstract

We consider the homogenization of parabolic equations with large spatially-
dependent potentials modeled as Gaussian random fields. We derive the homoge-
nized equations in the limit of vanishing correlation length of the random poten-
tial. We characterize the leading effect in the random fluctuations and show that
their spatial moments converge in law to Gaussian random variables. Both results
hold for sufficiently small times and in sufficiently large spatial dimensions d > m,
where m is the order of the spatial pseudo-differential operator in the parabolic
equation. In dimension d < m, the solution to the parabolic equation is shown to
converge to the (non-deterministic) solution of a stochastic equation in [2]. The
results are then extended to cover the case of long range random potentials, which
generate larger, but still asymptotically Gaussian, random fluctuations.
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1 Introduction

Let m > 0 and P(D) the pseudo-differential operator with symbol p(&) = [£|™. We
consider the following evolution equation in dimension d > m:

0 1 d
(a—FP(D)—g—aq(g))ue(t,x) = 0, reRY t>0,
u(0,7) = wup(z), xeR™L

(1)
Here, ug € L*(R?) and ¢(z) is a mean zero stationary (real valued) Gaussian process de-
fined on a probability space (2, F,P). We assume that ¢(x) has bounded and integrable
correlation function R(z) = E{q(y)q(z + y)}, where E is the mathematical expectation
associated with P, and bounded, continuous in the vicinity of 0, and integrable power
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spectrum (2m)4R(& = Jpa € ®"R(z)dz in the sense that fRd\B(o,l) R(&)|E|"™de < oo.
The size of the potentlal is constructed so that the limiting solution as ¢ — 0 is different
from the unperturbed solution obtained by setting ¢ = 0. The appropriate size of the
potential is given by

m 1
ez|lnglz d=m
ex = {7l el ’ 2)
£2 d>m.
Therefore, a = 3 except in dimension d = m where a logarithmic correction appears.
We still use the convenient notation * in that case with a = a(e) = § éhh‘rﬁfl

The above equation may be seen as a continuous version of the parabolic Anderson
model, which is extensively studied as a model (typically for m = 2) where localization
and intermittency can develop; see e.g. [4]. This paper concerns the regime where u. is
well approximated by the solution to a deterministic (homogenized) equation.

The potential is bounded P-a.s. on bounded domains but is unbounded P-a.s. on
R?. Tt is therefore unclear that (1) admits solutions a priori. By using a method based
on the Duhamel expansion, we obtain that for a sufficiently small time 7" > 0, the
parabolic equation (1) indeed admits a weak solution u.(t,-) € L?(2 x R?) uniformly in
time ¢t € (0,7) and 0 < € < &.

Homogenization theory. Ase — 0, we show that the solution u.(t) to (1) converges
strongly in L?(Q x RY) uniformly in ¢ € (0,T) to its limit u(t) solution of the following
homogenized evolution equation

(aat—i—P(D) p)u(t,x) = 0, re€RY t>0,
u(0,z) = wo(z), xeRY

(3)

where the effective (non-negative) potential is given by

cal?(0) d=m,

p= R(¢) (4)
Nge d>m.
Ligmie azm

Here, c4 is the volume of the unit sphere S?~'. We denote by G/ the propagator for the
above equation, which to ug(x) associates Gf'ug(x) = u(t,x) solution of (3).

We assume that the non-negative (by Bochner’s theorem) power spectrum R(€) is
bounded by f(|£]), where f(r) is a positive, bounded, radially symmetric, and integrable
function f(r) < 77" for some 0 < n < d —m in dimension d > m and n = 0 when
d <m, with py :=cq [~ f(r)r¢™™  dr V 77 < co. Here, a V b = max(a,b).

Theorem 1 Let T' > 0 such that 4Tp; < 1. Then there ezists a solution to (1) u.(t) €

L2(Q x RY) uniformly in 0 < e < o for allt € [0,T]. Moreover, let us assume that R(€)
is of class CY(RY) for some 0 <y < 2 and let u(t,z) be the unique solution in L*(R?)
to (3). Then, we have the convergence results

(5)

8
(e — w) (Bl 20xrey S 2 [tollr2(ra),
<

[ (e — w) ()| L2 (re

2

57ABHUOHL2(Rd)>



where a S b means a < Cb for some C > 0, a A'b = min(a,b), where u(t,-) is a
deterministic function in L?(R?) uniformly in time, and where we have defined

|Ing|~! d=m,
d—m
B € m<d<2m, (6)
™ Inel d=2m,
em d > 2m.

In (5), uc(t,z) is the Fourier transform of U.(t,§) = e~ W™ =re@ o (€), where p. =
fRd R(& £) S22 dEy when d > moand p. = cdR(eé’) when d = m and where the Fourier

tmnsform of the initial condition ug(x) is define as (& fRd “Ty(x )dx.

Note that the effective potential —p is non-positive. The above theorem thus shows an
exponential growth in time of the low-frequency components of u,., at least for sufficiently
small times. The method used below to prove the above theorem does not extend to
arbitrary times T' < oo fixed independent of ¢.

Theory of random fluctuations. The error term u. — u is dominated by determin-
. . d—2a . d—2a
istic components when €7V’ > ¢"2 and by random fluctuations when £7\% <« £™2

In both situations, the random fluctuations may be estimated as follows. We show that

wna(t,7) = %(u ~E{u})(t ), (1)

converges weakly in space and in distribution to a Gaussian random variable. More
precisely, we have

Theorem 2 Let M be a test function such that its Fourier transform M & LYRY) N
L*(RY). Then we find that for allt € (0,T)

(ure(t,-), M) 0, M (x)odW,, M, (z) = /0 G'M (x)GY_ug(x)ds, (8)

Rd
where convergence holds in the sense of distributions, dW, is the standard multiparam-
eter Wiener measure on R% and o is the standard deviation defined by

i (2m)R(0) = [ E{aOgl)}ie ©)

This shows that the fluctuations of the solution are asymptotically given by a Gaussian
random variable, which is consistent with the central limit theorem. We may recast
the convergence in (8) as (u1(t,-), M) — (u1(t,-), M), where u; is the solution to the
following stochastic partial differential equation with additive noise

% + P(D)ur — pur = oul, (10)

with initial conditions u,(0,x) = 0. Here, W is spatial white noise. Let G*(t,z —y) be
the Green’s kernel of the limiting equation (3). Then, wu; is given by

t
uy(t,x) = / /d GP(t — s,z —y)u(s,y)odW,ds,
o Jr

where the above is defined as a Wiener integral.
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Transition to stochasticity. We observe a sharp transition in the behavior of u, at
d = m. For d < m, the following holds. The size of the potential that generates an order
O(1) perturbation is now given by (see the last inequality in lemma 2.1)

NI

g% =e2.
Using the same methods as for the case d > m, we may obtain that u.(t) is uniformly
bounded and thus converges weakly in L?*(Q x R?) for sufficiently small times to a
function wu(t). The problem is addressed in [2|, where it is shown that wu(t) is the
solution to the stochastic partial differential equation in Stratonovich form

0 aw
a—?—l—P(D)u%—uoa% =0, (11)
with «(0,z) = ug(z), o defined as in (9), and 4% d-parameter spatial white noise

“density”. The above equation admits a unique solution that belongs to L?(Q x RY)
locally uniformly in time. Stochastic equations have also been analyzed in the case where
d > m (ie., d > 2 when P(D) = —A), see [10, 13]. However, our results show that
such solutions cannot be obtained as a limit in L*(©2 x R?) of solutions corresponding
to vanishing correlation length so that their physical justification is more delicate. In
the case d = 1 and m = 2 with ¢(x) a bounded potential, we refer the reader to [15] for
more details on the above stochastic equation.

