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Abstract

We consider the effect of small-scale random fluctuations of the constitutive coeffi-
cients on boundary measurements of solutions to radiative transfer equations. As the
correlation length of the random oscillations tends to zero, the transport solution is well
approximated by a deterministic, averaged, solution. In this paper, we analyze the ran-
dom fluctuations to the averaged solution, which may be interpreted as a central limit
correction to homogenization.

With the inverse transport problem in mind, we characterize the random structure of
the singular components of the transport measurement operator. In regimes of moderate
scattering, such components provide stable reconstructions of the constitutive parameters
in the transport equation. We show that the random fluctuations strongly depend on the
decorrelation properties of the random medium.

Keywords: Radiative transfer, Homogenization, Corrector Theory, random coeffi-
cients, Inverse Problems, Geophysical and Medical Imaging.

1 Introduction

Radiative transfer equations [8, 10, 13] are used in many practical applications in medical and
geophysical imaging [1, 17]. There, one is interested in reconstructing the optical properties
of a domain of interest from measurements typically collected at the boundary of the domain.
If we denote by [σ] the set of unknown coefficients and by [D] the collected data, then the
measurement operator Φ is defined as

Φ : [σ] 7→ Φ[σ] = [D].

Inverse transport theory is applied to the aforementioned imaging techniques; there [σ] con-
sists of {a, k}, where a is the attenuation coefficient and k the scattering coefficient, while
[D] is the density of particles (photons) u(x, v) for v an outgoing direction at a point x on the
boundary of a domain. The operator Φ is often a smoothing operator, in which small scale
structures are typically lost, either because detectors are separated by a small distance, or
because each detector has a finite numerical aperture. Let ε� 1 measure such a small scale.
In each of these settings, the structure of [σ] at the scale ε cannot be reconstructed. Yet, in
many settings, the latter small scale structure still has an influence on the measurements [D].
In this paper, we consider such an influence in the setting of the radiative transfer equation.

Since the small scale structure cannot be reconstructed, it is reasonable to model it as
a spatially rescaled random field δa(x/ε, ω) in (1) below, where the unscaled random field
δa(x, ω) has correlation length of order one. Consequently, δa(x/ε, ω) has correlation length
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of order ε, hence modeling the small scale structure of the attenuation parameter. We also
assume that the scattering cross section k ∼ 1, and the domain of interest has typical scale
L ∼ 1, so that the typical mean free path λ ∼ L/k ∼ 1. Here we use b ∼ c to say b and c have
the same order. Viewing the above small structure as random variations in the absorption
section a, the small parameter ε can also be interpreted as the ratio between the length scale
of this random variation and the mean free path λ. The influence of such small scale structure
thus becomes a problem of characterizing the effect of random heterogeneities on the solution
to a transport equation. We consider here the setting of detectors with very fine spatial and
angular resolution that are placed on a lattice with grid size ε. Variations at scales smaller
than ε are then not present in the measurements. For such a configuration, we characterize
the asymptotic randomness in the measurements [D] as ε tends to 0.

With the above modeling, we obtain radiative transfer equations with random coefficients
that vary on a small scale ε. Such equations have been analyzed in several settings; we re-
fer the reader to e.g. [12, 15, 16, 18]. Well-known homogenization results state that as ε
decreases to zero, solutions of the random equations converge to solutions of averaged (ho-
mogenized) equations. The theory of random correctors to homogenization, which provides
the asymptotic characterization of random fluctuations in available measurements, is not as
developed. In [5], we considered the theory of correctors to homogenization for the transport
equation. The main result of that paper is a characterization of the random fluctuations as
approximately a Gaussian process in the limit ε→ 0. However, such a result requires that the
transport solution be sufficiently averaged in the spatial and angular variables. That is, the
data [D] in those results are spatially and angularly averaged, not point-wise. We found that
such data have variances of order εd where d is the spatial dimension of the domain of interest.
The main objective of this paper is to show that the situation is modified when point-wise (in
space and direction) measurements are considered. In particular, our measurements are the
ballistic part and single scattering part of the transport solution, i.e. particles that are not
scattered or scattered once along their paths, which are the essential contributions used in
inverse transport; see section 2.3. We find that such data have much larger variances of order
ε independent of the spatial dimension d when the random field decorrelates sufficiently fast,
and even larger variances otherwise; see section 3.

The rest of the paper is structured as follows. The radiative transfer equation with
random attenuation is presented in section 2. We assume here that the scattering coefficient
is deterministic. It turns out that the influence of randomness on the measurements strongly
depends on the decorrelation properties of the random coefficients. To quantify this property,
we introduce the (auto-)correlation function R(x) of the random field δa(x). The random field
is said to have short range correlation if R(x) is integrable along any one-dimensional subspace
of Rd, and long range correlation otherwise. We consider here both cases. As we mentioned
above, we are interested in the influence of randomness on the measurement operator Φ. In
transport theory, the reconstruction of [σ] is stable when the singular components of Φ can
be measured. The decomposition of the measurement operator into singular components is
recalled in section 2.3.

Our main results on the influence of randomness on the singular components of the
measurement operator are presented in section 3. We primarily consider the setting of an
array of detectors separated by a distance ε and capable of measuring the density of particles
point-wise (i.e., at a spatial and angular scale negligible compared to ε). In such a setting, we
observe a much larger influence on the measured data when the correlation function of the
random attenuation decays slowly. We also describe in some detail how the measurements
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are cross-correlated.

The methodology used to describe the measurement fluctuations can be generalized to
other settings, such as e.g., the setting of detectors that have a spatial aperture comparable
to ε. We briefly present how the results are modified in such a setting. A sketch of the proof
of the results is proposed in section 4. To a large extent, the derivation of the results follows
from the techniques presented e.g., in [2, 4].

2 Radiative transfer equation with random attenuation

As described above, in some inverse problem applications, gaps between detectors introduce
a small scale ε, and structures in the absorption coefficients that vary on this scale cannot be
stably reconstructed. We hence model this part of the absorption as a scaled random field
and aim to characterize its effect on the measurements. Let us model the total absorption as

aε(x,
x

ε
, ω) = a(x) + δa(

x

ε
, ω), (1)

where the deterministic function a(x) is assumed to be smooth and slowly varying (on a scale
much larger than ε), and where δa is a stationary random field defined on some abstract
probability space (Ω,F ,P), with Ω the space of realizations, F the space of (measurable)
subsets of Ω and P the measure on F . Thus δaε(x) := δa(xε ) models the high frequency
structures mentioned above.

