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Abstract

This paper concerns the reconstruction of a scalar diffusion coefficient σ(x) from redun-
dant functionals of the form Hi(x) = σ2α(x)|∇ui|2(x) where α ∈ R and ui is a solution of
the elliptic problem ∇ · σ∇ui = 0 for 1 ≤ i ≤ I. The case α = 1

2 is used to model measure-
ments obtained from modulating a domain of interest by ultrasound and finds applications
in ultrasound modulated electrical impedance tomography (UMEIT) as well as ultrasound
modulated optical tomography (UMOT). The case α = 1 finds applications in Magnetic
Resonance Electrical Impedance Tomography (MREIT).

We present two explicit reconstruction procedures of σ for appropriate choices of I and
of traces of ui at the boundary of a domain of interest. The first procedure involves the
solution of an over-determined system of ordinary differential equations and generalizes to
the multi-dimensional case and to (almost) arbitrary values of α the results obtained in two
and three dimensions in [10] and [5], respectively, in the case α = 1

2 . The second procedure
consists of solving a system of linear elliptic equations, which we can prove admits a unique
solution in specific situations.

1 Introduction

Medical imaging modalities aim to combine high resolution with high contrast between healthy
and unhealthy tissues. Optical Tomography and Electrical Impedance Tomography display such
high contrasts but often suffer from poor resolution. Ultrasound Tomography and Magnetic
Resonance Imaging are high resolution modalities that sometimes suffer from low contrast. The
ultrasound modulation of electrical or optical properties of tissues and the combination of simul-
taneous electrical and magnetic resonance measurements both offer the possibility to combine
high resolution with high contrast. For the acquisition of ultrasound-modulated measurements,
we refer the reader to, e.g., [1, 5, 10, 12, 14] for works in the mathematical literature. For the
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acquisition of internal information on electrical conductivities by magnetic resonance imaging,
we refer the reader to, e.g., [13, 16, 17, 18].

Mathematically, we aim to reconstruct a scalar diffusion coefficient σ in an elliptic equation
from knowledge of internal information of the form Hij(x) = σ2α(x)∇ui(x) · ∇uj(x) for α ∈ R
and 1 ≤ i, j ≤ m, where ui and uj are solutions of the elliptic problem with different boundary
conditions; see (1) and (2) below. Ultrasound modulation corresponds to α = 1

2 whereas mag-
netic resonance modulation corresponds to the case α = 1. Such information can be obtained
from functionals of the form σ2α(x)|∇ui|2(x) by standard polarization (expressions of the form
4ab = (a+ b)2 − (a− b)2).

This problem was first solved in the two dimensional setting in [10] in the case m = 2
and α = 1

2 . The three dimensional setting was addressed in [5] with m = 4 and α = 1
2 .

In these papers, the elliptic equation is recast as a system of equations for quantities of the
form Si = σα∇ui using the elliptic equation and the fact that ∇ui is curl free. This strategy
allows one to eliminate σ from the system of equations and solve for the vectors Si. The stable
reconstruction of σ is then straightforward. The case α = 1

2 in the setting of non-redundant
measurements, i.e., with m = 1 and measurements of the form H = σ|∇u|2 is considered in
[4]. It is shown in that paper that the stable reconstruction of σ may not be possible from such
non-redundant measurements. This justifies the analysis of redundant measurements

The objectives of this paper are twofold. We first generalize the reconstruction of σ to the
case of arbitrary space dimension n and almost arbitrary α ∈ R. Assuming that the vectors Si
form a frame, we obtain a system of equations for the vectors Si that involves Hij = Si ·Sj but no
longer σ. The resulting system of equations may be seen as an overdetermined nonlinear system
of equations. By appropriately choosing the boundary conditions used to construct the internal
functionals Hij(x), we obtain a global uniqueness and stability result for the reconstruction of the
scalar quantity σ(x). Although several portions of the algorithm generalize to the reconstruction
of anisotropic diffusion tensors, we restrict ourselves to the scalar case in this paper. We also
describe and investigate the compatibility conditions associated with such a redundant system.

The second objective of the paper is to present a system of elliptic equations for the solutions
ui with constitutive parameters that depend on the measurements Hij but not on the unknown
diffusion coefficient σ. We show that the system is uniquely solvable when a Fredholm alternative
holds. We obtain existence and uniqueness results for the proposed system for all but a discrete
number of values of the dimension n and the coefficient α ∈ R.

Both algorithms require boundary conditions for the elliptic solutions that ensure that n
of the vectors Si form a frame in Rn at each point of the domain of interest. Whereas such
a condition is easy to meet in two space dimensions, in dimensions three and higher, the only
available technique that guarantees such an independence is based on using complex geometrical
optics (CGO) solutions. We generalize here the CGO construction of [5] to the multi-dimensional
setting and for almost all values of α.

The inverse diffusion problems with internal functionals considered here are examples of hy-
brid inverse problem where two imaging modalities are combined to provide both high resolution
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and high contrast. For recent works on the mathematics of hybrid inverse problems and their
many applications in medical imaging, we refer the reader to the articles in the book [19] and
to the recent review paper [3].

The rest of the paper is structured as follows. Section 2 presents the main results of the
paper on the stable reconstruction of σ from available internal functionals. The elimination of
σ from the system of equations for the vectors Si and the corresponding differential calculus is
explained in section 3. The redundant system of equations for the vectors Si is addressed in
section 4 while the system of linear equations for the solutions ui is given in section 5. Finally,
section 6 presents further reconstruction algorithms in the two dimensional case and analyzes
the compatibility conditions satisfied by the redundant data and their potential use.

2 Statement of the main results

Let X be an open convex bounded domain of Rn with n ≥ 2. In the following, we address the
reconstruction of the scalar conductivity (or diffusion) coefficient σ in the equation

∇ · (σ∇ui) = 0 X,

ui = gi ∂X, 1 ≤ i ≤ m,
(1)

where m ≥ n, from knowledge of the interior functionals

Hij(x) = σ(x)2α∇ui(x) · ∇uj(x), 1 ≤ j ≤ i ≤ m, (2)

where α ∈ R is fixed and such that (n− 2)α+ 1 6= 0. The derivation of the internal functionals
(2) in the case α = 1

2 is detailed in [5, 14] as examples of synthesized focusing and in [1] in a
setup of temporal, physical, focusing. The case α = 1 with m = 1 related to MREIT and CDII
(Current Density Impedance Imaging) is addressed in [13, 16, 17, 18].

Following a similar approach to [5, 10], we first perform the change of unknown functions
Si = σα∇ui for every i and define

F (x) := ∇ log σ(x). (3)

We also equip X ⊂ Rn with its Euclidean metric gij = δij in the canonical basis (e1, . . . , en). For
a given vector field V = V iei defined on X, we define the corresponding one-form V [ := V idxi

(i.e., by means of the flat operator). With this notation, we obtain that the vector fields Sj
satisfy the system of equations

∇ · Sj = −(1− α)F · Sj , (4)

dS[j = αF [ ∧ S[j , 1 ≤ j ≤ m, (5)
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where ∧ and d denote the usual exterior product and exterior derivative, respectively. The first
equation stems directly from (1) whereas the second one states that the one-form σ−αS[j = duj

is exact, therefore closed, and hence d(σ−αS[j) = 0. When n = 2, 3, equation (5) is recast as:

n = 2 : [∇, Sj ]− α[F, Sj ] = 0, n = 3 : curl Sj − αF × Sj = 0,

where in dimension n = 2, we define [A,B] := AxBy − AyBx and [∇, A] := ∂xAy − ∂yAx, and
in dimension n = 3, × denotes the standard cross-product. The available information becomes
Hij(x) = Si(x) · Sj(x).

A crucial hypothesis for our reconstruction procedure is that the m gradients have maximal
rank in Rn at every point x ∈ X. This hypothesis can be formalized by the somewhat stronger
statement: there exists a finite open covering O = {Ωk}1≤k≤N of X (i.e. X ⊂ ∪Nk=1Ωk), an
indexing function τ : [1, N ] 3 i 7→ τ(i) = (τ(i)1, . . . , τ(i)n) ∈ [1,m]n and a positive constant c0

such that

min
1≤i≤N

inf
x∈Ωi

det(Sτ(i)1(x), . . . , Sτ(i)n(x)) ≥ c0 > 0. (6)

This assumption is equivalent to imposing the following condition on the data

min
1≤i≤N

inf
x∈Ωi

detHτ(i)(x) ≥ c2
0 > 0, (7)

where Hτ(i) stands for the n×n matrix of elements H
τ(i)
kl = Sτ(i)k ·Sτ(i)l . While one can always

find illuminations such that (6) holds in two dimensions with m = n = 2 and O = {X} (the
most preferrable case) by virtue of [2, Theorem 4], higher dimensions can be dealt with using
complex geometrical optics solutions provided that σ has enough regularity, as the following
lemma shows.