Random fluctuations and long range correlations. The above theorems 1 and
2 assume short range correlations for the random potential. Mathematically, this is
modeled by an integrable correlation function, or equivalently a bounded value for
R(O) Longer range correlations correspond to correlation functions R(z) that decay
like |z| =4~ as |z| — oo for some 0 < n < d and may be modeled by unbounded power
spectra in the vicinity of the origin, for instance by assuming that

~ ~

R(&) = h(E)S(E), 0 <h(A) =[AIT"h(E), (12)

where h(€) is thus a positive function homogeneous of degree —n and S(¢) is bounded
on B(0,1). We assume that R(€) is still bounded on R%\ B(0, 1).

Provided that d > m + n so that p defined in (4) is still bounded, the results of
theorems 1 and 2 may then be extended to the case of long range fluctuations. The
convergence properties stated in theorem 1 still hold with 3 replaced by 3 — n. The
radnn(}oifrl fluctuations are now asymptotically Gaussian processes of amplitude of order
e 2, which may conveniently be written as stochastic integrals with respect to some
multiparameter fractional Brownian motion in place of the Wiener measure appearing

in (8). More precisely, we have the following result:

Theorem 3 Let us assume that h(§) = |7 forn >0 and m+n < d. We also impose
the following reqularity on tg:

/ o (€ 4+ 7)*h(&)dE < C,  for all T € RY. (13)
B(0,1)
Then theorem 1 holds with 3 replaced by 3 — n.
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Let us define the random corrector

1
ue(t, 7)) = ——— (u- — E{u.}) (¢, 2). (14)
e 2
Then its spatial moments (uy o(t,x), M(z)) converge in law to centered Gaussian random
variables N'(0, Xp(t)) with variance given by

Sa(t) = (27)78(0) [ Mu(x)p(z — y) M, (y)dady. (15)
R2d
Results for more general homogeneous functions h(&) are described in section 3.3. The
above theorem shows that u,. converges weakly and in distribution to u; solution of the
following SPDE with additive noise:
(9u1

wn + P(D)uy — puy = ouW¥, (16)

where W is the centered Gaussian field with covariance function

d—n
E{WH(x)WH (z +y)} = |y|C;_n, Cn = %

Up to multiplication by a normalization constant, wH may be regarded as a multipa-
rameter fractional white noise with Hurst index defined by 2H = 1+ 7. The above
SPDE thus generalizes (10) to the case of long range correlations.

Outline. The rest of the paper is structured as follows. Section 2 recasts (1) as an
infinite Duhamel series of integrals in the Fourier domain. The cross-correlations of the
terms appearing in the series are analyzed by calculating moments of Gaussian variables
and estimating the contributions of graphs similar to those introduced in [6, 12]. These
estimates allow us to construct a solution to (1) in L2(2 x R%) uniformly in time for
sufficiently small times ¢ € (0,7"). The maximal time 7" of validity of the theory depends
on the power spectrum I%(f ). The estimates on the graphs are then used in section 3
to characterize the limit and the leading random fluctuations of the solution wu.(¢,x).
The extension of the results to long range correlations is presented in section 3.3. A
roadmap of the proof of the main theorems is presented in section 2.3.

The analysis of (1) and of similar operators has been performed for smaller potentials
than those given in (2) in e.g. [1, 7] when u. converges strongly to the solution of the
unperturbed equation (with ¢ = 0). The results presented in this paper may thus be seen
as generalizations to the case of sufficiently strong potentials so that the unperturbed
solution is no longer a good approximation of u.. The analysis presented below is
based on simple estimates for the Feynman diagrams corresponding to Gaussian random
potentials and does not extend to other potentials such as Poisson point potentials, let
alone potentials satisfying some mild mixing conditions. Extension to other potentials
would require more sophisticated estimates of the graphs than those presented here or
a different functional setting than the L*(Q x R?) setting considered here. For related
estimates on the graphs appearing in Duhamel expansion, we refer the reader to e.g.
[5, 6, 12].



2 Duhamel expansion and existence theory

Since ¢(z) is a stationary mean zero Gaussian random field, it admits the following
spectral representation

0(0) = g [ eEaE)s 7

where §(£)d¢ is the complex spectral process such that

Bl [ 1©i©de | g©i©dc}= | @) R)de.

for all f and g in L*(RY; R(ﬁ)dﬁ ) with the power spectrum and correlation function of
q respectively defined by

0 < (2m)'R(¢) = / € R(r)dr,  R(x) =E{gwa(z +9)}.  (18)

R4

Note that E{g(€)d(¢)} = R(€)3(€ + ¢) and E{g(£)d(C)} = R(€)3(€ - ().

2.1 Duhamel expansion

Let us introduce ¢.(§) = e*7*¢(e€), the Fourier transform of e *¢(%). We may now
recast the parabolic equation (1) as

0 . A
(E + gm)ug = Qe * Ug, (19)

with @.(0,&) = to(&), where

et §) = [ (€= 0Quld0) = [ ult €~ OOl

Here and below, we use the notation ™ = |€|™. After integration in time, the above
equation becomes

t
Ue(t,€) = e " a(€) +/ e " / G=(§ — &)t — 5,&1)d&uds. (20)
0 R4
This allows us to write the formal Duhamel expansion
7:65(2375) = Zﬁnyi(tag)v (21)
neN

n—1 t1(s) - o - n—1
ﬁ/n,s (tu gO) = / H / eiék Sk ef(tfzkzo sk)En H Q€<€k - £k+1)ﬁ0 (gn)deE (22)

Rnd 3 20 /0 k=0

Here, we have introduced the following notation:
n—1 n
S =(80,--,Sn-1), te(s) =t —s9— ... — Sp_1, to(s) =t, ds = Hdsk, d€ = Hdﬁk.
k=0 k=1
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We now show that for sufficiently small times, the expansion (21) converges (uni-
formly for all ¢ sufficiently small) in the L*(Q2 x R?) sense. Moreover, the L? norm of
u.(t) is bounded by the L?*(R¢) norm of iy, which gives us an a priori estimate for the
solution. The convergence results are based on the analysis of the following moments

Ug7m(t7 3 C) - E{ﬂs,n(ta g)ae,m(t> C>}7 (23)

which, thanks to (22), are given by

nolet(s) Mol ety (7) - -
/ 11 / 11 / o SHED o (S SER G o (- G
Rt 2070 32 /0
n—1lm—1 B B
E{ TTTT (6 — &)@(G = Gi) fio(&n)iio(Gn) dsdrdédc.
k=0 1=0

Let us introduce the notation s,(s) = t,(s) = t — Sop_y s, and 7,,(7) = t,(T) =
t— 1";61 7;. We also define &, x11 = Gk and S, yx11 = Ti—i for 0 < k < m. Since ¢,

is real-valued, we find that

n+m-41 n+m B
U2t osomsr) = [ T] e FB{ T a6 = o) in(6o)al6oer s,
k=0 k=0,k+#n

where the domain of integration in the s and £ variables is inherited from the previous
expression. Note that no integration is performed in the variables s, (s) and s,.1(7).
The integral may be recast as

n+m+1 n+m n n+m+1
/ [T e 9B TI a6~ &) faol&)io(6)d(t = > si)olt— > si)dsde,
k=0 k=0,k#n k=0 k=n+1

where the integrals in all the s, variables for 0 < &k < n +m + 1 are performed over
(0,00). The § functions ensure that the integration is equivalent to the one presented
above. The latter form is used in the proof of lemma 2.3 below.