Then we need to consider the following steady-state radiative transfer equation with
random attenuation coefficient:

v · ∇xuε + aε(x,
x

ε
, ω)u = k(x)

∫
V
uε(x, v

′)dv′, (x, v) ∈ X × V,

uε(x, v) = g(x, v), (x, v) ∈ Γ−.

(2)

Here, X is an open, bounded, subset in Rd for d = 2, 3 spatial dimension, and V is the
velocity space, which here is chosen as the unit sphere V = Sd−1 to simplify the presentation.
The sets Γ± are the sets of outgoing and incoming conditions, defined by

Γ± := {(x, v)|x ∈ ∂X, ±νx · v > 0}, (3)

where ∂X is the boundary of X, assumed to be smooth, and the normal vector to X at
x ∈ ∂X is denoted by νx. See Figure 1 for an illustration of these definitions and a few more
to come.

We assume here that scattering is isotropic to simplify the presentation. We also assume
that k(x) is deterministic while the attenuation coefficient aε is assumed to be random.
This assumption is not unrealistic in medical imaging applications, where the absorption
coefficients of tissues vary more rapidly than the scattering coefficients. Also, it may be
justified from the point of view of an inverse problem as follows.

From measurements formalized by the “albedo” operator defined in section 2.3 below,
it is possible [6, 9] to extract the “singular” components of uε(x, v), cf. (12) below. Such
components provide explicit reconstructions for the attenuation and scattering coefficients.
The reconstruction of the attenuation coefficient involves the inversion of an X-ray transform,
while the inversion of the scattering coefficient is local in space. More precisely, knowledge
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Figure 1: Schematic of forward radiative transfer problem for a medium with high-frequency
variability. Three boundary points on the left-hand side are collimated sources. On the
right-hand side are direction-specific point-wise detectors. Because of the singularities of the
albedo operator, these detectors read the ballistic part ub in (13) and (in dimension d ≥ 3)
the single scattering parts us in (14). The two former trajectories form the contributions
αj(x, v; y, w) in (12) with j = 0, 1, respectively to the albedo operator. Here BL stands for
the single scattering broken line used in (14).

of α1(x, v; y, w) in (12) provides reconstruction of k(z) at the point z (when it exists) given
by the intersection of the lines {x + tv} and {y + sw}. A delta source emitted at (x, v)
with a detector at (y, w) will thus provide a reconstruction for k at a unique point z. No
statistical averaging (for instance by integrating over several values of z) occurs in our model
with detectors that are assumed to have a spatial and angular resolution below the scale ε.

However, the reconstruction of aε from knowledge of α0(x, v; y, w) in (12) involves line
integrals of aε. The reconstruction of k from α1 also involves line integrals of aε. Since our
detectors are assumed to be separated from each other by spatial distances of order ε, the
small scale structure of aε cannot be reconstructed. We thus model it as random and aim
at understanding the influence of such undetectable small scale structures on the available
measurements.

Existence and uniqueness of solutions of (2) has been investigated in e.g., [6, 9, 10]. A suf-
ficient condition for existence and uniqueness is that the intrinsic attenuation be non-negative;
that is, the total absorption aε subtracted by the scattering contribution

∫
V k(x, v, v′)dv′ =
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cdk(x) is non-negative; here cd is the volume of the unit sphere Sd−1. We assume here
that this condition is satisfied by (aε, k) almost surely with respect to probability measure P
(P-a.s.) so that our transport solution is well-defined P-a.s.

To develop a homogenization and corrector theory for the random transport equation (2),
we need to impose additional conditions on the random coefficients.

We first assume that the random field δa is stationary, which means that the joint distri-
bution of {δa(x1), · · · , δa(xn)} is conserved under translation for any n ∈ N and any n-tuple
(x1, · · · , xn). In particular, let E denote the mathematical expectation with respect to the
measure P; then Eδa(x) = c for some constant independent of x. By absorbing this determin-
istic constant into a(x) if necessary, we may assume that δa is mean-zero. The correlation
function R of the stationary random field δa defined by

R(x) := E{δa(y)δa(y + x)}, (4)

measures the two-point correlation of the field. As defined in the introduction, we say δa
has short range correlation if R is integrable along any line L(v) := {tv | t ∈ R}, that is
along one dimensional subspaces of Rd with direction v ∈ Sd−1; and we say δa has long range
correlation if R fails to satisfies these conditions.

Homogenization theory for (2), which is in fact an averaging theory since the coefficients
are replaced in the limit ε→ 0 by their ensemble average, holds under the general condition
that δa is stationary and ergodic; see [12]. Henceforth, equation (2) with aε replaced by its
average a will be referred to as the homogenized equation.

The random corrector to homogenization however, is much more complicated and strongly
depends on the structure of randomness. In this paper, we develop a corrector theory for two
types of random coefficients: (i) strongly mixing coefficients with short range correlations;
and (ii) functionals of Gaussian processes with long-range correlations. We will show that
the size of the random corrector is very different for short-range and long-range coefficients.

For similar works on random correctors, we refer the reader to e.g., [2, 4, 5].

2.1 Random fields with short range correlation

Our main results of this paper consider two types of random field models. In the first case, we
use the following assumptions which implies that random field has short range correlations.

Assumption A (Short range correlation): The random field aε is defined as in (1) and
δa is stationary, mean-zero, and ρ-mixing with mixing coefficient ρ(r) that is integrable as a
function on R. Further, δa < maxx∈X{a− cdk} for almost every realization.

The last requirement implies that (aε, k) is admissible so that the equation (2) is well
posed.

A process q(x, ω) on the probability space (Ω,F ,P) is said to be ρ-mixing if for any Borel
sets A,B ⊂ Rd, the sub-σ-algebras FA and FB generated by the process restricted on A and
B respectively decorrelate rapidly in the sense that there exists some function ρ such that for
any square integrable random variables ξ and η that are FA-measurable and FB-measurable
respectively, we have

|E{(ξ − Eξ)(η − Eη)}|√
Var {ξ} Var {η}

≤ ρ(d(A,B)). (5)

Here d(A,B) is the distance between the sets A and B. What this means is that (functionals
of) the random fields restricted on disjoint spatial domains A and B become more and more

5



independent as the distance between the sets A and B increases. The function ρ quantifies
that decay.