Lemma 2.1. Let n ≥ 3 and σ ∈ H
n
2

+3+ε(X) for some ε > 0 be bounded from below by a positive
constant. Then for n even, there exists a non-empty open set G of illuminations {g1, . . . , gn}
such that for any g ∈ G, the condition (7) holds with O = {X} for some constant c0 > 0.
For n odd, there exists a non-empty set G of illuminations {g1, .., gn+1} such that for any g ∈ G
there exists an open cover of X of the form {Ω2i−1,Ω2i}1≤i≤N and a constant c0 > 0 such that

inf
x∈Ω2i−1

det(S1, . . . , Sn−1, εiSn) ≥ c0 and inf
x∈Ω2i

det(S1, . . . , Sn−1, ε̃iSn+1) ≥ c0, (8)

for 1 ≤ i ≤ N and with εi, ε̃i = ±1.

The first step towards an inversion is to express the source term F in terms of a local frame:

Lemma 2.2. Let Ω ⊂ X open where, up to renumbering solutions, we have

inf
x∈Ω

det(S(x)) ≥ c0 > 0, S(x) := (S1(x)| . . . |Sn(x)).
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Then at every point x ∈ Ω and denoting H(x) := {Si(x) ·Sj(x)}1≤i,j≤n, D(x) =
√

detH(x), the
vector field F (x) = ∇ log σ(x) is given by the following formulas

F =
cF
D

n∑
i,j=1

(∇(DH ij) · Si)Sj = cF

(
∇ logD +

n∑
i,j=1

(∇H ij · Si)Sj
)
,

cF := ((n− 2)α+ 1)−1.

(9)

where H ij denotes the element (i, j) of the matrix H−1.

Formula (9) was first proved in [5] in the two- and three-dimensional cases with α = 1
2 and

is here proved for general n and α ∈ R such that (n− 2)α+ 1 6= 0. This formula gives us a way
to reconstruct F locally from n linearly independent solutions. Assuming condition (7), one can
then reconstruct F globally over X.

From lemma 2.2, one can follow two directions to reconstruct the conductivity, which we
now describe in more detail in the next two paragraphs.

ODE-based reconstruction procedure. The first approach consists in plugging equation
(9) back into the system (4)-(5) and obtain a closed system for the vectors Sj . We then show that
the resulting system leads to a gradient system, which can then be solved for the vectors Sj by
ODE integration. Once the vectors Sj are reconstructed, one recovers σ from the knowledge of
its value at a given point and the fact that ∇ log σ is now known by equation (9). This approach
is a generalization of the results of [5] to higher-dimensional settings and general α ∈ R such
that (n− 2)α+ 1 6= 0, and leads to well-posed reconstructions as stated in the following:

Theorem 2.3 (Global uniqueness and stability, ODE-based reconstruction procedure). Let
X ⊂ Rn, n ≥ 2 be an open convex bounded domain, and let two sets of m ≥ n solutions of (1)
generate measurements (H,H ′) whose components belong to W 1,∞(X), and who jointly satisfy
condition (7) with the same triple (O, τ, c0). Let also x0 ∈ Ωi0 ⊂ X and σ(x0), σ′(x0) and
{Sτ(i0)i(x0), S′τ(i0)i

(x0)}1≤i≤n be given. Let σ and σ′ be the conductivities corresponding to the

measurements H and H ′, respectively. Then we have the stability estimate:

‖ log σ − log σ′‖W 1,∞(X) ≤ C
(
ε0 + ‖H −H ′‖W 1,∞(X)

)
, (10)

where ε0 is the error committed at the point x0:

ε0 := | log σ(x0)− log σ′(x0)|+
n∑
i=1

‖Sτ(i0)i(x0)− S′τ(i0)i
(x0)‖.

The solution for the vectors Si and then for log σ requires the solution of full gradient equa-
tions of the form ∇u = f(u), where u stands for either unknown. These overdetermined PDEs
require compatibility conditions on f if we wish to ensure that their solution does not depend
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on the path of integration. Theorem 2.3 shows that the reconstruction is unique and stable
with respect to the data once a fixed family of integration curves is chosen. The compatibility
conditions addressed in section 6 are shown to depend quadratically on the unknown frame. It
is therefore difficult to enforce them while solving for the frame S. Nonetheless, depending on
the value of α, they may lead to algebraic (i.e. pointwise) reconstructions of all or part of the
unknown frame, and may also provide further conditions on the data Hij . Such analyses are
carried out in section 6.

Remark 2.4. Solving a system of equations for the unknown Si may not be efficient numerically.
Let S be the matrix whose columns are the n linearly independent vectors Sj at a given x. Then
STS = H is known. By the Gram-Schmidt (GS) orthonormalization procedure or by setting

R = H−
1
2S, we can write an equation for an oriented orthonormal frame R; see section 4.3

below. This approach requires that we reconstruct 1
2n(n − 1) = dimSOn(R) scalar functions

instead of the n×m components of the vector fields {Sj}. The only additional constraint is that
the transition matrix from S to R is stably determined by the data H as explained in [5]. There,
it is proved that the GS procedure satisfies such a stability property for n = 2, 3.

Remark 2.5. The case α = 0, corresponding to information of the form Hij(x) = ∇ui(x) ·
∇uj(x) = Si(x) ·Sj(x) simplifies in the sense that the elimination of F is not necessary. Indeed,
we show in the next section that knowledge of Si · Sj and the constraints dS[j = 0 for 1 ≤ j ≤ m
uniquely determine the vectors Sj provided they are known at one point x0. Once ∇ui is known,
the reconstruction of σ may proceed from using (9). Note that, alternatively, the equation (1)
may be seen as a transport equation for σ1−α when α 6= 1 once the vector field σα∇u is known.
The stability properties of such a reconstruction are established in [6, 7].

Elliptic-based reconstruction procedure. The second approach is novel and consists in
injecting equation (9) back into the initial conductivity equations and obtain a strongly coupled
elliptic system of the form

∆ui + cFWij · ∇uj = 0, ui|∂X = gi, 1 ≤ i ≤ m, (11)

where the vector fields Wij are known from the data and where the illuminations gi were pre-
scribed in the first place. Here and below, we use the Einstein convention of summation over
repeated indices. The vector fields Wij satisfy stability conditions of the form

‖W‖∞ := max
1≤i,j≤m

‖Wij‖L∞(X) ≤ CW ‖H‖W 1,∞(X), (12)

‖W −W ′‖∞ := max
1≤i,j≤m

‖Wij −W ′ij‖L∞(X) ≤ C ′W ‖H −H ′‖W 1,∞(X), (13)

whenever two data sets H and H ′ jointly satisfy condition (7) with the same triple (O, τ, c0).
After proving solvability of this system, one is able to reconstruct the functions ui and then to
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reconstruct σ as described below. Uniqueness and stability of the solution to (11) with respect
to the drift fields Wij relies on the fact that −c−1

F = −((n− 2)α+ 1) is not an eigenvalue of the
operator PW : H 7→ H defined by

PW : v 7→ PWv = [PWv]iei = ∆−1
D (Wij · ∇vj) ei, (14)

where ∆−1
D denotes the inverse of the Dirichlet Laplacian on X, and where we have defined the

space H := [H1
0 ]m, which makes (H, ‖ · ‖H) Hilbert once equipped with the norm

‖v‖2H =
m∑
i=1

‖vi‖2H1
0

=
m∑
i=1

∫
X
|∇vi|2 dx, v = (v1, . . . , vm). (15)

When the coefficients Wij are bounded, we show that the operator PW is compact and its
operator norm satisfies the estimate (see lemma 5.1) ‖PW ‖ ≤

√
m‖∆−1

D ‖‖W‖∞ where ‖∆−1
D ‖

denotes the operator norm of ∆−1
D : L2(X) 7→ H1

0 (X). As a consequence, the system (11)
satisfies a Fredholm alternative which will provide uniqueness and stability as stated in the
next proposition, for all α ∈ R when n = 2, and for all α but possibly a discrete set (possibly

converging to −(n− 2)−1) in the interval
[
−‖PW ‖−1

n−2 , ‖PW ‖−1
n−2

]
whenever n ≥ 3.

Proposition 2.6 (Stability of the strongly coupled elliptic system). Let {Wij ,W
′
ij}1≤i,j≤m be-

long to L∞(X) and such that −c−1
F is an eigenvalue of neither PW nor PW ′. Let u,u′ be the

unique solutions to (11) with same illumination g and respective drift terms W , W ′. Then we
have that u− u′ ∈ H and satisfies the stability estimate

‖u− u′‖H ≤ C‖W −W ′‖∞. (16)

Remark 2.7. In the case n = 2 or (α = 0 with m = n), we can recast (11) as a coercive
system in divergence form, the injectivity of which follows immediately. These cases correspond
to cF = 1.

