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Abstract

This paper concerns the random fluctuation theory of a one dimensional elliptic
equation with highly oscillatory random coefficient. Theoretical studies show that the
rescaled random corrector converges in distribution to a stochastic integral with respect
to Brownian motion when the random coefficient has short-range correlation. When the
random coefficient has long range correlation, it was shown for a large class of random
processes that the random corrector converged to a stochastic integral with respect to
fractional Brownian motion. In this paper, we construct a class of random coefficients
for which the random corrector converges to a non-Gaussian limit. More precisely,
for this class of random coefficients with long-range correlation, the properly rescaled
corrector converges in distribution to a stochastic integral with respect to a Rosenblatt
process.

1 Introduction

The equation of interest in this paper is the following one-dimensional elliptic equation with
highly oscillatory coefficients:

− d

dx
(a(

x

ε
, ω)

d

dx
uε(x, ω)) = f(x), x ∈ (0, 1) (1.1)

where the coefficient a(x, ω) is a stationary, bounded with bounded inverse, random po-
tential. We are interested in the limiting behavior of the solution uε(x, ω) when ε → 0
and more precisely in the size of the random fluctuations of uε(x, ω) and of their limiting
distribution after proper rescaling.

Homogenization theory has been extensively studied in both periodic and random set-
tings; see for instance [4, 6, 8, 9, 10, 14]. In the random setting, homogenization theory
replace the random medium by a properly averaged effective, deterministic, medium. It is
well known that uε converges to the deterministic, homogenized solution ū(x) as ε → 0.
Fewer results are available concerning the theory of random fluctuations and in particular
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the theory of the random corrector uε−ū. In the one-dimensional setting, it has been shown
that the property of the corrector strongly depends on the correlation property of the ran-
dom potential. Using the explicit expressions of the solution to (1.1), it has been shown in
[6] that when the random potential had short-range correlation and satisfies certain mixing
properties, then the corrector’s amplitude is of order

√
ε and, after rescaling, converges in

distribution to a stochastic integral with respect to Brownian motion. In [3], the result
has been extended to a large class of random potential with long-range correlation, where
the corrector’s amplitude is of order εα/2, with α ∈ (0, 1) characterizing the decay of the
correlation function of the random coefficient. Furthermore, the weak convergence limit
of the rescaled corrector is then a stochastic integral with respect to fractional Brownian
motion.

No theories of correctors are available for elliptic equations of the form (1.1) in higher
spatial dimension; see [14] for estimates of the size of the random fluctuations. Similar
results to the ones described above have been obtained in higher dimensions for Schrödinger-
type equations with random potential. In [1], homogenization and corrector theory has been
developed for a large class of second order elliptic equations with short-range correlated
potentials, and it has been generalized into the long-range correlation case in [2]. In all of
these cases, the limiting distributions of the rescaled correctors are Gaussian random fields,
which admit convenient representations as a stochastic integral with respect to Brownian
motion or fractional Brownian motion.

In this paper, we focus on (1.1) and follow the framework in [3] to obtain non-Gaussian
limits for the random fluctuations. We construct a class of random potential with long-
range correlation for which the limiting distribution of the rescaled corrector is no longer
Gaussian as ε → 0, but rather the so-called Rosenblatt distribution, which is an element
in the second-order Wiener chaos. The corrector’s amplitude is εα for α ∈ (0, 1/2). Our
results are closely related to classical examples of non-central limits in probability theory;
see [12, 7, 11]. Our approach is based on the explicit expression for the solution to (1.1)
and a careful analysis of the oscillatory integral.

The paper is organized as follows. In section 2, we state the main theorem of the paper
and compare it with previously established results. In section 3, we give a brief introduction
to the Rosenblatt process and the corresponding stochastic integral. In section 4, we prove
some key results concerning the weak convergence of oscillatory integral. In section 5, we
prove the main theorem and briefly discuss possible extensions.

2 Main results

We formulate the problem as follows: −
d

dx
(a(

x

ε
, ω)

d

dx
uε(x, ω)) = f(x), x ∈ (0, 1), ω ∈ Ω,

uε(0, ω) = 0, uε(1, ω) = b
(2.1)

where a(x, ω) ∈ [a0, a
−1
0 ] for some positive a0, and is a stationary ergodic random process

associated with the probability space (Ω,F ,P). f(x) ∈ C[0, 1] and b ∈ R. Classical theory
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of elliptic equations shows the existence of a unique solution u(., ω) ∈ H1(0, 1) P-a.s.