We verify that under assumption A, δa has short range correlation. Indeed, from (5) we
see |R(tv)| ≤ Cρ(|t|) where C is a bound for the variance of δa. Hence, we define

σ2
a(v) :=

∫
L(v)

R(x)dx =

∫
R
R(tv)dt. (6)

Since R|L(v) can be viewed as the correlation of the random process δa|L(v), by Bochner’s
theorem [19] σa(v) is nonnegative. We call Assumption A the case of short range correlation
because R is integrable in all directions.

Examples: There are many examples of processes that satisfy Assumption A. We refer
the readers to [5] for a detailed discussion of a model based on spatial Poisson point process.
In the next section, we will consider a model based on a functional of a Gaussian random
field that will be parameterized by a coefficient α which quantifies the decay of its correlation
function. The case α > 1 in (7) below corresponds to a case that satisfies Assumption A.

Note that Gaussian fields do not satisfy the positivity constraint 0 < maxx∈X{a−cdk}−δa.
The analysis of mean ballistic transport effects of Gaussian fields with short-range correlations
(white- and blue-noise cases) is investigated in [11].

2.2 Random fields with long range correlation

In order to display the different behaviors of the random fluctuations in a transport solution,
we consider the following case of random coefficients with long-range correlations:

Assumption B (Long range correlation): The random field aε is defined as in (1) and
δa = Φ◦g(x, ω) := Φ(g(x, ω)) where g(x, ω) is a real-valued mean-zero variance-one stationary
Gaussian random field on (Ω,F ,P) with correlation function Rg. For simplicity we assume
Rg is a radial function and has the following asymptotic behavior.

Rg(r) ∼ κgr−α, 0 < α < 1, as r →∞. (7)

The function Φ : R→ R is bounded and∫
R

Φ(g)e−
g2

2 dg = 0. (8)

Furthermore, we assume that supx∈R |Φ(x)| < max{a− cdk}. The latter requirement implies
that (2) is well-posed.

Remark 2.1. We observe that assumption A is relatively general comparing with B. As we
will see in the proof of the main theorems, the fast decorrelation property in A allows us to
invoke central limit theorem conveniently and processes required there are relatively general.
This is no longer the case for random fields with long range correlation. We choose the above
model so that we can calculate the main estimates based on our knowledge of Gaussian fields.
A uniform approach for general random fields with long range correlations is still unavailable
and the results we derived under assumption B does not necessarily hold in general.

Examples: Bounded, odd, functions Φ satisfy the condition (8) above. With Φ = sgn,
the process Φ ◦ g models a two-component composite medium. If we take Φ = tanh or
arctan, then Φ ◦ g models a continuous medium with bounded variations. This model is used
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in [4]. By choosing Φ bounded, we can ensure that the intrinsic attenuation coefficient is
non-negative P-a.s.

We need to analyze the random field δa restricted to lines L(v). Let us denote ϕ(t) =
δa(tv), then it is a one-parameter random process of the type Φ ◦ g. Such random fields were
discussed in details in [4]. In particular, if we define

V1 = E{g0Φ(g0)} =
1√
2π

∫
R
gΦ(g)e−

g2

2 dg, (9)

V2 = E{Φ2(g0)} =
1√
2π

∫
R

Φ2(g)e−
g2

2 dg, (10)

and κ = κgV
2

1 , then it is shown in [4] that ϕ is a stationary mean-zero process with variance
V2. Moreover, the correlation function of ϕ, still denoted as R, behaves like κr−α as r →∞.

Note that the constraint supx∈R |Φ(x)| < max{a − cdk} precludes the use of Gaussian
fields to model δa. The analysis of long-range correlations of Gaussian fields (pink-noise
case) on the mean ballistic transport term is investigated in [11].

2.3 Albedo operator of transport equation

When k ≡ 0 in (2), the free transport equation can be solved explicitly using the method
of characteristics. When scattering is non-zero, the solution to (2) can be expressed as a
Neumann series expansion. Let A denote the albedo operator, which maps the incoming
boundary condition u|Γ− = g on Γ− to the outgoing solution on Γ+:

A : u|Γ− 7→ A
(
u|Γ−

)
(x, v) = u|Γ+(x, v), (x, v) ∈ Γ+. (11)

This operator can be decomposed into three terms A =
∑2

j=0Aj where the operators Aj
have different singularities as shown in [3, 6, 9]; it is this difference of singularities that allows
one to uniquely reconstruct the optical parameters (a, k) in inverse transport. The operator
A0 denotes the part that does not depend on scattering. It is called the ballistic part. The
operator A1 denotes the part that is linear in the scattering coefficient and is called the single
scattering part. The operator A2 denotes the part that is higher order in scattering and is
called the multiple scattering part.

The ballistic part A0 is always more singular than the other parts and can be extracted
form the measured data [3]. Knowledge of A0 implies that of the Radon transform of a, which
uniquely determines a. In dimension d ≥ 3 (or in dimension d = 2 in the time-dependent
setting), A1 is more singular than the multiple scattering part and can also be separated from
the latter for sufficiently accurate detectors. Knowledge of A1 and a allows us to uniquely
reconstruct k. We are therefore interested in the contributions A0 and A1 in the inverse
problem setting. Their distributional kernels are given by

α0(x, v; y, w) = δv(w)δ{x−τ−(x,v)v}(y) exp
(
−
∫ τ−(x,v)

0
a(x− sv)ds

)
,

α1(x, v; y, w) =

∫ τ−(x,v)

0
exp

(
−
∫ t

0
a(x− sv)ds−

∫ τ−(x−tv,w)

0
a(x− tv − sw)ds

)
k(x− tv)δ{x−tv−τ−(x−tv,w)w}(y)dt.