Once the solutions ui are reconstructed, one may reconstruct σ using a formula of the form
σ = H11/|∇u1|2. However, such a formula may not offer the best stability estimates. Another
reconstruction strategy is deduced from (9), which can be recast locally as

∇(σ−2α) = −2αcF
D

n∑
i,j=1

(∇(DH ij) · ∇ui)∇uj , α 6= 0, (n− 2)α 6= −1,

∇ log σ =
1

D

n∑
i,j=1

(∇(DH ij) · ∇ui)∇uj , α = 0,

(17)

where ∇u1, . . . ,∇un denote the n linearly independent gradients. As in the ODE-based re-
construction procedure, we can devise an ODE-based algorithm to reconstruct σ locally from
formula (17). We then arrive at the following stability result.
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Theorem 2.8. Let the conditions of proposition 2.6 be satisfied. Then the corresponding σ, σ′

satisfy the estimate

‖σ−2α − σ′−2α‖H1(X) ≤ C‖H −H ′‖W 1,∞(X), α 6= 0, (n− 2)α 6= −1,

‖ log σ − log σ′‖H1(X) ≤ C‖H −H ′‖W 1,∞(X), α = 0.
(18)

Note that a necessary and sufficient condition for the unique solvability of (17) on a simply
connected domain is that the exterior derivative of the right-hand side (seen as a one-form)
vanish by an application of the Poincaré lemma. The compatibility condition that arises here
takes the form of a quadratic equation in the components of ∇ui that is difficult to ensure as it
depends on the unknowns.

3 Geometric setting and proofs of lemmas 2.2 and 2.1

3.1 Differential geometric notation and vector calculus identities

Let us denote the Euclidean orthonormal frame ei = ∂xi and ei = dxi. For 0 ≤ k ≤ n, Λk denotes
the space of k− forms. We recall the definition of the Hodge star operator ? : Λk 7→ Λn−k for
0 ≤ k ≤ n, such that for any elementary k-form dxI = dxi1 ∧ · · · ∧ dxik , we have

?dxI = σdxJ , where σ = sign((1 . . . n) 7→ (I, J)). (19)

We recall the following useful identities, see e.g., [22]:

?? = (−1)k(n−k) on Λk, ?(u[ ∧ ?v[) = u · v, ?d ? u[ = ∇ · u, u, v ∈ Λ1.

We now prove lemma 2.2, which is the cornerstone of our explicit reconstructions.

3.2 Proof of lemma 2.2

Because S1(x), . . . , Sn(x) is a basis of Rn at any point x ∈ X, a vector V can be represented in
this basis by the following representation (x is implicit here)

V = H ij(V · Si)Sj . (20)

For j = 1, . . . , n, let us introduce the following 1-forms:

X[
j := (−1)n−1σj ∗ (S[i1 ∧ · · · ∧ S

[
in−1

), (i1, . . . , in−1) = (1, . . . , ĵ, . . . , n), (21)

where the hat indicates an omission and σj = (−1)j−1 is the signature of the permutation
(1, 2 . . . , n) 7→ (j, 1, . . . , j−1, j+1, . . . , n). At each x ∈ Ω, the vector Xj(x) obtained from X[

j(x)
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by “raising an index” can also be seen as the unique vector obtained by the Riesz representation
lemma that corresponds to the linear form

Dĵ : Rn 3 V 7→ Dĵ(V ) = det(S1(x), . . . , Sj−1(x), V, Sj+1(x), . . . Sn(x)) = Xj(x) · V.

We now show that the vector fields Xj satisfy a simple divergence equation. We compute

∇ ·Xj = ?d ? X[
j = σj ? d(S[i1 ∧ · · · ∧ S

[
in−1

) = σj ?
n−1∑
k=1

(−1)kS[i1 ∧ · · · ∧ dS
[
ik
∧ · · · ∧ S[in−1

= σj ?

n−1∑
k=1

(−1)kS[i1 ∧ · · · ∧ α(F [ ∧ S[ik) ∧ · · · ∧ S[in−1
= (n− 1)α ? (F [ ∧ ?X[

j),

and using the identity ?(u[ ∧ ?v[) = u · v, we deduce

∇ ·Xj = (n− 1)αF ·Xj , j = 1 . . . n. (22)

The decomposition of Xj in the basis S1, . . . , Sn may be obtained by computing its dotproducts
with S1, . . . , Sn. Indeed, for k 6= j, there is an l such that il = k and we have

Xj · Sk = det(S1, . . . , Sj−1, Sk, Sj+1, . . . , Sn) = 0,

by repetition of the term Sk in the determinant. Now if k = j, we have

Xj · Sj = det(S1, . . . , Sn) = detS = D.

Using formula (20), we deduce that Xj admits the expression

Xj = DH ijSi.

Plugging this expression into equation (22), and using ∇ · (ϕV ) = ∇ϕ · V + ϕ∇ · V , we obtain

∇(DH ij) · Si +DH ij∇ · Si = (n− 1)αF · (DH ijSi)

⇔ ∇(DH ij) · Si −DH ij(1− α)F · Si = (n− 1)αDH ijF · Si
⇔ ∇(DH ij) · Si = c−1

F DH ijF · Si.

Finally using the representation (20) for F itself yields

F = (H ijF · Si)Sj =
cF
D

(∇(DH ij) · Si)Sj . (23)

We can also recast the previous expression as follows

F = cF
[
H ij(∇ logD · Si)Sj + ((∇H ij) · Si)Sj

]
= cF

[
∇ logD + ((∇H ij) · Si)Sj

]
, (24)

and the proof is complete.
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3.3 Proof of lemma 2.1

We give a proof of lemma 2.1, which guarantees the existence of illuminations that ensure con-
dition (7) and thus justifies the two global reconstruction approaches. The CGO constructions,
introduced in [7] in this context, generalize those defined in [5].

Proof of lemma 2.1. Since σ is bounded from above and below by positive constants, it suffices
to study the case α = 1

2 since we have for any α1, α2 ∈ R,

det(σα1∇u1, . . . , σ
α1∇un) = σn(α1−α2) det(σα2∇u1, . . . , σ

α2∇un).

Consider the problem ∇·σ(x)∇u = 0 on Rn with σ(x) extended in a continuous manner outside
of X and such that σ equals 1 outside of a large ball. The construction requires sufficient

smoothness of σ in order to be valid. Let q(x) = −∆
√
σ

σ on Rn. We assume that q ∈ H
n
2

+1+ε(Rn),

which holds if σ − 1 ∈ H
n
2

+3+ε(Rn) for some ε > 0, i.e., the original σ|X ∈ H
n
2

+3+ε(X). Note

that by Sobolev imbedding, σ is of class C3(X) while q is of class C1(X). With the above
hypotheses, we can apply [7, Corollary 3.2] which states the following.

Let v =
√
σu so that ∆v + qv = 0 on Rn. Let ρ ∈ Cn be of the form ρ = ρ(k + ik⊥) with

k,k⊥ ∈ Sn−1, k ·k⊥ = 0, and ρ = |ρ|/
√

2 > 0. Thus, ρ satisfies ρ ·ρ = 0 and eρ·x is a harmonic
complex plane wave (hence the name of complex geometrical optics solutions). Now, it is shown
in [7], following works in [8, 21], that

vρ =
√
σuρ = eρ·x(1 + ψρ), ρψρ|X = O(1) in C1(X),

with (∆ + q)vρ = 0 and hence ∇ · σ∇uρ = 0 in Rn. We have used again the Sobolev imbedding
stating that functions in H

n
2

+k+ε(Y ) are of class Ck(Y ) for a bounded domain Y . Taking
gradients of the previous equation and rearranging terms, we obtain that

√
σ∇uρ = eρ·x(ρ+ϕρ), with ϕρ := ∇ψρ + ψρρ− (1 + ψρ)∇

√
σ.

Because ∇
√
σ is bounded and ρψρ|X = O(1) in C1(X), the Cn-valued function ϕρ satisfies

supX |ϕρ| ≤ C independent of ρ. Moreover, the constant C is in fact independent of σ provided

that the norm of the latter is bounded by a uniform constant in H
n
2

+3+ε(X).
Both the real and imaginary parts of uρ, denoted u<ρ and u=ρ , count as solutions of the free-

space conductivity equation, thus
√
σ∇u<ρ and

√
σ∇u=ρ can serve as vectors Si. More precisely,

we have

√
σ∇u<ρ = ρeρk·x

(
(k + ρ−1ϕ<ρ ) cos(ρk⊥ · x)− (k⊥ + ρ−1ϕ=ρ ) sin(ρk⊥ · x)

)
,

√
σ∇u=ρ = ρeρk·x

(
(k⊥ + ρ−1ϕ=ρ ) cos(ρk⊥ · x) + (k + ρ−1ϕ<ρ ) sin(ρk⊥ · x)

)
.

(25)
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Case n even: Set n = 2p, define ρl = ρ(e2l + ie2l−1) for 1 ≤ l ≤ p, and construct

S2l−1 =
√
σ∇u<ρl and S2l =

√
σ∇u=ρl , 1 ≤ l ≤ p.