It was shown that as the scale of the micro-structure ε → 0, the solution uε(x, ω) to
(2.1) converges P-a.s. to the deterministic solution ū(x) of the following equation: −

d

dx
(a∗

d

dx
ū(x)) = f(x), x ∈ (0, 1),

ū(0) = 0, ū(1) = b
(2.2)

where a∗ is the harmonic mean of a(x, ω), i.e., a∗ = (E{a−1(0, .)})−1. See e.g. [8, 9, 10].

The analysis of the random corrector is based on the explicit expression for the solutions
to (2.1) and (2.2). If we denote aε(x) = a(xε ) and F (x) =

∫ x
0 f(y)dy, we have:

uε(x, ω) = cε(ω)

∫ x

0

1

aε(y, ω)
dy −

∫ x

0

F (y)

aε(y, ω)
dy, cε(ω) =

b+
∫ 1

0
F (y)
aε(y,ω)dy∫ 1

0
1

aε(y,ω)dy
(2.3)

ū(x) = c∗
x

a∗
−
∫ x

0

F (y)

a∗
dy, c∗ = a∗b+

∫ 1

0
F (y)dy. (2.4)

We note that uε(x, ω)− ū(x) contains oscillatory integrals of the form∫
R

(
1

aε(y, ω)
− 1

a∗

)
h(y)dy (2.5)

for some function h(y). Next we make some assumptions on the random process aε(y, ω)−1−
(a∗)−1.

2.1 Assumptions on the random process

Our goal is to analyze the statistical property of uε− ū as ε→ 0 for a large class of random
process a(x, ω), and show the existence of a non-Gaussian limiting corrector. To do this,
we make the following assumptions on a(x, ω). Let

q(x, ω) =
1

a(x, ω)
− 1

a∗
(2.6)

and assume that
q(x, ω) = Φ(g(x, ω)) (2.7)

for some function Φ and a random process g(x, ω) constructed explicitly as:

g(x) = ξ[x+U ] (2.8)

where {ξk, k ∈ Z} is a centered stationary Gaussian sequence with unit variance, and its
auto-correlation function r(k) = E{ξ0ξk} ∼ κg|k|−α for some κg > 0 and α ∈ (0, 1

2). U is
uniformly distributed on [0, 1] and independent of {ξk, k ∈ Z}. Through some elementary
computation, we can show that g(x) defined in (2.8) is a centered stationary Gaussian
process with unit variance and long-range correlation: Rg(x) = E{g(0)g(x)} ∼ κg|x|−α.
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Recall the definition of Hermite polynomials:

Hn(x) = (−1)n exp(
x2

2
)
dn

dxn
exp(−x

2

2
), (2.9)

assume E{Φ(g(x))2} < ∞, and define Vn = E{Hn(g(x))Φ(g(x))}, we make the following
key assumptions on Φ(x):

V0 = V1 = 0, V2 6= 0. (2.10)

The smallest integer n such that Vn 6= 0 is called the Hermite rank of Φ. So (2.10) states
that the Hermite rank of Φ is 2. We will see later that V1 = 0 is the key condition for the
existence of a non-Gaussian corrector. When V1 6= 0, by Theorem 2.3 below, the rescaled
corrector converges in distribution to some stochastic integral with respect to fractional
Brownian motion.

The condition V0 = 0 ensures that q(x, ω) is centered, and we have the following lemma
concerning the correlation property of q(x, ω). For simplicity, we denote it as q(x) from now
on.

Lemma 2.1. Let R(x) = E{q(0)q(x)}, then

R(x) ∼ κ|x|−2α (2.11)

where κ =
V 2
2 κ

2
g

2 .