(12)
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Here we used the standard notation τ±(x, v) for the traveling times from x to ∂X along
direction ±v, and they are given by

τ±(x, v) = sup{t > 0 : x± tv ∈ X};

see illustrations of τ−(x, v) in Fig. 1. The above means that

Ajφ(x, v) =

∫
Γ−

αj(x, v; y, w)φ(y, w)dσ(y)dw, j = 0, 1, 2,

where dσ(y) is the surface measure on ∂X.

Let Aε and αε denote the corresponding albedo operator and its kernel for the stochastic
transport equation (2), and let A and α be those for the homogenized equation. This paper
is devoted to the analysis of the ballistic and single scattering contributions of the random
corrector Aε − A. More specifically, we want to understand the random fluctuations in the
coefficients αk(x, v; y, w) for k = 0, 1.

It turns out that the random fluctuations in αk(x, v; y, w) depend on the scale at which
the latter quantities are observed. In the setting of random coefficients with short-range
correlations so that the correlation functions of the random coefficients are integrable on
Rd, we analyzed in [5] the random fluctuations for integrals (in all variables (x, v; y, w)) of
the above kernels. By an application of the central limit theorem in d-dimensional spaces,
we obtain that such integrals are asymptotically Gaussian with variance proportional to εd.
Point-wise, we observe that αk(x, v; y, w) for k = 0, 1 involve integrals of aε along lines,
and this independent of dimension. As a consequence, we expect point-wise measurements
to have variances of order O(ε) as an application of the central limit theorem independent
of dimension d. An intermediate case with measurements that are point-wise in space and
averaged in angle turns out to have variance of order O(ε2| log ε|) in dimension d = 2 and
of order O(ε2) in dimension d ≥ 3; we refer to calculations presented in the Appendix for
details.

In this paper, as we mentioned in the introduction, we are interested in the setting of
point-wise measurements. In the following section, we indeed show that point-wise measure-
ments have a variance of order O(ε) as an application of the central limit theorem when the
random fluctuations have short-range correlations. In the setting of long-range correlations,
we observe much larger random fluctuations, which is consistent with the results obtained in
[4] for elliptic equations.

3 Random fluctuations of point-wise measurements

In this section, we state our main results on the asymptotic random fluctuations in the mea-
surements α0(x, v; y, w) and α1(x, v; y, w). We show that the size of the random fluctuations
depends on the decorrelation properties of the random attenuation coefficient. We consider
the cases of short range and long range correlations. The measurements at different values of
(x, v; y, w) also may be correlated. We present the limiting joint distribution for some fami-
lies of measurements. Finally, we briefly mention how the results need to be modified when
point-wise measurements are replaced by measurements on detectors with a spatial resolution
comparable to the small scale ε. The derivation of the results is presented in section 4.

We first observe that α0(x, v; y, w) is of the form ub(x, v)δv(w)δ{x−τ−(x,v)v}(y). Thus, ub

can be thought of as the solution of the free transport equation at (x, v) with a unit source
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located at (x− τ−(x, v)v, v). It is given for the deterministic part by

ub(x, v) = exp
(
−
∫ τ−(x,v)

0
a(x− sv)ds

)
. (13)

Since the random coefficients affect only the function ubε, it suffices to investigate the corrector
ubε − ub.

The systematic impact of broad band fluctuations of a modeled as a Gaussian random
field (with a positive probability of being (non physically) negative) on the mean ballistic
transmission E{ub} is investigated e.g. in [11] and the references therein.

Similarly for the single-scattering part, the kernel α1 can be written as∫ τ−(x,v)

0
us(x, v; t, w)k(x− vt)δ{x−tv−τ−(x−tv,w)w}(y)dt,

with us(x, v; t, w) defined by

us(x, v; t, w) : = exp
(
−
∫
BL(x,v,t,w)

a(`)d`
)

= exp
(
−
∫ t

0
a(x− sv)ds−

∫ τ−(x−tv,w)

0
a(x− tv − sw)ds

)
.

(14)

Here BL(x, v, t, w) denotes the broken line between x− tv− τ−(x− tv, w)w, x− tv and x, as
illustrated in Fig. 1 for d = 2. The random corrector of A1 is therefore obtained by analyzing
usε − us.

Random media with short range correlations. We have the following results re-
garding to the limiting distribution of a point-wise/direction-specific measurement.

Theorem 3.1. Let aε satisfy the short range correlation assumption A. Let (x, v) be any
point in Γ+ or in X × V , and t be any real number so that x − tv ∈ X. Then for any fixed
(x, v, t) the following results hold.

1. For the ballistic part, we have

ubε − ub√
ε

(x, v)
D−→ ub(x, v)

√
τ−(x, v)σa(v)N (0, 1). (15)

2. For the single scattering part, we have

usε − us√
ε

(x, v; t, w)
D−→us(x, v; t, w)

(√
τ−(x− tv, w)σa(w)N1(0, 1)

+
√
τ+(x− tv, v)σa(v)N2(0, 1)

)
.

(16)

In both equations, N (0, 1) denotes the centered normal variable, and the convergence is
interpreted as convergence in distribution of random variables. The real numbers σa’s are
defined in (6). In the second equation, Ni, i = 1, 2, are independent variables with normal
distribution.

Remark 3.2. In particular, the above result shows that the variance of point-wise measure-
ments is of order O(ε) unlike what happens for angularly or spatially averaged measurements.
We refer the reader to appendix A and [5] for some results in the latter cases.
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Solving the inverse transport problem requires many measurements [3]. In order to mini-
mize errors in the reconstructions (see e.g., [7]), it is useful to understand how such measure-
ments are correlated. We do not consider the most general case of an arbitrary finite number
of measurements. Rather, we consider the following families of measurements and present
their joint limiting behavior as ε→ 0. In all cases considered here, the limiting distributions
are centered and Gaussian and thus characterized by their covariance matrix.

We first introduce some notation. For (x, v) ∈ X̄×V , let L(x, v) denote the line {x−sv, s ∈
R} and LX(x, v) be the intersection of L(x, v) with X. Let us suppose we have a finite
collection of ballistic measurements for sources at (xi, vβ) where i ∈ [N ], β ∈ [M ] and
[n] := {1, 2, · · · , n}. Given a pair of points (xi, vβ) and (xj , vγ), let d(LX(xi, vβ), LX(xj , vγ))
denote the distance between the segments (as the distance between two sets), and let θβγ
denote the non-oriented angle between vβ and vγ which is always nonnegative. We define the
function d : {(xi, vβ)} × {(xj , vγ)} → R+ as

d
(
(xi, vβ), (xj , vγ)

)
= d
(
LX(xi, vβ), LX(xj , vγ)

)
+ θβγ . (17)

Theorem 3.3. Let aε satisfy the short range correlation assumption A; the following results
hold.