Using (25), we obtain that

det(S1, . . . , Sn) = ρne2ρ
∑p
l=1 x2l(1 + f(x)),

where limρ→∞ supX |f | = 0. Letting ρ so large that supX |f | ≤
1
2 and denoting

γ0 := minx∈X(ρne2ρ
∑p
l=1 x2l) > 0, we have infx∈X det(S1, . . . , Sn) ≥ γ0

2 > 0. We conclude after
the next paragraph.

Case n odd: Set n = 2p−1, define ρl = ρ(e2l+ ie2l−1) for 1 ≤ l ≤ p−1, and ρp = ρ(en+ ie1)
and construct

S2l−1 =
√
σ∇u<ρl and S2l =

√
σ∇u=ρl , 1 ≤ l ≤ p.

Using (25), we obtain that

det(S1, . . . , Sn−1, Sn) = ρneρ(xn+2
∑p−1
l=1 x2l) (− cos(ρx1) + f1(x)) ,

det(S1, . . . , Sn−1, Sn+1) = ρneρ(xn+2
∑p−1
l=1 x2l) (− sin(ρx1) + f2(x)) ,

where limρ→∞ supX |f1| = limρ→∞ supX |f2| = 0. Letting ρ so large that supX(|f1|, |f2|) ≤ 1
4

and denoting γ1 := minx∈X(ρneρ(xn+2
∑p−1
l=1 x2l)) > 0, we have that | det(S1, . . . , Sn−1, Sn)| ≥ γ1

4
on sets of the form X ∩ {ρx1 ∈]−π3 ,

π
3 [+mπ} and |det(S1, . . . , Sn−1, Sn+1)| ≥ γ1

4 on sets of the
form X ∩ {ρx1 ∈]π6 ,

5π
6 [+mπ}, where m is a signed integer. Since the previous sets are open

and a finite number of them covers X (because X is bounded and ρ is finite), we therefore have
fulfilled the desired requirements of the construction. Upon changing the sign of Sn or Sn+1 on
each of these sets if necessary, we can assume that the determinants are all positive.

Conclusion: In each of the previous cases, let {gl}1≤l≤m be the traces of the solutions de-
fined above with m = 2bn+1

2 c. These illuminations generate solutions that satisfy the desired
properties of maximal rank and positive determinants. By continuity arguments, any bound-
ary conditions g̃l in an open set sufficiently close to gl will ensure that the maximum of the
determinants stay bounded from below by c0 > 0. This concludes the proof of the lemma.

4 The ODE-based method

In this section, we extend the results presented in [5] to general dimension and for a more general
class of measurements (described by the coefficient α). We first need to introduce standard
geometric notation, without which the derivations become quickly intractable.
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4.1 Definitions, notation and identities

We work on a convex set Ω ⊂ Rn with the Euclidean metric g(X,Y ) ≡ X · Y = δijX
iY j on

Rn. Following [15], we denote by ∇ the Euclidean connection, i.e. the unique connection that
is torsion-free, and compatible with the Euclidean metric in the sense that

∇X(Y · Z) = (∇XY ) · Z + Y · (∇XZ),

for smooth vector fields X,Y, Z. On zero- and one-forms, this connection takes the expression:

∇Xf = X · ∇f = Xi∂if, and ∇XY = (X · ∇Y j)ej = Xi(∂iY
j)ej ,

for given vector fields X = Xiei and Y = Y iei. An important identity for the sequel is the
following characterization of the exterior derivative of a one-form ω

dω(X,Y ) = ∇X(ω(Y ))−∇Y (ω(X))− ω([X,Y ]), (26)

or equivalently in the Euclidean metric, writing ω = Z[ for some vector field Z,

Z · [X,Y ] = ∇X(Z · Y )−∇Y (Z ·X)− dZ[(X,Y ), (27)

where the Lie bracket (commutator) of X and Y coincides with (and thus may be “defined”
here as) [X,Y ] = ∇XY −∇YX by virtue of the torsion-free property.

A frame refers to an oriented family E = (E1, . . . , En) of n vector fields over Ω such that
for every x ∈ Ω, (E1(x), . . . En(x)) is a basis of TxΩ ≡ Rn. For a given frame E, we define the
Christoffel symbols (of the second kind) with respect to this frame, by the relations

∇EiEj = ΓkijEk, i.e. Γqij = gpq∇EiEj · Ep, gij = Ei · Ej , gpq = (g−1)pq. (28)

The following very useful identity allows us to compute the Christoffel symbols from inner
products and Lie brackets of a given frame (see e.g. [15, Eq. 5.1 p. 69]):

2(∇XY ) · Z = ∇X(Y · Z) +∇Y (Z ·X)−∇Z(X · Y )− Y · [X,Z]− Z · [Y,X] +X · [Z, Y ], (29)

where X,Y, Z are smooth vector fields.
For a vector X = Xjej , we want to form the matrix of partial derivatives (∂jX

i)i,j . Geo-
metrically, gradients generalize to tensors via the total covariant derivative, which maps a vector
field X to a tensor of type (1, 1) defined by

∇X(ω, Y ) = ω(∇YX). (30)

In a given frame E, we may express ∇Ei in the basis {Ej ⊗E[k}nj,k=1 of such tensors by writing

∇Ei = aijkEj ⊗ E[k and identifying the coefficients aijk by writing

∇Ei(E[p, Eq) = E[p(∇EqEi) = ∇EqEi · Ep = gprΓ
r
qi,

12



and also

∇Ei(E[p, Eq) = aijkEj ⊗ E[k(E[p, Eq) = aijkgjpgkq.

Equating the two, we obtain the representation

∇Ei = gqkΓjqiEj ⊗ E
[
k = gqkgjp(∇EqEi · Ep)Ej ⊗ E[k. (31)

The theory of the following sections proves that all partial derivatives of a frame (given in
(31)) are uniquely determined by inner products gij and by Lie brackets, as (29) indicates, or
equivalently by exterior derivatives, as (27) expresses. These derivations will be carried out first
for the S frame and second for the R frame with values in the space of rotations SO(n,R).

4.2 The S frame

We now study the properties of the S frame. S is a frame provided that the determinant
condition infx∈Ω detS ≥ c0 > 0 holds. Our objective in this section is to find an expression
for ∇Si that allows us to solve for Si by the method of characteristics. We have seen in the
preceding section that this involved calculating the Lie brackets (commutators) of the vectors
composing the frame. For 1 ≤ i < j ≤ n, we have

[Si, Sj ] = Hkl([Si, Sj ] · Sk)Sl. (32)

Now using (27) we write

Sk · [Si, Sj ] = ∇Si(Sk · Sj)−∇Sj (Sk · Si)− dS[k(Si, Sj)
= Si · ∇Hkj − Sj · ∇Hki − αF [ ∧ S[k(Si, Sj)
= Si · ∇Hkj − Sj · ∇Hki + α(−HkjF · Si +HkiF · Sj).

Plugging this into (32) and using that HklHkj = δlj , we obtain the Lie brackets for the Si’s:

[Si, Sj ] = Hkl[∇Hjk · Si −∇Hik · Sj ]Sl + α((F · Sj)Si − (F · Si)Sj), 1 ≤ i < j ≤ n. (33)

Returning to the computation of ∇Si using (31), we combine (33) with (29) to arrive at

2(∇SqSi) · Sp = ∇SqHip +∇SiHpq −∇SpHqi − Si · [Sq, Sp]− Sp · [Si, Sq] + Sq · [Sp, Si]
= ∇Hiq · Sp +∇Hip · Sq −∇Hpq · Si + 2α(Hpq(F · Si)−Hqi(F · Sp)).

Plugging this expression into (31) (expressed in the S frame), and using HijH
jk = δik, we obtain

2∇Si = 2HqkHjp(∇SqSi · Sp)Sj ⊗ S[k
= HqkHjp (∇Hiq · Sp +∇Hip · Sq −∇Hpq · Si + 2α(Hpq(F · Si)−Hqi(F · Sp)))Sj ⊗ S[k
= (HjpUik · Sp +HqkUij · Sq +∇Hjk · Si + 2α(Hjk(F · Si)−Hjpδik(F · Sp)))Sj ⊗ S[k,
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where we have used ∇Hjk = −Hjp(∇Hpq)H
qk and have defined

Ujk := (∇Hjp)H
pk = −Hjp∇Hpk, 1 ≤ j, k ≤ n. (34)

Using formulas HjkSj ⊗ S[k = In := ei ⊗ ei and Hkl(V · Sk)Sl = V for any smooth vector
field V , we obtain for 1 ≤ i ≤ n

∇Si =
1

2

(
Uik ⊗ S[k + Sk ⊗ U [ik + (∇Hjk · Si)Sj ⊗ S[k

)
+ α(F · Si)In − αF ⊗ S[i . (35)

Using (23), we observe that ∇Si is equal to a polynomial of degree at most three in the frame S
with coefficients involving the known inner products Hij . For each 1 ≤ i, k ≤ n, ∂kSi is nothing
but ∇ekSi = ∇Si(·, ek), which can be obtained from (35). Denoting S := (ST1 , . . . , S

T
n )T , we are

then able to construct the system of equations

∂kS =
∑
|β|≤3

QkβS
β, Sβ =

n2∏
i=1

Sβii , 1 ≤ k ≤ n, (36)

where Qkβ depends only on the data and β is an n2-index. This redundant system can then
be integrated along any curve (where it becomes a system of ordinary differential equations
with Lipschitz right-hand sides ensuring uniqueness of the solution) in order to solve for the
matrix-valued function S.