We need to introduce additional notation. The moments of 4., are defined as

UZL(t,€) = E{den(t, €)}- (24)

We also introduce the following covariance function

V(€5 Q) = cov(lien(t, §), tem(t,€)) = U™ (1,6, Q) — U UN(E Q). (25)

These terms allow us to analyze the convergence properties of the solution U(t,€). Let
M(€) be a smooth (integrable and square integrable is sufficient) test function on R<.
We introduce the two random variables

O I (26)
X0 = [ it oN©de (27)




2.2 Summation over graphs

We now need to estimate moments of the Gaussian process ¢.. The expectation in
U’™ vanishes unless there is n € N such that n +m = 27 is even. The expectation
of a product of Gaussian variables has an explicit structure written as a sum over all
possible products of pairs of indices of the form &, — &x1. The moments are thus given
as a sum of products of the expectation of pairs of terms ¢.(& — x11), where the sum
runs over all possible pairings. We define the pair (&, &), 1 < k < [, as the contribution
in the product given by

E{Ge (&1 — &)= (61 — &)} = e R(e(& — &-1))0(& — &1 + & — &-1).

We have used here the fact that R(—¢) = R().
The number of pairings in a product of n + m = 2n terms (i.e., the number of
allocations of the set {1,...,2n} into 7 unordered pairs) is equal to
(2n —1)! (2n)!

_ — (27— 1)1
ey R U

There is consequently a very large number of terms appearing in U™ (t, &, Ensmt)-
In each instance of the pairings, we have n terms k and n terms [ = [(k). Note that
l(k) > k4 1. We denote by simple pairs the pairs such that [(k) = k + 1, which thus
involve a delta function of the form §(&,41 — &k—1).

&o & &2 &3

O o o O O

55354

00— 0

O

Figure 1: Graph with n = 3 and m = 1 corresponding to the pairs (£1,&3) and (&9, &5)
and the delta functions §(&; — & + & — &) and (& — & + & — &4).

The collection of pairs (x, §x)) for 7 values of k and 7 values of [(k) constitutes a
graph g € & constructed as follows; see Fig.1 and [6]. The upper part of the graph
with n bullets represents 4., while the lower part with m bullets represents . .
The two squares on the left of the graph represent the variables & and &,.,,11 in
Um™(t, &0, €nime1) while the squares on the right represent dg(&,) and g(€,41). The
dotted pairing lines represent the pairs of the graph g. Here, & denotes the collection
of all possible |&| = % graphs that can be constructed for a given n.

We denote by Ay = Ag(g) the collection of the 1 values of k and by By = By(g) the
collection of the n values of I(k). We then find that

n+m+1

Bl TI a6 -&}=2 TI =R~ & 156~ &1 +&wm — )

k=1,k#n+1 ge® kcAp(g)



This provides us with an explicit expression for U™ (t, &y, &ime1) as @ summation over
all possible graphs generated by moments of Gaussian random variables. We need to
introduce several classes of graphs.

We say that the graph has a crossing if there is a k¥ < n such that I(k) > n + 2.
We denote by &, C & the set of graphs with at least one crossing and by &,,. = &\&,
the non-crossing graphs. We observe that V"™ (t, &y, & imy1) is the sum over the
crossing graphs and that U (¢, £) UM (¢, &nym+1) is the sum over the non-crossing graphs
in Ugym (tv 50: §n+m+1)'

The unique graph g, with only simple pairs is called the simple graph and we
define &, = B\g;. We denote by &, the crossing simple graphs with only simple
pairs except for exactly one crossing. The complement of &, in the crossing graphs is
denoted by &.,s = 6.\ B.;.

As we shall see, only the simple graph g, contributes an O(1) term in the limit
¢ — 0 and only the graphs in &, contribute to the leading order O(aé(d’m)) in the
fluctuations of ..

The graphs are defined similarly in the calculation of U (¢, &) in (24) for n = 27 and
m = 0, except that crossing graphs have no meaning in such a context. A summation
over k € Ay(g) of all the arguments &, — {1 + &) — &ky—1 of the 0 functions shows
that the last delta function may be replaced without modifying the integral in U (¢, &)
by (€ — &u).

This allows us to summarize the above calculations as follows:

n+m+1 B
Uamm(ta 507 £n+m+1) = / H eiskfl‘: 7vALO (gn)a0(5n+1) Z
k=0

A — geS (28)
[T " Rle( — &1))d(& — &1 + &y — &uy-1)dsde.
keAo(g)
Similarly,
U (t, &) = inl&o) / [T 3
R k=0 ged (29)
[T "Rl — &-1))0(& — &1 + &y — &y-1)dsde.

keAo(g)

2.3 Roadmap for the proof of the main theorems

We are now ready to sketch the main steps in the proof of theorems 1, 2, and 3. Lemma
2.1 below presents the main result allowing us to estimate each of the terms in the
products in (28) and (29). These estimates are followed in section 2.5 by an analysis of
the crossing graphs, which are shown to be negligible in the limit ¢ — 0. Non-crossing
graphs are also shown in section 2.6 to be negligible in the limit ¢ — 0 except for
the simple graph g. As a consequence, the random solution is well-approximated by a
still e—dependent deterministic solution; see (63) below. The convergence of the latter
deterministic solution to its limit as € — 0 is handled in section 3.1, which concludes
the proof of theorem 1. The theory of fluctuations is considered in section 3.2. There,
it is proved that the single crossing graphs are the ones that contribute most to the



random fluctuations. These graphs are shown to involve those terms in the expansion
(22) that are linear in the potential §., i.e., the terms that have a Gaussian distribution;
see (76) below. Upon passing to the limit in the latter expression, we obtain theorem
2. Relatively minor modifications in the analysis of the Gaussian fluctuations allow us
to obtain theorem 3 in the presence of potentials with long range correlations.

2.4 Preliminary lemmas in the analysis of the graphs

The products appearing in (28) and (29) above are analyzed by means of estimates that
we state and prove in the following two lemmas.

Lemma 2.1 Let us assume that R is bounded by a smooth radially symmetric, decreas-
ing function f(r). We also assume that f(r) < 7/r™" for some 0 < n < d—m in
dimension d > m and n = 0 when d < m. Then we obtain the following estimates.

For d > m, we have

1 . ® 1
e (6~ 6 < oy = [ (eI el vy

uniformly in y € R, where cg = |S*| and a vV b = max(a,b). Moreover,

1 m gm " d>2m-—n
/WR(fk—y)<m/\t>d€k§Opf 5m’“|1n5| d=2m—n
F BT gd-m-n m<d<2m —n,

for C' a constant independent of y and z. For d = m, we define p; = cqf(0) and have

em I . eMlnel =1
/(—/\t>R(£k—y)d§k5pf{ ‘ ‘gzz.