1. Consider a collection of points {(xi, vβ)} in Γ+, i ∈ [N ], β ∈ [M ]. Suppose that for

any i, j, β, γ, we have d
(
(xi, vβ), (xj , vγ)

)
� ε. Denote (ubε − ub)(xi, vβ) by δub,i,βε . Then the

N ×M -dimensional random vector ε−
1
2 (δub;1,1ε , · · · , δub;N,Mε ) converges in distribution to a

N ×M -variate normal vector with diagonal covariance matrix. That is,

(δub;1,1ε , · · · , δub;N,Mε )√
ε

D−→ N (0,ΣN×M (xi, vβ)), (18)

and ΣN×M is a diagonal matrix whose (i, β)-th diagonal entry is
(
ub(xi, vβ)σa(vβ)

)2
τ−(xi, vβ).

2. Consider (xi, v), (xj , v) ∈ Γ+. Let v⊥ be the perpendicular direction of v in the two-
dimensional plane determined by the lines LX(xi, v) and LX(xj , v); let `ij be the length of
their common segment when one is projected into the other, and let dij be the distance of
these parallel lines. Then we have:

Cov
(δubε(xi, v)√

ε
,
δubε(xj , v)√

ε

)
= `iju

b(xi, v)ub(xj , v)

∫
R
R(
dijv

⊥

ε
+ tv)dt+ o(1) (19)

In particular, when dij = ζε for ζ > 0, using R̃ to denote the Radon transform of R in the
two-dimensional plane, the correlation is `iju

b(xi, v)ub(xj , v)R̃(ζ, v).

3. Consider the two broken lines that start at (y, w) ∈ Γ− and end at (xi, vβ) and (xj , vγ),
respectively. Let t1, t2 be such that xi − t1vβ and xj − t2vγ are the points where the broken
lines break. Assume that d

(
(xi − t1vβ, vβ), (xj − t2vγ , vγ)

)
� ε. Then

Cov
( δusε(xi, vβ)√

εus(xi, vβ)
,
δusε(xj , vγ)√
εus(xj , vγ)

)
= min

(
τ−(xi − t1vβ, w), τ−(xj − t2vγ , w)

)
σ2
a(w). (20)

Remark 3.4. We therefore obtain that lines that are far apart compared to ε generate mea-
surements that are asymptotically uncorrelated. When the lines are separated by a distance
of order O(ε) as in case 2, then we obtain that the measurements are correlated. We have
considered here a family of two measurements although joint distributions for measurements
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along a finite number of parallel lines can also easily be shown to be jointly Gaussian (and
correlated) in the limit ε → 0. Case 3 shows that single scattering measurements generated
by a given source display larger correlations than ballistic measurements because they visit
the same ballistic line of propagation during a positive distance. Other collection of data
with parameter (xi, vβ) can be considered similarly.

So far, we have assumed that the detectors were point-wise and could capture particles
exiting X at x with a velocity v. In practice, this models detectors with a resolution in space
and angle that is much better than ε. We now consider the case of thicker detectors with a
spatial resolution comparable to ε. The main features of theorem 3.1 remain valid. However,
for detectors whose spatial resolution is much worse than ε, then additional averaging would
occur and the measurement would have significantly smaller variance; see [5].

For simplicity, we assume that ∂X is (a part of) a hyperplane and that detectors have
perfect resolution in the angular variable. Consider the data obtained at (x, v) ∈ Γ+. Let us
use a coordinate system centered at x with v being the first coordinate axis while the other
axes span the boundary ∂X. Then the measured “ballistic” part is

Iε(x, v) =

∫
Rd−1

1

εd−1
φ(
y

ε
)ub(y, v)dy. (21)

Here, the function φ(y) is a weight function assumed to be non-negative and compactly
supported on the unit ball and integrating to one over Rd−1.

Theorem 3.5. Let aε satisfy the short range correlation assumption A. Let (x, v) be a point
in Γ+ and assume that ∂X is flat at x in the above sense and v is the outward normal
direction. Then we have:

Iε(x, v; aε)− Iε(x, v; a)√
ε

(x, v)
D−→ ub(x, v)

√
τ−(x, v)N (0, σ2

s), (22)

with σ2
s defined by

σ2
s =

∫
R×R2(d−1)

φ(y)φ(z)R(y − z + tv)dtdydz, (23)

where R is the correlation function of the process δa defined in (4).

We have considered only the limiting distribution for one thick detector. Joint distri-
butions of a finite number (independent of ε) of measurements can be dealt with as in the
setting of point-wise measurements.

The case of long range correlations. Finally, we generalize the result obtained in
theorem 3.1 to the case of random fields with long range correlations. The limit of joint
distributions for several measurements involves more complicated calculations that are not
considered here.

For a single point-wise/direction-specific measurement, the following result holds.

Theorem 3.6. Let aε satisfy the long range correlation assumption B. Let (x, v) be a point
in Γ+ or in X × V and t be a real number so that x− tv ∈ X. Then we have:

1. For the ballistic part, we have

ubε − ub

ε
α
2

(x, v)
D−→ ub(x, v)N (0, σ2

H), where σ2
H =

2κ(τ−(x, v))2−α

(1− α)(2− α)
. (24)

11



2. For the single scattering part, we have

usε − us

ε
α
2

(x, v; t, w)
D−→ us(x, v; t, w)

(
N1 +N2

)
, (25)

where the random vector (N1, N2) has a two-variate normal distribution N (0,Σ) with

Σ11 =
2κ(τ−(x− tv, w))2−α

(1− α)(2− α)
, Σ22 =

2κ(τ+(x− tv, v))2−α

(1− α)(2− α)
,

and Σ12 = Σ21 =

∫ τ−(x−tv,w)

0

∫ τ+(x−tv,v)

0

κ

|tw + sv|α
dtds.