4.3 The orthonormal R frame

The above system (36) involves a priori n2 unknowns since the matrix S does not necessarily
have any useful symmetries. However, we know the inner products H = STS, i.e., a matrix
of dimension 1

2n(n + 1). We therefore hope to be able to find a closed-form system involving
1
2n(n− 1) dimensions. This is the dimension of the R frame of rotations.

We now provide the details of remark 2.4. From the frame S, we build an oriented orthonor-
mal frame R = (R1| . . . |Rn) (or equivalently, an SOn(R)-valued function) from a matrix-valued
function T (x) = {tij(x)}1≤i,j≤n that satisfies the relations T TT = H−1 and detT > 0 at every
x ∈ Ω, as well as a stability property of the form

‖T − T ′‖W 1,∞(X) ≤ CT ‖H −H ′‖W 1,∞(X), (37)

where CT > 0 depends only on the way we construct T from H. T can either be constructed by
the GS procedure or by setting T = H−

1
2 , the positive square root of H−1. In the GS case, the

stability statement (37) can be obtained as a straightforward generalization of the case n = 2, 3
proved in [5].

14



The function R := ST T satisfies everywhere RTR = In and detR = 1, hence R is an
SOn(R)-valued function. The column vectors of S and R transform according to:

Ri = tijSj , Si = tijRj , i = 1 . . . n. (38)

We also define for 1 ≤ i, k ≤ n

Vik := (∇tij)tjk, V s
ik :=

1

2
(Vik + Vki) and V a

ik :=
1

2
(Vik − Vki). (39)

We are brief on the derivation of the gradient system for R as it is very similar to that of the S
frame. The system of equations (4)-(5) together with the transformation rules (38) allow us to
derive the following system of equations for the R frame:

∇ ·Ri = Vik ·Rk − (1− α)F ·Ri, (40)

dR[i = V [
ik ∧R[k + αF [ ∧R[i , 1 ≤ i ≤ n. (41)

From this system, we express F in the R frame as

F = cF (∇ logD + ((Vij + Vji) ·Ri)Rj) . (42)

Equation (42) can also be derived directly from (9) and the transformation rules (38). Then,
using equation (41) and formula (27), the Lie brackets of the vectors Ri take the form

[Ri, Rj ] = (−Vpj ·Ri + Vpi ·Rj)Rp + α((F ·Rj)Ri − (F ·Ri)Rj), 1 ≤ i < j ≤ n, (43)

from which we deduce the Christoffel symbols relative to the R frame:

Γkij = V a
jk ·Ri + V s

ik ·Rj − V s
ij ·Rk + α(F ·Rj)δik − α(F ·Rk)δij . (44)

Finally, in the orthonormal case, the expression of the gradient reduces to ∇Ri = ΓjkiRj ⊗ R
[
k,

from which we deduce that

∇Ri = Rk ⊗ V a[
ik − V s

ik ⊗R[k + (V s
jk ·Ri)Rj ⊗R[k + α(F ·Ri)In − αF ⊗R[i . (45)

As for the S frame, the R.H.S. of (45) depends polynomially on R and on the data. This system
can thus be solved for the vectors Ri via ODE integration along any curve in a connected domain
and provided that we know the R frame at one point. In practice, this system is less expensive
to integrate than (36) since the R frame can be locally parameterized with 1

2n(n − 1) scalar
functions (such as the Euler angles) whereas the S frame requires n2 scalar functions.
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4.4 Global reconstruction algorithm

The proof of the stability theorem 2.3 can be found in [5] in dimension n = 3 with α = 1
2

(although the proof would be identical in arbitrary dimension). In that paper, the theorem is
proved using the system for the rotation matrix R and thus requires the extra stability condition
(37). This condition is necessary only if we reconstruct σ via the R frame. The same stability
result can be obtained without this requirement if we reconstruct σ via the S frame directly. In
the latter setting, the proof is quite similar to the one in [5] with the further simplification that
we do not need to change bases when switching subdomain Ωi. The system of ODEs that one
must solve based on the gradient system (35) is well-posed since the function S satisfies a priori
the uniform bound

|S(x)|2 =
m∑
i=1

Hii ≤ m‖H‖∞,

and the right-hand side of (36) is Lipschitz in S over the set {S : X 7→ Rnm, ‖S‖∞ ≤
√
m‖H‖∞}

as a polynomial of the components of S, and using the fact that the polynomial Qkβ are bounded;
see [5] for additional details, which we do not reproduce here.

5 The elliptic method

5.1 Derivation of system (11) and equivalent formulations

5.1.1 The case m = n

In this case, condition (7) is satisfied with the partition O = {X}, N = 1. Equation (23) can be
rewritten as

∇ log σ =
cF
D
σ2α(∇(DHkl) · ∇uk)∇ul. (46)

Rewriting the conductivity equation (1) as

∆ui +∇ log σ · ∇ui = 0,

and plugging (46) into it yields the coupled elliptic system of equations

0 = ∆ui +
cF
D

(∇(DHkl) · ∇uk)σ2α∇ul · ∇ui = ∆ui + cFWik · ∇uk, (47)

where we have have defined

Wik :=
Hil

D
∇(DH lk) = ∇ logDδik +Hil∇Hkl, 1 ≤ i, k ≤ n. (48)
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From the last form of Wik, we derive (12) and (13) since the denominators only involve D
which is bounded away from zero and the rest is polynomial in the Hij ’s and their derivatives.
Multiplying (47) by DHpi and writing it in divergence form, one obtain the following equivalent
formulation to (47) in variational form:

−∇ · (DHpi∇ui) + (1− cF )∇(DHpi) · ∇ui = 0, 1 ≤ p ≤ n. (49)

5.1.2 The case m > n

In the case where we have m > n solutions, we can still define ∇ log σ over the entire domain
X using a partition of unity that is subordinate to the open cover O, say {ϕi}Ni=1. Then we can
define ∇ log σ globally over X by writing

∇ log σ =

N∑
i=1

∇ log σ|Ωiϕi,

where the restrictions are constructed from the n solutions of positive determinant on each Ωi.
Each of these restrictions can still be written in the form

∇ log σ|Ωi = cFσ
2α

m∑
j,k=1

(Fjk|Ωi · ∇uj)∇uk, where

Fjk|Ωi =

{
0 if j /∈ τ(i) or k /∈ τ(i)

1
Dτ(i)
∇
(
Dτ(i)H

τ(i),−1
ab

)
if (j, k) = (τ(i)a, τ(i)b),

with Dτ(i) =
√

detHτ(i). Thus we can patch these formulas together into a globally defined

∇ log σ := cFσ
2α

m∑
j,k=1

(Fjk · ∇uj)∇uk, where Fjk =
N∑
i=1

Fjk|Ωiϕi.

Plugging this expression into the conductivity equation yields the coupled elliptic system

0 = ∆ui +∇ log σ · ∇ui = ∆ui + cFHikFjk · ∇uj .
ui|∂X = gi, 1 ≤ i ≤ m,

(50)

and one arrives at a system of the form (11) by setting Wij := HikFjk for every 1 ≤ i, j ≤ m.
In this case, the stability inequalities (12) and (13) can be derived using the fact that

‖W‖L∞(X) ≤ max
1≤i≤N

‖W‖L∞(Ωi),

and noticing that on each Ωi, Wij is either zero or locally defined by (48) (and weighed by
ϕi) whose expression has been proved to be stable. A similar argument holds for proving (13)
thanks to the fact that the partition of unity {ϕi} is the same for two data sets H,H ′ that
jointly satisfy (7) with the same triple (O, τ, c0).
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5.2 Uniqueness and stability results

5.2.1 Proofs of proposition 2.6 and theorem 2.8

Let us assume a system of the form (50), where the vector fields Wij belong to L∞(X). Assuming

the illumination g to be in [H
3
2 (∂X)]m, we use a lifting operator to define functions {fi}mi=1 ∈

[H2(X)]m of traces g at ∂X. Defining the unknown vi = ui− fi, we are now left with analyzing
the solvability of

∆vi + cFWij · ∇vj = hi, hi := ∆fi + cFWij · ∇fj
vi|∂X = 0, 1 ≤ i ≤ m,

(51)

as well as its stability with respect to the vector fields Wij .
As described in section 2, we apply the inverse of the Dirichlet Laplacian to (51) and obtain

the system of integral equations

vi + cF∆−1
D (Wij · ∇vj) = ∆−1

D hi, 1 ≤ i ≤ m,

which can be recast in vector notation as

(I + cFPW )v = f , PWv := [PWv]iei = ∆−1
D (Wij · ∇vj)ei, f := ∆−1

D hi ei. (52)

We now have the following:

Lemma 5.1. Assuming that the vector fields Wij ∈ L∞(X), the operator PW : H 7→ H defined
in (52) is compact, and its norm satisfies

‖PW ‖ ≤
√
m‖∆−1

D ‖‖W‖∞, ‖W‖∞ = max
1≤i,j≤m

‖Wij‖∞. (53)

Proof. As can be seen in [11] for instance, the operator ∆−1
D : L2(X) 7→ H2(X) is bounded.