& — 2™ e

For d < m, we have

2l 'R dé, <e 1>1
— A t> - , .
/<’§k_z|m (€ —y)d&s S € >

Proof. Once R is bounded above by a decreasing, radially symmetric, function f(r),
the above integrals are maximal when y = z = 0 thanks to lemma 2.2 below since
|€]7™ and (e™|¢]”™ A t) are radially symmetric and decreasing. The first bound is then
obvious and defines p;. The second bound is obvious in dimension d > 2m since || 2™
is integrable.

All the bounds in the lemma are thus obtained from a bound for

[ s
— r r)dr.

o ™

We obtain that the above integral restricted to r € (1,00) is bounded by a constant

times e™p; for d > m and by a constant times e™ for d < m. It thus remains to bound
the integral on r € (0, 1), which is equal to

é‘t_% B 1 8lrn B
/0 thrd 1f(7")d7’+/ ) rl—mrd Lf(r)dr.

et m

10



Replacing f(r) by 77", we find that the first integral is bounded by a constant times
£4=" and the second integral by a constant times 2"V &™ when d — n — Im # 0 and
e?™ Ine| when d = 2m — n. It remains to divide through by €™ when [ = 2 to obtain
the desired results. 0

Lemma 2.2 Let f, g, and h be non negative, bounded, integrable, and radially sym-
metric functions on RY that are decreasing as a function of radius. Then the integral

e = [ S€=Qale = (e, (30)
which is well defined, is mazximal at ( =7 = 0.

Proof. In a first step, we rotate ¢ to align it with 7. The first claim is that the
integral cannot increase while doing so. Then we send ¢ and 7 to 0. The second claim
is that the integral again does not increase.

We assume that the functions f, g, and h are smooth and obtain the result in the
general case by density. We choose a system of coordinates so that 7 = |7|e;, where
(e1,...,eq4) is an orthonormal basis of RY, and ¢ = |§|9 with 6 = (cosf,sinb,0,...,0).
Without loss of generality, we may assume that 6 € (0, 7). Then I, may be recast as
Iy and we find that

j / €1 h(€]) Jo (€] dle .

where we denote A(|¢|) = h(£) with the same convention for f and g and define

Jo(l€) = |~ fUIElY = Qglle]y — 7)dv.

Sd—

It is sufficient to show that dyJy < 0. We find
ot = [ =0%- 9 lelv = Qglleti = r)ao.

with 6+ = (—sinf, cos6,0,...,0). We decompose the sphere as ¢ = (1 - 0, zﬁ) and find,

for some positive weight w(u) that

o = [ Bl = Cutv-d) [ @4 Dallel =i,

1

We now observe that
[ Daliety — ryad
= [ B D0 0+ ) D gl 0~ 0) ) < o,

as ||§|(9AA 1/)@—1— ) — 7] < ||€|(0 - f — 121) — 7| by construction. Indeed, we find that
161000 £ ) — 72 = [§]> = |7[> +27][€]0 - v - 7 = £2|7||€]dp - 7 = £2|7|¢|0 - 7 Whereas
6+ -7 = —sind|r| < 0 by construction. This shows that |£](6 - ¥0 + 1)) is closer to T
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than |£[(0 - 6 — 1)) is, and since g(r) is decreasing, that 8yJy < 0. This concludes the
proof of the first claim.

If 3=0o0r7=0, we set b =0 below. Otherwise, we may assume without loss of
generality that 7 = —b( for some b > 1. We still define ¢ = |¢ |é We now define the
integral I, = I,¢pc, 0 < a < 1, and compute

Ol = [ ~C- V(€= aC)g(é +DOMOE = [ ~C-DFE)9(E + (b= a)O)h(€ +a)de
Define [(§,() = g(£+ (b—a)()h(€+al). Then because f is radially symmetric, we have

_ oom d—1 m g ) .
0l = [ m(eDlertalel,  me) =~ el) [ 8-viielv.av

We recast
meh = ~£eb [ (60 el )~ -kl O)aw <0,

since ||§|1/J + ’yd > | — €Y + 7C| by construction for all v > 0 and thus for v = a and
v = b — a. This shows that 0,1, < 0 and concludes the proof of the second claim. [

2.5 Analysis of crossing graphs

We now analyze the influence of the crossing graphs on I.(¢) and X.(¢) defined in (26)
and (27), respectively, for sufficiently small times. We obtain from (25) and (28) that

n+m+1

Vn m(t 607 €n+m+1 Z / H € TR Uo gn (gnJrl)
geEB, (31)
IT &R - §k—1)) (& = &k—1 + &uwy — &uwy—1) ds d€,

keAq(g)

involves the summation over the crossing graphs &.. Let us consider a graph g € &,
with M crossing pairs, M > 1. Crossing pairs are defined by £ < n and I(k) > n + 2.

Denote by (&, &i(gn)), 1 < m < M the crossing pairs and define @ = max,,{gm}.
By summing the arguments inside the delta functions for all £ < n, we observe that the
last of these delta functions may be replaced when @) < n by

M-1

fo—sn+25qm Egm-1) = 0(Eq — 5Q1+£o—£n+25qm 1) (32)

The above delta function will be used to integrate in the variable {; when @) < n.
Similarly, by summing over all pairs with & > n+2, we obtain that when I(q) < n+m+1,
the last of these delta functions may be replaced by

M
0(&nt1 — ntmr + Z §i(am) — Ellgm)—1)-
m=1

12



Using the last two independent § functions, we thus obtain that the product of delta
functions in (31) involves in particular the following constraint:

5(£n+m+1 - £n+1 + gn - 60) (33)

The analysis of the contributions of the crossing graphs is slightly different for the energy
in (26) and for the spatial moments in (27). We start with the energy.

Analysis of the crossing terms in I.(t). We evaluate [V (t,&,&)| in (31) at
Enime1 = & and integrate in the & variable over RY. Let us define A’ = A,\{Q}. For
each k € A" U {0}, we perform the change of variables &, — %’“ We then define

& kg A Uu{0}
e _ 4
S {% ke A’u{0}. (34)
Note that &, = &,41 since &, 11 = &. This allows us to obtain that

n+m

e sl < 3 et e e,
geSG, f k=1
[T >R -5 )9 (f = &1+ &) — Siw-1) (35)

keA'(g)

e 2 R(& — e&5 + Z Eom — €65 _1)0(EQ — Som1 + &) — &uq)—1)dsdE.

Here d€ also includes the mtegratlon in the variable ;. The estimates for V*™ here
and in subsequent sections rely on integrating selected time variables. All estimates are
performed as the following lemma indicates.

Lemma 2.3 Lett > 0 given and consider an integral of the form

nl—ﬁ/ o ka5k>Hd5k; (36)

where 0 < fi(s) <1 for 0 < k <n and assume that fo foo1(sp—1)dsn—1 < h At. Then
o < (h A8 1. (37)

Moreover, let s be a permutation of the indices 0 < k <n—1. Define I, _, as I,,_1 with
fr replaced by fsuy. Then I | = I, ;.

Using the above result with the permutation leaving all indices fived except s(n—1) =
K and s(K) =n—1 for some 0 < K <n — 2 allows us to estimate I,,_y by integrating
in the Kth variable.