(26)

This result shows that point-wise measurements with long-range correlations have vari-
ances that are much larger than in the short range case. Moreover, the correlation of two
crossing lines that are separated by a distance of order O(1) is as large as the variance of
each of them, unlike what was obtained for short-range correlations.

More generally, the competition between the slow decay modeled by α and the spatial
dimension determines the order of the cross-correlations of the singular components of mea-
sured data. In any m-dimensional subspace, the cross-correlation will be of order εmin(m,α),
which is smaller than the variance of order O(ε) as soon as α > 1 in dimension m ≥ 2.

4 Sketch of proofs

In this section, we sketch the proofs of our main results and also refer the reader to [5] for
additional details on the analysis of transport equations with random coefficients. Using a
Taylor expansion to order 2, we have:

eMε − 1 = Mε +
1

2
M2
ε

∫ 1

0
(1 + t)etMεdt, Mε(x, v) = −

∫ τ−(x,v)

0
δaε(x− sv)ds. (27)

To simplify notation, we denote the second term in the expansion of eMε − 1 by M2
εHε. Note

that, although the integral Mε needs to be� 1, its (zero-mean) integrand δaε(x) can be O(1)
since oscillations will indeed cancel very effectively in variability regimes dominated by very
high frequencies.

Since Mε is bounded from below, we verify that |Hε| is bounded by some constant C
uniformly in ε. Now we have the following expressions.

(ubε − ub) = ub
(
Mε +M2

εHε

)
,

(usε − us) = us
(
M s
ε + (M s

ε )2Hs
ε

)
.

(28)

Here M s
ε = Mε(x− tv, w) +Mε(x− tv,−v) and Hs

ε is again bounded uniformly.

4.1 Proof of Theorems 3.1, 3.3 and 3.5

The proof of these theorems stems essentially from the analysis of the moments of Mε up to
fourth order (Lemma 4.2), the asymptotic independence of Mε(xi, vβ) and Mε(xj , vγ) when
the lines are not close for the function (17) (Lemma 4.4), and the following central limit
theorem type result proved e.g., in [2].
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Theorem 4.1 ([2]). Let D be a bounded interval in R, and q a bounded, stationary, mean-
zero, ρ-mixing random process with ρ integrable. Assume m ∈ L2(D). Then we have∫

D
m(y)

1√
ε
q(
y

ε
)dy

D−→
∫
D
m(y)σdWy. (29)

Here, Wy is the standard Wiener process on R, and σ2 =
∫
R E{q(0)q(y)}dy.

Using formula (28), we need to control the term that is nonlinear in Mε.

Lemma 4.2. Let δa satisfies conditions in assumption A. Then the following estimates hold.

EMε
2(x, v) = ετ−(x, v)σ2

a(v) + o(ε), EMε
4 ≤ Cε2. (30)

Proof: Let τ− denote τ−(x, v). We have:

EMε
2 = E

∫∫ τ−

0
δaε(x− tv)δaε(x− sv)dtds

=

∫
R2

R(
t− s
ε

v)Fx,v(t)Fx,v(s)dtds.

(31)

Here Fx,v(t) = χX(x − tv) is a cut-off function where χX is the indicator function of the
domain X. Let Rv denote the function of R restricted on the line L(v) and let Rεv denote
the function Rv(

·
ε). Then we have

EMε
2 =

∫
R

(Rεv ∗ Fx,v)(t)Fx,v(t)dt

=

∫
R
R̂εv(ξ)F̂x,v(ξ)F̂x,v(ξ)dξ = ε

∫
R
R̂v(εξ)|F̂x,v(ξ)|2dξ.

Here, R̂v is the Fourier transform of Rv and is real according to Bochner’s theorem, and
R̂(εξ) converges to R̂(0). Hence, the right hand side of the last equation converges to

εR̂v(0)

∫
R
F 2
x,v(t)dt = ετ−(x, v)

∫
R
R(tv)dt.

Recall that σ2
a(v) is defined to be the last integral. This completes the proof of the first

part. The second part can be proved by the same lines using an estimate for the fourth order
moments of the strong mixing random process derived in [2]. The detail is omitted here. �

Remark 4.3. If we require tR(tv) to be integrable in t, then we obtain the more accurate
estimate: EMε

2 = ετ−(x, v)R̂v(0) +O(ε2). This can be seen from∫
R
Fx,v(t)Fx,v(t− εs)dt = τ−(x, v)− εs.

Lemma 4.4 (Asymptotic independence). Let δa satisfy the conditions in assumption A.
Let {xj , vβ}, j ∈ [N ], β ∈ [M ] be a finite collection of sampling points so that for any two
pairs of indices j, k, β, γ, the corresponding lines are not close for the function (17), i.e.,
d
(
(xj , vβ), (xk, vγ)

)
� ε, then the random variables {(

√
ε)−1Mε(xj , vβ)} are independent in

the limit.
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Proof: By definition of independence, we need to show that

lim
ε→0

E
{

exp
(
i
N∑
j=1

M∑
β=1

ξjβ
Mε√
ε

(xj , vβ)
)}

=
N∏
j=1

M∏
β=1

E
{

exp
(
iξjβ

Mε√
ε

(xj , vβ)
)}
. (32)

Here i =
√
−1 should not be confused with the indices. By induction and by breaking

crossing lines into broken lines with common breaking point, this boils down to the case of
N = 2,M = 1 and the case of N = 1,M = 2. In the first case, we apply the strong mixing
property (5) and the result follows directly. The second case is a little more involved.

The two segments are LX(xs, v) and LX(xs, w) where xs is the breaking point. Let us
break the latter into two parts:

1√
ε
Mε(xs, w) = − 1√

ε

(∫ ητ1

0
δaε(xs − sw)ds+

∫ τ1

ητ1

δaε(xs − tw)dt

)
,

where τ1 = τ−(xs, w) and η is a positive real number smaller than one. Call them 1√
ε
Qηε and

1√
ε
P ηε respectively. Then we have

E{eiξ1
1√
ε
Mε(xs,w)+iξ2

1√
ε
Mε(xs,v)} − E{eiξ1

1√
ε
Mε(xs,w)}E{eiξ2

1√
ε
Mε(xs,v)}

= E{[eiξ1
1√
ε
Qηε − 1]e

iξ1
1√
ε
P ηε +iξ2

1√
ε
Mε(xs,v)}

− E{[eiξ1
1√
ε
Qηε − 1]e

iξ1
1√
ε
P ηε }E{eiξ2

1√
ε
Mε(xs,v)}

+ E{eiξ1
1√
ε
P ηε +iξ2

1√
ε
Mε(xs,v)} − E{eiξ1

1√
ε
P ηε (xs,w)}E{eiξ2

1√
ε
Mε(xs,v)}.