Therefore, by the Rellich compactness theorem, the operator ∆−1
D : L2(X) 7→ H1

0 (X) is compact
and of norm denoted by ‖∆−1

D ‖. Now P is also compact since each of its components is the
composition of the continuous operator H 3 v 7→Wij · ∇vj ∈ L2(X) with the compact operator
∆−1
D : L2(X) 7→ H1

0 (X). Moreover, for v ∈ H and every 1 ≤ i, j ≤ m, we have the obvious
bounds

‖∆−1
D (Wij · ∇vj)‖H1

0
≤ ‖∆−1

D ‖‖Wij · ∇vj‖L2 ≤ ‖∆−1
D ‖‖W‖∞‖vj‖H1

0
,

and thus

‖[PWv]i‖2H1
0
≤ ‖∆−1

D ‖
2‖W‖2∞‖v‖2H.

Summing over i proves (53). The proof is complete.
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As a consequence of lemma 5.1 and by virtue of standard compact operator theory (e.g. [11,
Theorem 6 p 643]), we have the following facts:

• 0 is eigenvalue of PW , which corresponds to the case (n− 2)α = −1, a value for α that we
exclude from our analysis,

• the remaining spectrum of PW is point spectrum and consists of at most a discrete sequence
of values that is either finite or converges to zero.

Finally, the operator I + cFPW ∈ L(H) satisfies a Fredholm alternative. Therefore it suffices
that −c−1

F /∈ sp(PW ) in order to obtain uniqueness and stability of the solution of (52) and
therefore of the solution of (11) as well. The proof of proposition 2.6 makes these statements
more precise.

Proof of proposition 2.6. Let W,W ′ have their coefficients in L∞(X) and such that −c−1
F /∈

sp(PW ) ∪ sp(PW ′), and let v,v′ ∈ H solve the system (51) with respective drift terms W , W ′

and same illumination g. Applying the inverse Dirichlet Laplacian to both systems, we obtain
the systems

(I + cFPW )v = f , and (I + cFPW ′)v
′ = f .

Taking the difference of both systems, we can rewrite the resulting system as

(I + cFPW )(v − v′) = −cFPW−W ′v
′.

Thus applying lemma 5.1 to the operator PW−W ′ and using the fact that I+cFPW and I+cFPW ′

are invertible with continuous inverses in L(H) by virtue of the Fredholm alternative, we obtain

‖v − v′‖H ≤ ‖(I + cFPW )−1‖
√
m‖W −W ′‖∞‖∆−1

D ‖‖v
′‖H

≤ ‖(I + cFPW )−1‖
√
m‖W −W ′‖∞‖∆−1

D ‖‖(I + cFPW ′)
−1‖‖f‖H,

this concludes the proof.

We now conclude with the proof of theorem 2.8.

Proof of theorem 2.8. We focus on the case α 6= 0 and (n − 2)α 6= −1. The proof for α = 0 is
identical up to small changes in notation. Let H,H ′ have their components in W 1,∞(X) and
jointly satisfy (7) with the same triple (O, τ, c0). Then the families of vector fields W and W ′

have their coefficients in L∞(X) and we further assume that −c−1
F /∈ sp(PW ) ∪ sp(PW ′). Let

v,v′ ∈ H solve the system (51) with respective drift terms W and W ′ and same illumination
g, and let σ, σ′ be the corresponding conductivities. Without loss of generality, we work on one

19



of the open sets Ωi ∈ O and renumber the n solutions whose gradients are linearly independent
from 1 to n. The result will then hold provided that we have X ⊂ ∪Ni=1Ωi and thus

‖σ−2α − σ′−2α‖2H1(X) ≤
N∑
i=1

‖σ−2α − σ′−2α‖2H1(Ωi)
.

For a given Ωi ∈ O, and defining Vij := −2α cFD∇(DH ij), we write, using equality (17)

∇(σ−2α − σ′−2α) = ((Vij − V ′ij) · ∇ui)∇uj + (V ′ij · ∇(ui − u′i))∇uj + (V ′ij · ∇u′i)∇(uj − u′j). (54)

Similarly to the vector fields Wij (48), the vector fields Vij satisfy estimates of the form

‖Vij‖∞ ≤ CV ‖H‖W 1,∞ and ‖Vij − V ′ij‖∞ ≤ C ′V ‖H −H ′‖W 1,∞ , 1 ≤ i, j ≤ n. (55)

Since H is bounded and σ, σ′ are assumed to be bounded from below by a constant σ0 > 0, each
of the ∇ui is uniformly bounded by

√
Hii/σ0 ≤

√
‖H‖∞/σ0. Taking L2 norms over Ωi and

using the triangle inequality in (54), we obtain

‖∇(σ−2α − σ′−2α)‖L2(Ωi) ≤ ‖∇ui‖∞‖∇uj‖∞‖Vij − V
′
ij‖L2 + 2‖V ′ij‖∞‖∇(ui − u′i)‖L2‖∇uj‖∞,

which by virtue of proposition 2.6 and estimates (55) yields an estimate of the form

‖∇(σ−2α − σ′−2α)‖L2(Ωi) ≤ C‖H −H
′‖W 1,∞(X). (56)

Further, from the pointwise relations σ−2α = |∇u1|2/H11 and similarly for σ′, we write

σ−2α − σ′−2α =
1

H11
∇(u1 − u′1) · ∇(u1 + u′1) + (H11 −H ′11)

|∇u′11|2

H11H ′11

.

Taking L2 norms and using the triangle inequality, we obtain that

‖σ−2α − σ′−2α‖L2(Ωi) ≤
(
‖∇(u1 − u′1)‖L2(‖∇u1‖∞ + ‖∇u′1‖∞)

+ ‖H11 −H ′11‖∞‖H−1
11 ‖∞‖∇u

′
1‖L2‖∇u′1‖∞

)
‖H−1

11 ‖∞,

which again yields an estimate of the form

‖σ−2α − σ′−2α‖L2(Ωi) ≤ C‖H −H
′‖W 1,∞(X). (57)

Combining (56) and (57), we arrive at

‖σ−2α − σ′−2α‖H1(Ωi) ≤ C‖H −H
′‖W 1,∞

for every Ωi ∈ O. This concludes the proof.
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5.2.2 Discussion on the spectrum of PW

The two-dimensional case: In the case n = 2, [2, Theorem 4] guarantees that we can pick
m = n. In so doing and using the form (49) of the elliptic system together with the fact that
cF = 1 for all α ∈ R, we arrive at the system

∇ · (DHpi∇ui) = 0, up|∂X = gp, p = 1, 2.

The weak formulation of the corresponding problem with homogeneous Dirichlet conditions
involves the bilinear form

B(v,v) =

∫
Ω
DHpi∇vi · ∇vp dx.

Since H−1 is uniformly elliptic over X and infX D ≥ c0, this bilinear form is coercive over H as
seen from the following calculation∫

Ω
DHpi∇vi · ∇vp dx =

n∑
k=1

∫
Ω
D〈∂kv, H−1∂kv〉 dx ≥ c0 inf

x∈X
λ−1
M ‖v‖

2
H,

where λM stands for the largest eigenvalue of H, for which we have, pointwise (xM designates
a unit eigenvector associated with λM )

λM = 〈xM , HxM 〉 =
∑
i,j

HijxM,ixM,j ≤ ‖H‖∞
1

2

∑
i,j

x2
M,i + x2

M,j = n‖H‖∞,

and hence the estimate

B(v,v) =

∫
Ω
DHpi∇vi · ∇vp dx ≥ c0(n‖H‖∞)−1‖v‖2H.

Therefore by virtue of the Lax-Milgram theorem, the system (47) admits a unique solution in
H. In particular, this shows that −c−1

F is not an eigenvalue of PW in this case for any α ∈ R.

The case n ≥ 3: Using the fact that the spectrum of ‖PW ‖ is bounded in norm by ‖PW ‖
and that PW is compact, the elliptic system admits a unique and stable solution, except for a
discrete set of values −c−1

F ∈ [−‖PW ‖, ‖PW ‖] possibly converging to zero. In terms of α, this
corresponds to almost all values of α ∈ R except a sequence {αk} taking values in the interval

[−‖PW ‖−1
n−2 , ‖PW ‖−1

n−2 ] and possibly converging to −(n− 2)−1.