Proof. The derivation of (37) is immediate. We also calculate

n n

I, = /RnJrl <ﬁfk(sk)>5(t — sk) dsy,

k=0 k=0

- /n+1 (ﬁfﬁ(k)(ss(k))>5(t_
= N

n n

sow) | [ dsw
k=0

k=0



0

Note that e=®E)™ and e=sn+1E™™ are hounded by 1. We now estimate the in-
tegrals in the variables sg, S,im+1, and s; for k € A" in (35). Note that n + 1 cannot
belong to A" and that n does not belong to A’ either since either n = @ (last crossing)
or n € By is a receiving end of the pairing line k¥ — [(k). Each integral is bounded by:

/ e " ds < — At (38)
0 g

The remaining exponential terms e~*€)" are bounded by 1. Using lemma 2.3, this
allows us to obtain that

/Rd [Vt o, §o)|dEo < g;@c (/d§> / o (&n) I

1 5—za(ﬁ_m)z%<gk—e§z_l>6<5’“ Sk-1 & — iy -1)

keA'(g) & E
gm 2 . M-—1
o2 (@ A t) R(& — e+ ) (&, — e85, 1))6(Eo — o1 + &) — Guq—1) dE.
m=1

Here, ds corresponds to the integration in the remaining time variables s, for k &

A"U{0}U{n+m+1}. There are 2n — (7 + 1) = n — 1 such variables. Note the square
on the last line, which comes from time integration in both variables sy and s, ,41-

We now estimate the above product. When () < n, let us define ky such that

n = (ko). Define ki such that (k1) = n+ m + 1. Assume first that ) < n and

I(Q) <n+m-+1. For each k € A'(g)\(ko U k1), we use lemma 2.1 to find the estimate

J o5 (G n )Rt — <t 08(E — 65+ Sl S < ppe (39

The integration in the &) variable is estimated by using the above delta function.

The delta function for & = ko € A'(g) may be written thanks to (32) in the form

d(&o — ), where 1 is a linear combination of the variables &; with j # @ and is thus

used to integrate in the variable {g. The term R(§k0 — &€, 1) is used to integrate in
the variable &,. The integral in &, is estimated using lemma 2.1 by

m R M-1
/€2a (% A t>2R(§0 —e, + mz:;(fqm — &€ _y))dé < Cpse’.

The delta function (&, — &xy—1 — Entma1 — Entm) 1 seen to be equivalent to 0(&, —&,11)
thanks to (33), which handles the integration in the variable &,.;. When @ = n or
[(Q) = n+m++1, then a simplified version of what we just described provides the same
estimates.

It remains to use the initial conditions to integrate in the last variable &, and obtain
the bound

[ <03 ([ ds)opaolors” =€ 3 ([ d8) el

geG, 9B,
(40)

14



Using Stirling’s formula, we find that |&.| < % is bounded by (22)". Tt

remains to evaluate the integrals in time. We verify that

ol ety (s) g
H/ dSO"‘dSnfl = —', tk(S) :t—So—...—Skfl. (41)
e 0 n!

Let p = p(g) be the number of s, for ¥ < n in § and ¢ = ¢(g) be the number of s for
k>mn+1ins, with p+ ¢ =n — 1. Using (41), we thus find that

(/dj tP 11 "t a—1 <ﬂ1<ﬁ—1yﬁﬂ<ﬂly<ﬁ>4
S = —n—= — nl —
plgd (n—=1!\ p - 2e - 2e

using Stirling’s formula. This shows that

0 S ([ ) < Zapsry (12)

g€,

uniformly for ¢ € (0,7"). We thus need to choose T sufficiently small so that 4p;T" < 1.
Then, for v such that 4p;T < v* < 1, we find that

vzt 6. ld < oo (43)
for some positive constant C'. It remains to sum over n and m to obtain that

el (44)

. C
B0} - [ B0 < oo
R4 — 1)
We shall analyze the non-crossing terms generating |E{t.(¢,£)}|? shortly. Before doing
so, we analyze the influence of the crossing terms on X.. We can verify that the error
term 7 in (44) is optimal, for instance by looking at the contribution of the graph with
n=m=1.

Analysis of the crossing terms in X.. It turns out that the contribution of the
crossing terms is smaller for the moment X, than it is for the energy I.. More precisely,
we show that the smallest contribution to the variance of X, is of order €4~2* for graphs
in &, and of order €422 for the other crossing graphs.

We come back to (31) and this time perform the change of variables & — %’“ for
k € A" only. We re-define

e __ €k k € A
a-{% L5y (45)
and find that
n+m-+1
VIt S0, Enmt1) = Z/ H T g (€n) 10 (Enpr)
ge@c
é (46)

H e R(& — e&5,)0 ( = — &+ ) = &lky—1)
keA'(g)
e R(e(€g — €5-1))0(Eo — Eo-1 + &) — &uq)—1)dsdE.

15



Note that neither n nor n +m+ 1 belong to A’(g). For each k € A'(g), we integrate in
s and obtain using (38) that

(VI (t, 0y Engm)] < Z / H o i (£n) 0 (Engr)|

g€6: © kg A'(g)

H € 20‘( ) (& —e&r1)0 (% — &1 T &) — gla(’f)—l) )

keA' (g &

el 2‘IR( (So —6-1))0(e — o1+ &i@) — Suq)—1)dsdE.
By assumption on R(ﬁ ), we know the existence of a constant R.. such that

e R(e(€q — 1)) < e R (48)

This is where the factor €472* arises. We need however to ensure that the integral in &g
is well-defined. We have two possible scenarios: either () =n or n € By. When @Q = n,
the integration in g is an integration in &, for which we use 4y(&,). When n € By,
we thus have n = [(kq) for some ko and we replace the delta function involving &, by
a delta function involving &g given by (32) In either scenario, we can integrate in the
variable £y without using the term R(e(ﬁQ —&o-1))-

All the other variables are handled as in the analysis preceding (40) except that we
non longer have that &, = £,.1. Rather, we use the inequality

0(€n)A0(n1)| < 5 (18061 + lio(6n — o + Enman) ), (19)
to obtain the bound
V2 0o )] < 2 3 ([ a@5) ool (50)
ge&,

The bound is uniform in & and &, 1. Using (42) and (43), we obtain
VI (1t o, Enemarr)| < 7720 a2, (51)

After summation in n,m € N, we thus find that

2 ¢ d—2a
E{(X: —E{X:})"} < a0 I

Similarly, by setting &,.m+1 = &0, we find that

aol*| M3 (52)

‘E{ Ad |'&s|2(t,€)(p(£)df} — /Rd |E{ﬁ5(t,€)}’2¢<§>d€ < ﬁ€d2a”ﬁ0|’2”(ﬁ“1, (53)

for any test function ¢ € L*(R?). This local energy estimate is to be compared with
the global estimate obtained in (44).
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Analysis of the leading crossing terms in X.. The preceding estimate on X, may
be refined as only the crossing graphs in &, have contributions of order £9-2¢. We
return to the bound (47) and obtain that

V2™(E, o, bnsmat)| < €72 R Z/ [T e ao(&n)ao(Ens)]

9€8: 7 kZA'(g)

[T = (G nt) Ri - sgz_m(%’“ = &1+ &) — Eiw-1) oy

keA’(g) &
0(€q — o1+ &) — &i@)-1)dsd.

The 1 + 2 variables in time left are 5o, sg, $;(@), and the 1 — 1 variables s;4/(g))-

Let g € &,.. Let us assume that for some k = « such that (&, &) is not a crossing
pair, we have I(k) — 1 > k, i.e., g € &,. The non-crossing pairs are not affected by
the possible change of a delta function involving §,, to a delta function involving {. We
may then integrate in the variable s;x) and obtain the bound for the integral

gl-2app / dSd€ |t (&)t (Env1)10(EQ — Eo-1 + &i@) — &uq)-1)

o TT e (G A ) R — e )% — €y + & — )

kA (9)\x & _ c .