(33)

Now for the last two term, we use the mixing condition (5) and get∣∣E{eiξ1 1√
ε
P ηε +iξ2

1√
ε
Mε(xs,v)} − E{eiξ1

1√
ε
P ηε (xs,w)}E{eiξ2

1√
ε
Mε(xs,v)}

∣∣ ≤ ρ(
η sinβ

ε
),

where η sinβ is the distance of the segments LX(xs, v) and LX(xs − ητ1, w).

For the first term (and similarly the second term), we use the fact that |eix− 1| ≤ |x| and
conclude that it is bounded by

|ξ1|{E
(

1√
ε
Qηε

)2

}
1
2 = |ξ1|

1

ε

∫ ητ−

0

∫ ητ−

0
R(
t− s
ε

v)dtds ≤ |ξ1|η.

Hence, by choosing η properly so that both η and ρ(η sinβ
ε ) goes to zero; for instance, take

η =
√
ε. Then we see the term in (33) goes to zero, which completes the proof. �

Proof of Theorem 3.1: 1. Ballistic part. From the expansion (28) and the control of
M2
ε in lemma 4.2, we have

E
∣∣∣ubε − ub√

ε
(x, v)− ub(x, v)

Mε√
ε

∣∣∣ ≤ CEM2
ε√
ε
≤ C
√
ε −→ 0.

This shows that the scaled corrector δubε converges to ε−
1
2ubMε, for any fixed (x, v), in L1(Ω)

and hence in distribution. Therefore, the limiting distribution of ε−
1
2 δubε is given by that of

ε−
1
2ubMε. This term is an oscillatory integral of the form

ε−
1
2ub(x, v)

∫
R
δa(

x− tv
ε

)Fx,v(t)dt.
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First observe that we can ignore the x in δaε thanks to stationarity. Then we apply Theorem
4.1 to the process δa restricted on the line L(v) and have:

Mε√
ε

D−→
∫ τ−(x,v)

0
σadWt. (34)

Here, σ2
a =

∫
R E{δa(0)δa(tv)}dt. Finally we observe that the stochastic integral above is

simply a Gaussian random variable with mean-zero and variance σ2
aτ−(x, v). This completes

the first part of the proof.

2. Single scattering part. As before, we only need to capture the asymptotic distribution
of the term linear in Mε, that is us(Mε(xs, w) + Mε(xs,−v) where xs = x− tv. For each of
them, we apply part one to obtain their asymptotic law. Jointly, they are independent in the
limit thanks to Lemma 4.4. �

Proof of Theorem 3.3: 1. The first item follows directly from Theorem 3.1 and Lemma
4.4.

2. The second item. We need to control the term that is a product of two terms linear in
Mε. Let xi − xj = dijv

⊥ + ηv. We calculate:

EMε(xi, v)Mε(xj , v) =

∫
R2

R(
dijv

⊥ + (η − t+ s)v

ε
)Fxi,v(t)Fxj ,v(s)dtds

= ε

∫
R2

R(
dijv

⊥

ε
+ tv)Fxi,v(η + s)Fxj ,v(s)dtds+ o(ε).

(35)

In the second equality, we have changed variable (η − t+ s)/ε→ t. Then integrate over s to
obtain the conclusion.

3. The third item is again a simple combination of Theorem 3.1 and Lemma 4.4. Namely,
the parts after scattering will be independent in the limit, and the only correlation comes
from the common ballistic part, for which we can apply (15). �

Proof of Theorem 3.5: The asymptotic distribution of the corrector will be determined
by that of the term that is linear in δa. Let us denote this term by δIε expressed by

δIε(x, v; a) = −
∫
Rd−1

ub(y, v)
1

εd
φ(
y

ε
)

∫ τ−

0
δa(

y − tv
ε

)dtdy

= −ub(x, v)

∫ τ−

0
δb(

t

ε
)dt+ o(ε),

(36)

where δb(t) is defined to be the “vertically” averaged process

δb(t) :=

∫
Rd−1

φ(y)δa(y − tv)dy. (37)

Clearly δb inherits stationarity and strong mixing properties from δa. Therefore, part one of
theorem 3.1 can be applied. It suffices to verify that

σ2
b (v) =

∫
R
E{δb(0)δb(t)}dt =

∫
R×R2(d−1)

φ(y)φ(z)R(y − z + tv)dtdydz. (38)

This completes the proof. �
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4.2 Proof of Theorem 3.6

The proof in the case of long range correlations also relies on the control of moments of Mε

up to fourth order and the asymptotic law of Mε point-wise. In both analyses, we essentially
follow the procedure in [4], namely replacing the random field Φ◦g by the underlying Gaussian
random field g. We will need:

Theorem 4.5 ([4]). Let δa satisfies the conditions in assumption B with correlation function
decaying like |x|−α. For any function F ∈ L1(R) ∩ L∞(R), we have

ε−
α
2

∫
R
ϕε(t)F (t)dt

D−→
√

κ

H(2H − 1)

∫
R
F (t)dWH

t , (39)

where WH
t is a fractional Brownian motion with Hurst index H = 1− α

2 .

Proof of Theorem 3.6: 1. Ballistic part. From the expansion (28) and control of M2
ε ,

we have

E
∣∣∣ubε − ub

ε
α
2

(x, v)− ub(x, v)ε−
α
2Mε

∣∣∣ ≤ Cεα2 −→ 0.