The special case α = 0: In this case we have cF = 1. This implies that whenever one can
ensure the positivity condition (7) with only m = n solutions (e.g. in even dimension and using
lemma 2.1), one can rewrite the system into the form (49) with term 1− cF = 0, that is

∇ · (DHpi∇ui) = 0, 1 ≤ p ≤ n.

Using the same arguments as in the two-dimensional case, this system is coercive and therefore
ensures that −1 is not an eigenvalue of PW .
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Conclusion As a conclusion of this discussion, the following statements hold:

1. if n = 2, we have spPW ∩ {−((n− 2)α+ 1), α ∈ R} = ∅,

2. if n ≥ 3, then spPW ∩ {−((n − 2)α + 1), α ∈ R} consists of at most a sequence {−((n −
2)αk + 1), k = 1, 2 . . . } where αk belongs to [−‖PW ‖−1

n−2 , ‖PW ‖−1
n−2 ] and possibly converges to

−(n− 2)−1. In the case m = n, the value 0 is excluded from the latter interval.

6 Constraints, reconstructions, and compatibility conditions

The ODE-based reconstructions use the full redundancy of the data to construct an overdeter-
mined system of equations for the vectors Si (or Ri) and the vector ∇ log σ. The PDE-based
method defines a well-posed system of equations for the scalar quantities ui and an overdeter-
mined system of equations for vector ∇ log σ. Each of these overdetermined systems needs to
satisfy compatibility conditions in order to admit a solution. In this section, we aim to extract
information from the over-determinacy of the system. We first revisit the two-dimensional case
and use the redundancy to extract explicit reconstruction algorithms in the setting α 6= 1

2 . We
then consider the case of arbitrary dimension and show that the compatibility conditions that
data must satisfy in order for the aforementioned systems to have solutions take the form of
vanishing appropriately defined curvatures together with the cancellation of a given two-form.
These conditions generate quadratic functionals of the unknown vectors Si or Ri whose pratical
applicability is discussed below.

6.1 Reconstructions in two dimensions

In this section, we revisit the two-dimensional case which was first solved in [5, 10] and generalize
the approach to the case α 6= 1

2 . In that approach, the reconstruction of F = ∇ log σ requires
the reconstruction of a function θ : X 7→ S1 that characterizes the unknown information about
the frames S or R. We consider the SO2(R)-valued R = (R1, R2) frame and parameterize it as
R1 = (cos θ, sin θ)T and R2 = JR1, with J :=

[
0 −1
1 0

]
. With the notation Φij := Ri ⊗ Rj for

i, j = 1, 2, we recast equations (42) and (40) for α ∈ R as follows:

∇ log σ = F = ∇ logD + 2
2∑

i,j=1

ΦijV
s
ij , (58)

∇ ·Ri = Vik ·Rk − (1− α)F ·Ri, i = 1, 2, . (59)

We next derive an equation for ∇θ, which by construction is nothing but [R2, R1]. We have:

∇θ = [R2, R1] = ∇R2R1 −∇R1R2 = −Γ1
22R2 + Γ2

11R1, (60)
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where the Christoffel symbols Γ2
11 and Γ1

22 are given by

Γ2
11 = ∇R1R1 ·R2 = [∇, R1] = −∇ ·R2

= −((2α− 1)V22 − (1− α)N) ·R2 − ((2α− 1)V s
12 − V a

12) ·R1,

Γ1
22 = ∇R2R2 ·R1 = −[∇, R2] = −∇ ·R1

= −((2α− 1)V11 − (1− α)N) ·R1 − ((2α− 1)V s
12 + V a

12) ·R2.

(61)

By orthonormality the other Christoffel symbols are given by

Γ1
11 = Γ1

21 = Γ2
12 = Γ2

22 = 0, Γ1
12 = −Γ2

11, and Γ2
21 = −Γ1

22.

Plugging the expressions (61) into (60), we arrive at

∇θ = V a
12 − (1− α)J∇ logD + (2α− 1)(Φ21V11 − Φ12V22 + (Φ22 − Φ11)V s

12). (62)

Using the following identity

Φ21V11 − Φ12V22 + (Φ22 − Φ11)V s
12 = J(Φ11V11 + Φ22V22 + (Φ12 + Φ21)V s

12) =
1

2
J(F −∇ logD),

equation (62) may be recast as

∇θ = V a
12 −

1

2
J∇ logD +

(
α− 1

2

)
JF, (63)

whose expression matches the one given in [5, 10] when α = 1
2 . Since F is a function of θ, the

above equation is then a non-linear PDE whenever α 6= 1
2 . This is to be contrasted with the

seemingly much nicer case α = 1
2 , whose r.h.s. is independent of θ.

A right-hand-side independent of θ can, however, be obtained by taking divergence of both
sides of (63) since F = ∇ log σ and ∇ · (J∇) = 0. The equation we obtain is

∆θ = ∇ · V a
12. (64)

This elliptic PDE requires knowledge of θ at the domain’s boundary. Assume that we know
ui|∂X = gi, Ji = σ∂νui for i = 1, 2, and σ at the boundary. In this setting, we find that

θ|∂X = arg(t11∇u1 + t12∇u2|∂X) = arg((t11∂tg1 + t12∂tg2) t + σ−1(t11J1 + t12J2) ν),

with ν and t = Jν the unit outgoing normal vector and its direct orthogonal vector, respectively.
Once θ is reconstructed, we know the r.h.s. of (58) and solve for log σ, either by integrating

(58) along a curve, or by taking the divergence of both sides of (58) and solving a Poisson
equation provided that σ|∂X is known. Note that the inversion for θ and log σ by means of
the elliptic equations (64) and “divergence of (58)” with Dirichlet conditions is unique and
Lipschitz-stable in H2(X) w.r.t. the data Hij . The details are left to the reader.

We now discuss the compatibility conditions for the gradient equations (58) and (63), which
admit a solution only if their respective r.h.s. are curl-free. Such conditions lead to a bet-
ter understanding of the range of the measurement operator and are necessary to ensure that
reconstructions based on ODE integrations do not depend on the choice of integration path.
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6.2 Compatibility conditions in two dimensions of space

The compatibility conditions for (63) and (58) are that ∇ · (J∇θ) = 0 and ∇ · (J∇ log σ) = 0,
respectively. For α 6= 1

2 , these equations not only provide constraints on the redundant data,
but in fact give us direct information about the unknown coefficients. In the two-dimensional
case, they allow us to solve algebraically for cos(2θ), sin(2θ), which in turn characterizes F in
terms of the data (and therefore does not require the prior resolution of θ).

Let us first simplify the expression of F as follows:

F = ∇ logD + 2(Φ11V11 + Φ22V22 + (Φ12 + Φ21)V s
12)

= −V11 − V22 + 2(Φ11V11 + Φ22V22 + (Φ12 + Φ21)V s
12)

= (Φ11 − Φ22)(V11 − V22) + (Φ12 + Φ21)(V12 + V21),

where the matrices Φ11−Φ22 and Φ12 + Φ21 are reflexion matrices that can be expressed in the
following manner:

Φ11 − Φ22 = c2U + s2JU and Φ12 + Φ21 = −s2U + c2JU, where

(c2, s2) := (cos(2θ), sin(2θ)), U :=

[
1 0
0 −1

]
.

(65)

As a result, we are able to express F in a rather compact way

F (x, θ) = cos(2θ)Fc(x) + sin(2θ)JFc(x), Fc := U(V11 − V22) + JU(V12 + V21). (66)

Note the property that ∂θF = 2JF . Now turning to the compatibility conditions proper,
equations (63) and (66) are well-defined only if their curls are zero, which gives the following
two scalar conditions (we define G := V a

12 − 1
2J∇ logD)

∇ · (JG)−
(
α− 1

2

)
∇ · (F (x, θ(x)) = 0 and ∇ · (JF (x, θ(x))) = 0.

Now using the chain rule and ∇θ = G+
(
α− 1

2

)
JF , we have

∇ · (JF ) = c2∇ · (JFc)− s2∇ · Fc +∇θ · (J∂θF )

= c2∇ · (JFc)− s2∇ · Fc − 2G · (c2Fc + s2JFc) = fc2 − gs2,

where we have defined

f(x) := ∇ · (JFc)− 2Fc ·G and g(x) := ∇ · Fc + 2JFc ·G. (67)

Similarly, the second compatibility equation can be recast as(
α− 1

2

)
(gc2 + fs2) = ∇ · (JG)− 2

(
α− 1

2

)2
|Fc|2.
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If α 6= 1
2 , we thus see that the two compatibility equations imply the system[
f −g
g f

] [
c2

s2

]
=

[
0
h

]
, h :=

(
α− 1

2

)−1
∇ · (JG)− 2

(
α− 1

2

)
|Fc|2, (68)

which may be inverted as

cos(2θ) = c2 =
gh

f2 + g2
and sin(2θ) = s2 =

fh

f2 + g2
.