(&) (g g ) R~ 6t
< Caﬂsd_2a</dé)f%oop?_lHﬁoHZ,

=&+ Q) — Ely—1)

thanks to lemma 2.1. The summation over all graphs in &,,.s of any quantity derived
from V™ (t, &y, Enpme1) is therefore e” smaller than the corresponding sum over all
graphs in &.. We thus see that any non-crossing pair has to be of the form I(k) — 1 = k,
i.e., a simple pair, in order for the graph to correspond to a contribution of order -2«

Let us consider the graphs composed of crossings and simple pairs. We may delete
the simple pairs from the graph since they contribute integrals of order O(1) thanks to
lemma 2.1 and assume that the graph is composed of crossings only, thus with n = m
and @ = n after deletion of the simple pairs. Let us consider k& < n with {(k) > n + 1
so that the delta function

5(% = &1 T &) — Sw-1)

is present in the integral defining V*™. We find for the same reason as above that
the contribution of the corresponding graph is of order e2-2¢% by integration in the
variable s;;). As a consequence, the only graph composed exclusively of crossing pairs
that generates a contribution of order €4-2¢ is the graph with n = m = 1. This concludes
our proof that the contribution of order 2% in V*™ is given by the nm graphs in &,
when both n and m are odd numbers (otherwise, &., is empty). All other graphs in

®, provide a contribution of order £? smaller than what we obtained in (51). In other
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words, let us define

n+m+1

Vo) = S [ [T« il6in(n
g€Bcs (55)
H e R(e(& - ka)) (5k — &kt + &y — Siry—1)dsdE.
keAo(g)
We have found that
VI (t, €0, Enpmar) = VIS (t, €0, Engman)| S 7720 g ||, (56)

2.6 Analysis of non-crossing graphs

We now apply the estimates obtained in the preceding section to the analysis of the
moments UZ'(t) defined in (24) and given more explicitly in (29). Our objective is to
show that only the simple graph g contributes a term of order O(1) in (29) whereas all
other graphs in &,,, contribute (summable in n) terms of order O(¢?). Note that n = 27,
for otherwise, U(t) = 0. We recall that the simple graph is defined by I(k) = k + 1.
We thus define the simple graph contribution as

U£s<t7§0) = uen<t7§0)ﬂ0(£o_)

" s 57
wiee) = [TLe [T Re(nn - )il — &dse, 7
k=0 k=0
and
U.s(t, &) = Z s(t, &) = U(t,&0)to(So)- (58)

neN

For all k € Ay, we perform the change of variables &, — %’“ and (re-)define as before

5_{& k¢ Ao

k=1 & ke Ay (59)

This gives

n (1 &) = iio(&0) Z/H k()"
0c® (60)

H E’QO‘R (& —€&5_1)0 (% — &y &) — gf(k)—l)deg-

keAo(g)

Assuming that [(k) — 1 > k for one of the pairings k = k, we obtain as in the analysis
leading to (56) the following bound for the corresponding graph:

ool [T = (5 ) Rl — =6 03 - 0 + b — G

keAo(g)\r
m

—2a _m €
e ( : t> <’§k 552_1 - 5§f(k)_1‘m : t)
R(E, - 55 DI € 4 b — €y ) dade

<(f dé)p?rao<so>\-
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This shows that
(U2 (t,&0) — UZ,(t, &) < |dio(&)]e%c™, (61)
so that

E{8.1(,€) — Vel 6)] S 7l (62)

at least for sufficiently small times ¢ € (0,7") such that 4p;7 < 1. It remains to analyze

the limit of U, 4(¢,§) to obtain the limiting behavior of X. and I.,. This analysis is

carried out in the next section. Another application of lemma 2.1 shows that U, 4(¢,§) is

square integrable and that its L?(R?) norm is bounded by ||@l|. In other words, we have

constructed a weak solution . (t) € L?(2 x R?) to (19) since the series (21) converges

uniformly in L?(Q x R?) for sufficiently small times ¢ € (0,7) such that 4p,T < 1.
Collecting the results obtained in (44) and (62), we have shown that

. g
(e — Ues) ()| 2(0xrey S €2 ||| p2(may, (63)

where U, ; is the deterministic term given in (58). The analysis of U, s and X, is carried
out in the following section.

3 Homogenized limit and Gaussian fluctuations

In this section, we conclude the proof of theorems 1 and 2.

3.1 Homogenization theory for u.

We come back to the analysis of U, 4(¢,&) defined in (57). Since only the simple graph
is retained in the definition of mean field solution U, (t,&), the equation it satisfies
may be obtained from that for u. by simply assuming the mean field approximation
E{¢-q-u.} ~ E{q-q.}[E{u.} since the Duhamel expansions then agree. As a consequence,
we find that U, ; is the solution to the following integral equation

5st€ _6t£u0§

/ / - s/ 2R (e(€ — E))Una(t — 5 — 51, €)dErdsds,
e+ [ [eevmeanan [ e 0.~ v Odsdnde

— eftgmao( + em— 2a/ / _gm(v—amsﬂe—ginsl /R(& _ 5§)d§1d51U€78<t — ?}7€>d'U

= e 00 (6) + AU (8, €).
(64)
The last integral results from the change of variables ¢, — & and s;e™™ — s7. It
remains to analyze the convergence properties of the solution to the latter integral
equation. Note that & acts as a parameter in that equation. Let us decompose

t
U6) = p. | U - v, )0+ BU(LE), (65)
0
with p. = f]Rd R(El £) dé; when d > m and p, = cdR(sf) when d = m. Then we have
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Lemma 3.1 Let £ € R and f(r) as in lemma 2.1. Then the operator E. defined above
in (65) is bounded in the Banach space of continuous functions on (0,T"). Moreover, we
have

1Bl ccory S (66)

Proof. We start with the case d > m so that and €™ 2® = 1. Note that n in lemma
2.1 is defined such that d > m —n as well. With B. = A. — E. in (65), we find that

t [e%e)
B.U. 4(t,¢) = /O e " /0 / e T R(E — e€)dErds U o(t — v, €)dv.

The remainder E. is then given by
Ue,s(t, ) / / / (e ) e T R(E) — e€)dEyds UL o(t — v, &)dv

/ / / e TS R(€ — £€)dEyds U 4(t — v, €)dv.