Hence, we only need to capture the limit distribution of ub(x, v)ε−
α
2Mε, which can be written

as product of ub(x, v) with the following oscillatory integral

Iε = ε−
α
2

∫
R
δa(

x− tv
ε

)Fx,v(t)dt. (40)

Here Fx,v is the cutoff function introduced earlier. Then applying Theorem 4.5 for the process
δa restricted on the line L(v) (ignoring x), we have

Iε
D−→
√

κ

H(2H − 1)

∫
R
Fx,v(t)dW

H
t . (41)

Finally, the variance of the stochastic integral above is given by∫
R2

κ

|t− s|α
F (t)F (s)dtds =

∫∫ τ−(x,v)

0

κ

|t− s|α
dtds.

This integral can be calculated explicitly as given in (26).

2. Single scattering part. As before, only the term that is linear in Mε
s matters. Using

the same method as in [4], we need to find the limiting distribution of ε−
α
2 usV 2

1 Mε
s,g with

Mε
s,g(x, v, y, w) :=

∫
BL(x,v,y,w)

gε(`)d`. (42)

This is a Gaussian random variable and it suffices to find the limit of its variance, which is
precisely

E
(

1

ε
α
2

∫
R
Fxs,−v(t)g(

xs + tv

ε
)dt

)2

+ E
(

1

ε
α
2

∫
R
Fxs,w(s)g(

xs − sw
ε

)ds

)2

+
2

εα
E
∫
R2

Fxs,w(s)Fxs,−v(t)g(
xs + tv

ε
)g(

xs − sw
ε

)dtds.

(43)
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The first two terms are exactly as part 1. By the asymptotic behavior of Rg, the third one
is given by

2

εα

∫
R2

Fxs,−v(t)Fxs,w(s)
εακg

|tv + sw|α
dtds.

This completes the proof of the result. �

5 Conclusions

The highly oscillatory part of the absorption coefficient in the radiative transfer equation,
which varies on a scale of ε� 1 and cannot be stably reconstructed using inverse transport
technique, is modeled as a random field. The scale ε may be introduced in practice in several
ways accounting for different experimental settings, for instance as the gap between detectors
as considered in this paper. Furthermore, the effects of the above random fluctuations in the
absorption coefficient on the point-wise measurements of particle densities at the boundary
are described asymptotically. More precisely, we found that the fluctuations in the measure-
ments are asymptotically Gaussian and of size ε1/2 (resp. εα/2 for α > 1

2) when the random
fluctuations in the absorption have integrable (resp. non integrable) correlation function.

Such results are useful for inverse transport as we explain now in more detail. Since we
can only hope to reconstruct stably the low frequency part of the absorption a, we view the
measurement uε as the “true” measurement u corresponding to a plus “noise”.

In standard notations of the generic inverse problem, [σ] denotes the unknown coefficient
to reconstruct, [D] the measured data and e the error. The collected data can be written as

[D] = Φ([σ]) + e. (44)

The measurement operator Φ is typically determined by equations modeling the physics and
is usually smoothing. Noise e is therefore typically amplified during the reconstruction of
[σ] from knowledge of [D] [14]. Knowing its statistical structure allows us to mitigate the
influence of noise in an optimal manner [7].

In our problem, the noise term e is precisely given by uε−u. Our results on the statistics of
the corrector uε−u provide statistics for this noise that are derived from physical principles,
which is often better than assuming a “standard” noise model. We refer the readers to [7]
for an application of corrector analysis to an inverse spectral problem.
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A Variance for Angularly-Averaged Measurements

In this appendix, we show that measurements that are point-wise in space but averaged
angularly have variance of order ε2| log ε| in dimension d = 2 and of order ε2 when d ≥ 3.

17



To simplify the presentation, we present the calculations only for the ballistic part ub(x, v),
knowing that the other contributions to the transport equation have variances of the same
order. In the rest of the appendix, we drop the superscript b to simplify notation.

Fixing x, a point in X or on its boundary ∂X, the angularly averaged measurement at
this point is obtained by integrating u(x, v) over v. That is,

J(x) =

∫
V
u(x, v)dv, (45)

for x ∈ X. For measurements performed on the boundary, the integration is taken over
{v : νx · v > 0}. Then the random corrector of such measurements is simply

δJε := Jε − J =

∫
V
u(x, v)

(
exp(Mε(x, v))− 1

)
dv. (46)

We have the following result regarding the order of its variance.

Lemma A.1 (Variance for angularly averaged measurements). Let δa be a stationary random
field with correlation function R integrable on Rd. Then,

Var {δJε} ≤

{
Cε2| log ε|, d = 2

Cε2, d ≥ 3.
(47)

Proof: Thanks to the control of the fourth moments of Mε, we only need to control the
term that is linear in Mε. Using the change of variables∫

V

∫ τ−(x,v)

0
f(x− tv, v)dtdv =

∫
X

f(y, v)

|x− y|d−1

∣∣
v= x−y
|x−y|

dy, (48)

the linear term in δJε can be written as

−
∫
X

u(x, v)δaε(y)

|x− y|d−1

∣∣∣
v= x−y
|x−y|

dy.

Call this term I. We have

Var {I} = E{I2} =

∫
X2

u(x, v)u(x,w)R(y−zε )

|x− y|d−1|x− z|d−1

∣∣
v= x−y
|x−y| ,w= x−z

|x−z|
dydz.

Now, change variables (y − z)/ε→ z and x− y → y. Then we have

EI2 = εd
∫
Rd×Rd

u(x, v)u(x,w′(ε))R(z)

|y|d−1|y + εz|d−1
χX(x− y)χX(x− y − εz)dzdy.

Here, w′(ε) is the direction of the vector x − y − εz and as ε goes to zero it converges to
that of x− y. Assuming that u is bounded, and then integrating in y (over X) and using the
estimate that ∫

X

1

|y|d−1|y + z|d−1
dy ≤

{
C(| log |z||+ 1), d = 2,

C 1
|z|d−2 , d ≥ 3,

(49)

we obtain that in dimension two that

EI2 ≤ Cε2| log ε|
∫
Rd
R(z)| log |z||dz,
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and in dimension three that

EI2 ≤ Cε2

∫
Rd
R(z)

1

|z|d−2
dz.

In both cases, the integral converges due to the fact that R is integrable and log |z| (in di-
mension two) and |z|d−2 (in dimension three) are locally integrable. For a proof of estimate
(49), we refer the reader e.g. to the appendix of [5]. This completes the proof. �
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