Note that this solution makes sense only if the functions f, g, h are such that c2
2 + s2

2 = 1, that
is, if they satisfy the relation f2 + g2 = h2. In this case, F may be expressed as

F = ∇ log σ =
h

f2 + g2
(gFc + fJFc) .

The right-hand-side is guaranteed to be curl-free by construction. Inserting (67) into the last
equation and using (u · Jv)v− (u · v)Jv = |v|2u with u = G and v = Fc, we obtain the following
explicit reconstruction:

∇ log σ =
h

f2 + g2
((∇ · Fc)Fc +∇ · (JFc)JFc + 2|Fc|2G). (69)

When α = 1
2 , the equation ∇ · (J∇θ) = 0 depends solely on the data and reads

∇ · (JV a
12)− 1

2
∆ logD = 0.

The other compatibility equation ∇·(JF ) = 0 is still of the form fc2 +gs2 = 0, with f, g defined
above, which by itself only gives us (c2, s2) up to a sign, i.e.

(c2, s2) = ±(f2 + g2)−
1
2 (−g, f).

The above constraint provides partial answer about θ that may be used in practical recon-
structions to mitigate the influence of noise in the data. Reconstructions based solely on these
algebraic relations, however, seem to be less stable than the two approaches based on integration
of gradient or Laplace equations.

6.3 Compatibility conditions in higher dimensions

The two-dimensional case is special in that SO2(R) is both one dimensional and Abelian. This
is not the case in higher dimensions, where parameterizations are much more complicated, even
in three dimensions.
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Similar compatibility conditions arise in the n-dimensional case for gradient equations as an
application of the Poincaré lemma: the “curl” (or exterior derivative) of the equation vanishes
on both sides. For equations (9) or (42), we have that

dF [ = d2 log σ = 0, (70)

which implies a system of 1
2n(n − 2) scalar equations (i.e. the cancellation of a 2-form in

dimension n).
Regarding the systems (35) and (45), their complete integrability is equivalent to ensuring

that the curvature tensor of the Euclidean connection is identically zero when expressed in either
frame S or R. Indeed, according to [9, Theorem 1 p30], a system of the form

∂kE
j
i (x) = Fijk(E(x), x), 1 ≤ i, j, k ≤ n, E := {Eji }

n
i,j=1,

is integrable if and only if the following conditions hold

∂lFijk + Fpql∂EqpFijk = ∂kFijl + Fpqk∂EqpFijl,

which is equivalent, after using the chain rule, to

∂l∂kE
j
i − ∂k∂lE

j
i = ∂l(Fijk(E(x), x))− ∂k(Fijl(E(x), x)) = 0.

The last equation is nothing but the fact that the curvature (R(el, ek)Ei) · ej of the Euclidean
metric is zero for every quadruple (i, j, k, l), where the curvature tensor R is defined, for three
vector fields X,Y, Z, by

R(X,Y )Z := ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z. (71)

R is known to be a tensor, i.e. it is linear over smooth functions in all its arguments, and thus
the above zero curvature conditions are strictly equivalent to the equations

(R(Ep, Eq)Ek) · Er = (R(Eipei, E
j
qej)Ek) · Elrel = EipE

j
qE

l
j(R(ei, ej)Ek) · el = 0,

for 1 ≤ p, q, k, r ≤ n, where E is any frame, including S and R. As one can see from [20, Prop.
10 and 12 pp 196-197], this highly redundant set of n4 scalar equations is equivalent to 1

2n(n−1)
non-redundant equations which express the cancellation of the sectional curvatures

(R(Ei, Ej)Ei) · Ej = 0, 1 ≤ i < j ≤ n. (72)

For each frame, we thus have the two systems of 1
2n(n − 1) equations (70) and (72). We

now work with the R frame because its Christoffel symbols have nicer symmetry properties and
show that both systems (70) and (72) may be recast as

n∑
p,q=1

Mpq
ij : Rp ⊗Rq = 0, 1 ≤ i < j ≤ n, (73)
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where the matrices Mpq
ij depend only on the data (we could obtain similar equations for the S

frame). We first rewrite the Christoffel symbols (44) under the form

Γkij = W kl
ij ·Rl, where

W kl
ij := 2αcF (δikV

s
lj − δijV s

lk) + δliV
a
jk + δlj (V s

ik + αcFNδik)− δlk
(
V s
ij + αcFNδij

)
.

(74)

The vector fields W kl
ij depend only on the data and have the antisymmetry properties W kl

ij =

−W jl
ik and W jl

ij = 0. We now derive systems of the form (73) for both systems (70) and (72) in
the case of the R frame.

6.3.1 The condition dF [ = 0.

Starting from equation (42), the equation dF [ = 0 reads

0 =
1

2
c−1
F dF [ =

1

2
d2 logD + d((V s

kl ·Rk)R[l ) = d((V s
kl ·Rk)R[l ).

Now using identity (26) with vector fields Ri, Rj (i 6= j), we have

d((V s
kl ·Rk)R[l )(Ri, Rj) = ∇Ri(V s

kj ·Rk)−∇Rj (V s
ki ·Rk)− (V s

kl ·Rk)Rl · [Ri, Rj ]

= ∇Ri(V s
kj ·Rk)−∇Rj (V s

ki ·Rk) + (V s
kl ·Rk)((W

lp
ij −W

lp
ji ) ·Rp) = 0.

Decomposing the first term in the last r.h.s. as follows

∇Ri(V s
kj ·Rk) = ∇RiV s

kj ·Rk + V s
kj · ∇RiRk = Rk · ∇RiV s

kj + (V s
kj ·Rp)(W

pq
ik ·Rq),

and doing simlarly for the second term, we obtain the set of scalar equations

Rk · (∇RiV s
kj −∇RjV s

ki) + (V s
kj ·Rp)(W

pq
ik ·Rq)− (V s

ki ·Rp)(W
pq
jk ·Rq) . . .

+ (V s
ql ·Rq)((W

lp
ij −W

lp
ji ) ·Rp) = 0, 1 ≤ i < j ≤ n.

(75)

This system can be written in the form (73), where the matrices Mij
pq depend only on the data.

6.3.2 The zero curvature conditions.

Given the symmetries of the Christoffel symbols, one can show for an orthonormal frame that
the zero sectional curvature equations (72) can be recast as

∇RiΓijj +∇RjΓ
j
ii = −ΓljiΓ

l
ij + ΓliiΓ

l
jj − (Γlij − Γlji)Γ

j
li, 1 ≤ i < j ≤ n. (76)
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Using expression (74) of the Christoffel symbols, the first term in the left-hand side of (76) may
be rewritten as

∇RiΓijj = ∇RiW il
jj ·Rl +W il

jj · ∇RiRl = Rl · ∇RiW il
jj + ΓkilW

il
jj ·Rk

= Rl · ∇RiW il
jj + (W qp

il ·Rp)(W
il
jj ·Rq).

Proceeding similarly for the second term of the l.h.s. of (76) and plugging expression (74) into
the r.h.s., we obtain the set of equations for 1 ≤ i < j ≤ n

Rl · (∇RiW il
jj +∇RjW

jl
ii ) + (W qp

il ·Rp)(W
il
jj ·Rq) + (W qp

jl ·Rp)(W
jl
ii ·Rq)

= −(W lp
ij ·Rp)(W

lq
ji ·Rq) + (W lp

ii ·Rp)(W
lq
jj ·Rq) + ((W lp

ij −W
lp
ji ) ·Rp)(W

jq
li ·Rq)

(77)

(i, j are not being summed over but l, p, q are). This is also a quadratic system of the form (73)
with different matrices Mij

pq.

6.3.3 Discussion

Based on the result of the two-dimensional case, we make the following heuristic statements:
depending on the value of α, these compatibility equations either give us compatibility conditions
on the data (that do not depend on the unknown frame), thus characterizing the range of the
measurement operator, or they may allow us to invert algebraically for the cosines and sines
of the 1

2n(n− 1) spherical angles that parameterize the SOn(R)-valued R frame, which in turn
may come at the price of other compatibility conditions that only depend on the data.

It remains an interesting, so far unresolved, question to find an algorithm that enforces the
compatibility conditions as the system of ODEs is used to ensure that the reconstruction does
not depend on the choice of integration paths.

6.4 Remark on the elliptic method

The system of elliptic equations for the scalar solutions ui is well-posed for almost all values of α
and n. Once the solutions ui are obtained, it remains to solve the equation for F = ∇ log σ. The
only remaining compatibility condition is therefore that the latter term indeed be a gradient. In
a similar manner to what we just saw for the ODE-based method, writing the condition dF [ = 0
yields 1

2n(n− 1) equations of the type∑
p,q

Mij
pq : ∇up ⊗∇uq = 0, 1 ≤ i < j ≤ n,

where the matrices Mij
pq depend only on the data Hij .
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