The continuity of E.U.(t,€) in time is clear when U, 4(¢,&) is continuous in time.
Without loss of generality, we assume that U, 4(-,£) is bounded by 1 in the uniform
norm. We decompose the integral in the s; variable in the first term of the definition of
E. into two integrals on 0 < 51 < 5% and 3% < s; < . Because e ST u(ef 1) < 1,
the second integral is estimated as

t ol .
/ / / e V(e — 1) e T R(E — €)dEdsidvu

/ / L e e, - c6)derdo < / = —/\t) R(& — e€)dy S &7y,

thanks to lemma 2.1. The above bound is uniform in &. The last integral defining E. on

the interval s; > ¢ is treated in the exact same way and also provides a contribution

of order O(g°~").
The final contribution involves the integration over the interval 0 < s; < 5% . Using

e (e — 1) < eMEMsie~ 2" on that interval, it is bounded by

t [ow My omo
I3 52// /5“‘5"‘816_52e_flis(&—ef)dfldsldv
o Jo R .
2w

2 mem m m N
< ks (1- 67%) 51/ e T R(& — e€)dérdsy,
& Rd
by switching the variables 0 < s < ;& < %Lm Using lemma 2.2, we may replace

R(fl —&€) by }?(51) in the above expression. This shows that

IS < 2€m/ /28 Sleié?sldslﬁi(gl)dfl.
Rd JO

We observe that i .
/ spe & dsy < —/\7'
0

1
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so that - .
I, < gm d—1(,,—2m A 2 d - v
3 € /0 fr)r (T T ) T T 9em
The integral over (1,00) is bounded by €™p;. Using the assumption that f(r) < r™",
we obtain that the integral over (0, 1) is bounded by a constant times

r

when d —n —2m # 0 and |In7| when d = n+ 2m. Since 7 is bounded by a constant
times ™™, this shows that I3 is bounded by %™ ™ when d — n — 2m # 0 and £%| In¢|
when d = n 4 2m. This concludes the proof when d > m —n.

E{

1
—1— S _d—m
rdlndr+/ L S VA

T

1
m

We now consider the proof when d = m with n = 0. Then, e™2* = ﬁ The
leading term is given by U, s, which solves the integral equation:

ES t 6 _6_t§1nA 6

/ / _él“/“ng‘ R(e(& — O)Ues(t — s — 51,€)d&rdsds,

LU 1 —EM(v—e™s —£&Ms
“an(e) + i [ [T e R — Ut — v )

=€ témAO(g) AU, €,8 75)7 A.=B. + E..

=e

(67)
Here we have defined

B.U(t,¢) = ,05/0 eSS U(t —5,6)ds,  p. = cqR(£6),

and FE. is the remainder. As in the case d > m, a contribution to | Ilne|E. comes from

t —ar ~
/ / /e—ﬁmfu(egmﬁmsl _ 1)6—§T51R(§1 _ 5§)d§1d51(]€’5(t — v,&)dv.
0 0

We again decompose the integral in s; into 0 < s; < 555 and 57 < 51 < . We have

//”/%W"@w4VW%@_@%@m

/_<§ A t) R(& —e&)d&1 S py,

according to lemma 2.1. Also,

t QEL‘“ m m em " » t
/ / /6_5 V(e — 1) e ST R(& — e€)déydsidv < Em(2€_m V1)
o Jo

according to the calculations performed above on I3, which is uniformly bounded, and
thus provides a |Ing|~! contribution to E..
We are thus left with the analysis of

0.9 [ e “nd/l‘e;"‘v R(& — <€)d& — p.) Ut — v, )
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as an operator in £(C(0,T)) for € fixed. Define R.(&) = R(€, — £€). The integral in &

may be recast as
Ool—e_remimv ~
_— R.(r0)du(0) )dr.
| =], o) i

We observe that the integral on (1, oo) is bounded by ||RH1 Assuming that R is of class
C(RY) for v > 0, we write R.(&;) = R.(0)+ (R-(&) — R-(0)). The second contribution
generates a term proportional to 77 in the integral and thus is bounded independent of
€. It remains to estimate

ﬂ
B
B\»—‘

m

T

. 1] _ 5w .
cal2.(0) / T — k) [ =
0

r 0 r

The latter integral restricted to (0,1) is bounded. On 7 > 1, e /r is uniformly
integrable so that

rMy

~ 1 1 — em N
cdRE(O)/ ST T dr = R(26)| Ine| + O(1).
0

r

This shows that E. is of order \Tla| = ¢7 as an operator on C(0,7') and concludes the
proof of the lemma. O
Note that A. may be written as

t
U6 = [ el U - se)ds
0
where @.(s,£) is uniformly bounded in s, £, and € by a constant .. The equation

(I - AJU(t,&) = S(t7§)7

admits a unique (by Gronwall’s lemma) solution given by the Duhamel expansion and
bounded by
U(t,6)] < [IS]loce™

As in the proof of lemma 3.1, let us define B, = A. — E.. We verify that (¢, &),
the solution to
(I — Btk = e %" 09(6),

is given by
Uo(t,€) = e Ty (g). (68)

The solution may thus grow exponentially in time for low frequencies. The error
V(t,€) = (U (1, €) — 1-(£,€)) is a solution to

(I — As)‘/a - Esua(t7£)7

so that over bounded intervals in time (with a constant growing exponentially with time
but independent of ), we find that

|Ues(t,6) = Ue(t,6)] = [Va(t,6)] S 7o (€)]- (69)
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The above inequality combined with (63) yields the first estimate in (5).
Up to an order O(e°|ig(€)]), we have thus obtained that E{a.(¢,£)} is given by

e—t(ff“—pa(ﬁ))ao(f)7

which in the physical domain gives rise to a possibly non-local equation. It remains to
analyze the limit of the above term, and thus the error p. (&) — p, which depends on the
regularity of R(£). For R(€) of class C?(R%), we find that

‘eft(émfpa(é)) _ e*t(fm*f’)‘ < teCtefgmt‘pE(f) _ p‘ < eCtefﬁmt(thgQ_

The reason for the second order accuracy is that R(—¢) = AA(
that first-order terms in the Taylor expansion vanish. For R(¢
0 < v < 2, we obtain by interpolation that

¢) and VR(0) = 0 so
) of class C7(R?) with

et —pe(€)) _ e—t(ﬁ"‘—p)‘ 5 GCte—é"‘tgvtéw.

When m > «, the above term is bounded by O(&”) uniformly in £ and uniformly in time
on bounded intervals. When m <+, the above term is bounded by O(¢™) uniformly in
¢ and uniformly in time on bounded intervals. This concludes the proof of theorem 1.
In terms of the propagators defined in (57), we may recast the above result as

U(t,6) — UL Y| S UL =e (70)

where the bound is uniform in time for ¢ € (0,7) and uniform in £ € R¢. From this, we
deduce the second inequality in (5), which concludes the proof of theorem 1.

3.2 Fluctuation theory for u.

We now address the proof of theorem 2. The first term in the decomposition of i, .
defined in (22) is its mean E{, .}, which was analyzed in the preceding section. The
second contribution corresponds to the graphs &., in the analysis of the correlation
function and is constructed as follows. Let n = 2p + 1, p € N. We introduce the
corrector uy, . given by

s (t, &) = / [T > [HE{q;@z(H) — Eor-1)de (2o — 5%)}}
k=0 q=0 =1

0:(&20 = €agv1) | T] BAG(Er 1 = &2)c(Ear — Gars1)} |0 (€0) dde.

r=q+1

(71)

In other words, all the random terms are averaged as simple pairs except for one term.
There are p + 1 such graphs. We define

ac(t,€) =y i (t.£). (72)

n>1

We verify that
VI (8, €0y e ) o= B{a (8, &)ty (t G }
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is equal to the sum in V™ (t, &g, &nimo1) only over the graphs in &.s. Indeed, the above
correlation involves all the graphs composed of simple pairs with a single crossing.
Now let us define the variable

Y. = (ae - ﬁg - E{as}a M) (73)

Summing over n,m € N the inequality in (56) as we did to obtain (52), we have
demonstrated that A
E{Y?} < e aol*| MII3, (74)

for sufficiently small times. The leading term in the random fluctuations of w. is thus
given by u. It remains to analyze the convergence properties of

1 . -
Zé(t) - gd—% (ueaM)' (75)

We thus come back to the analysis of u¢ and observe that for n = 2p + 1,

(t, &) = / (H e oKk ) Z [ﬁ 72 R(e(€ar—1 — &0))0(Ear — fo)]

q=0 r=1
Q60— &) TT =2 Rle(éor — €361 — &) ol6)dsde.
r=q+1

Using the propagator defined in (57), we verify that
2q—1
(t:60) = Z/ H _Skgk Hfd 2 Re(Earm1 — £0))0(Ear — fo)]

qe(&) @)u; 2g— 1(t2q+1, &) tio (€, )dSdE
= Z/o /Rd qu(t — tag+1,£0)3- (€0 — 571)2/{?72(1*1<t2q+1, &)l (&) dtagi1dEn
q=0

= /0 y Ut — 5,60)G= (80 — EU 271 (s, &1 )tig (&1 )dsdEy .

q=0

Upon summing over n, we obtain

0.9 = [ [ lt =, 00ile - 0t (s, 0)io(e s (76)

We can use the error on the propagator obtained in (70) to show that the leading order
of 4¢ is not modified by replacing U, by U. In other words, replacing . by & modifies
Z. in (75) by a term of order O(e2®) in L2(Q x R?), which thus goes to 0 in law.
Note that u¢(¢, &) is a mean zero Gaussian random variable. It is therefore sufficient
to analyze the convergence of its variance in order to capture the convergent random
variable for each t and £&. The same is true for the random variable Z.. Up to a
lower-order term, which does not modify the final convergence, we thus have that

c 1) / / €)- (61 )Uag (5. € — &) dsdede,.

24



We have defined Uy (t,&) = U(t,§) f(§) for a function f(£). As a consequence, we find
that, still up a vanishing contribution,

Bz = [ [ [ ti— syt —r.oReeE - )

X uﬁo (875 - gl)uﬂo (T,C - Cl)d[57((1§§1]~

Here and below, we use the notation d[z;y...z,] = dx;...dzr,. By the dominated
Lebesgue convergence theorem, we obtain in the limit

8127 = 0) [ | [ [ttt =000 5.6 — expicas| e

Here, Z is defined as a mean zero Gaussian random variable with the above variance.
Let us define G/ f(z), the solution at time ¢ of (3) with f(z) as initial conditions, which
is also the inverse Fourier transform of U(t,£). We then recognize in [ f(f Uy, (t —
S, E)Ugy (8,€ — &1)dErds the Fourier transform of M;(x) defined in (8) so that by an
application of the Plancherel identity, we find that

E{Z%} = (2n)1R(0) /R | /0 Gp M (2)G8uo(2)ds ) d = (2 Y'R(0) [ ME(@)de. (77)

Rd

This shows that Z(t) is indeed the Gaussian random variable written on the right hand
side in (8) by an application of the It6 isometry formula. This concludes the proof of
theorem 2.

3.3 Long range correlations and correctors

We now consider long range correlations described by power spectra defined in (12). We
present a proof of theorem 3 and consider possible generalizations.

Proof. The proof of theorem 1 relies on three estimates: those of lemma 2.1 and
lemma 3.1 and the uniform bound in (48) for R. Lemmas 2.1 and 3.1 were written to
account for power spectra bounded by [£]™" in the vicinity of the origin. It thus remains
to replace (48) by

e R(e(€ — €5-1)) < €T h(Eg — €5-1) S

when [§o — £5_;| < 1 while we still use (48) otherwise. We have defined S, as the

supremum of S(€) in B(0,1). It now remains to show that the integration with respect
to &g in (47) is still well-defined. Note that either Q = n or g — §o—1 may be written
as &, — ¢ for some ¢ € R? thanks to (32). Upon using (49), we thus observe that in all
cases, the integration with respect to &g in (47) is well-defined and bounded uniformly
provided that (13) is satisfied uniformly in 7. Using the Holder inequality, we verify
that (13) holds e.g. when do(- — 7) € L%(B(0,1)) uniformly in 7 for ¢ > 2. This
concludes the proof of the first part of the theorem.

Let us now define )
Z.(t) = (a8, M) = €2 Z.(1).

d—m-—n
g 2
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We verify as for the derivation of E{Z?} that

B{72} = / / / Uiy (t — 5, € (t — 7.O)S(E)(E)S(E — )
X uﬁo( f 61) uo(TC Cl) [STCQ&I]-

The dominated Lebesgue convergence theorem yields in the limit € — 0

E{Z?} = 5(0) /‘/ /u Vs (5, € — €)1 (€)de ds| de
*h(&)de,

where M, is defined in (8). An application of the inverse Fourier transform yields (15).
u

Note that (15) generalizes (77), where ¢(z) = 6(x), to functions M,(z) € LZ(R?)
with inner product

(f:9)e= [ [flx)g(y)e(z —y)dzdy. (78)

R2d
For h(¢) = |€]7", we find that ¢(z) = c,|2[*%, with ¢, = F(%‘)/(Q“W%F(g)) a normal-
izing constant.

Following e.g. [8, 11], we may then define a stochastic integral with fractional Brow-
nian motion

M (2)dWH (z), (79)

]Rd
where WH is fractional Brownian motion defined such that
Cn _ F( 2 )
[y]d— NG

|&.

E{W ()W (z +y)} =

ol

20T

We then verify that E{Z%} = ¥, so that the random variable Z is indeed given by the
above formula (79). When n = 0, we retrieve the value for the Hurst parameter H = %
so that WH = I, the standard multiparameter Brownian motion.

In the analysis of stochastic equations [9, 14], the multiparameter fractional Brow-
nian motion is often defined as the centered Gaussian field B with Hurst index
H = (Hy,...,Hy), % < H; < 1, and covariance

d
1 _ , .
E{B"(z)B = 5d | | |1 P — s — i),

With this definition, we then find the correlation for the fractional white noise

E{B"(x)B"(y)} = on(x —y) = | [ Hi(2H; = 1)|a; — a2

i=1
The above is then defined as the Fourier transform of
d

h = —&™™, n=n 2H,=14+—, ¢= )
w(§) g |§| Z d onriD(H; — 1)
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The results of theorem 1 and 3 may also be extended to this framework by slightly
modifying the proofs in lemmas 2.1 and 3.1.

Note that homogenization theory is valid as soon as d > m +n. When d < m + n,
generalizations of the work in [2] considered elsewhere show that the limit for u. is the
solution in L2(Q x R?) to a stochastic differential equation of the form (11) with white
noise replaced by fractional white noise.

The stochastic representation in (79) is not necessary since X, (t) fully characterizes
the random variable Z. However, the representation emphasizes the following conclu-
sion. Let Z and ZI be the limiting random variables corresponding to two moments
with weights M; (z) and Ms(x) and a given Hurst parameter . When H = 3, we deduce
directly from (79) that E{Zlé ZQ%} = 0 when M;(z)Ms(x) = 0, i.e., when the supports
of the moments are disjoint. This is not the case when H # % as fractional Brownian
motion does not have independent increments. Rather, we find that E{Z{ ZI'} is given
by (M1, M2),, where the inner product is defined in (78) and M, is defined in (8)
with M replaced by My, k = 1,2. Similar results were obtained in the context of the
one-dimensional homogenization with long-range diffusion coefficients [3].
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