Proof. We have R(x) = E{Φ(g(0))Φ(g(x))}, and by Hermite expansion

Φ(g(x)) =
∞∑
n=0

Vn
n!
Hn(g(x)) (2.12)

Therefore,

E{Φ(g(0))Φ(g(x))} =
∞∑
n=0

V 2
n

(n!)2
E{Hn(g(0))Hn(g(x))} =

∞∑
n=0

V 2
n

n!
Rg(x)n (2.13)

Since V0 = V1 = 0, we have

E{Φ(g(0))Φ(g(x))} = Rg(x)2(
∞∑
n=2

V 2
n

n!
Rg(x)n−2) (2.14)

Because
∑∞

n=0
V 2
n
n! <∞ by assumption on Φ and Rg(x) ∼ κg|x|−α, we verify that

R(x) = E{Φ(g(0))Φ(g(x))} ∼
V 2

2 κ
2
g

2
|x|−2α. (2.15)

The proof is complete. �

Since we assume α ∈ (0, 1
2), then R(x) /∈ L1(R) so that q(x) has long-range correlation

and we have |R(x)| ≤M |x|−2α for some constant M .
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2.2 Main theorem

Now we state the main theorem and compare it with the previous results.

Theorem 2.2. Let uε and ū be the solutions in (2.3) and (2.4) and let q(x, ω) be a centered
stationary random process of the form (2.7) with the Hermite rank of Φ being equal to 2.
Then uε − ū is a random process in C([0, 1]), and we have the following convergence in
distribution in the space of continuous functions C([0, 1]):

uε(x)− ū(x)

εα
distribution−−−−−−−→

ε→0
Ū(x) (2.16)

where

Ū(x) =
V2κg

2

∫
R
F (x, y)dRD(y) (2.17)

F (x, y) = c∗1[0,x](y)− F (y)1[0,x](y) + x(F (y)−
∫ 1

0
F (z)dz − a∗b)1[0,1](y). (2.18)

Here RD(y) is a Rosenblatt process with D = α.

It should be contrasted with the convergence results for processes with long-range cor-
relation and the Hermite rank equals to 1 [3] or with short-range correlation [6].

Theorem 2.3. Let uε and ū be the solutions in (2.3) and (2.4), and let q(x, ω) be a centered
stationary random process of the form (2.7) with the Hermite rank of Φ being equal to 1.
Then uε − ū is a random process in C([0, 1]), and we have the following convergence in
distribution in the space of continuous functions C([0, 1]):

uε(x)− ū(x)

εα/2
distribution−−−−−−−→

ε→0
Ū(x) (2.19)

where

Ū(x) =

√
κgV 2

1

H(2H − 1)

∫
R
F (x, y)dBH(y) (2.20)

Here F (x, y) is given by (2.18) and BH(y) is a fractional Brownian motion with Hurst index
H = 1− α

2 .

Remark 2.4. In Theorem 2.3, we can assume α ∈ (0, 1) instead of α ∈ (0, 1
2) in Theorem

2.2.

Theorem 2.5. Let uε and ū be the solutions in (2.3) and (2.4), and let q(x, ω) be a centered
stationary random process of the form (2.7). If the correlation function Rg of g is integrable
(instead of being equivalent to |x|−α at infinity), then R is also integrable. The corrector
uε− ū is a random process in C([0, 1]) and we have the following convergence in distribution
in the space of continuous functions C([0, 1]):

uε(x)− ū(x)√
ε

distribution−−−−−−−→
ε→0

Ū(x) (2.21)
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where

Ū(x) =

(
2

∫ ∞
0

R(τ)dτ

) 1
2
∫
R
F (x, y)dB(y) (2.22)

Here F (x, y) is given by (2.18) and B(y) is a standard Brownian motion.

We can see from the above theorems that the size of the corrector not only depends on
the correlation property of the random process q(x) but also the Hermite rank of Φ, and
the limiting distribution of the properly rescaled corrector can be non-Gaussian.

The rest of this paper is devoted to the proof of Theorem 2.2. To do this, we first give
a brief introduction of the Rosenblatt process and the stochastic integral with respect to it.

3 Rosenblatt process

In this section, we briefly recall some general facts about the Rosenblatt process and the
stochastic integral with respect to it [13].

3.1 Non-central limit theorem and Wiener-Itô integral representation

The following theorem gives rise to the Rosenblatt process [11].

Theorem 3.1. Assume Xn are centered stationary Gaussian sequence with unit variance
r(k) = E{X0Xk} ∼ k−DL(k), where D ∈ (0, 1/2) and L(k) is a slowly varying function.
Define

ZN,2(t) =
1

dN

[Nt]∑
i=1

(X2
i − 1)

with dN ∼ N1−DL(N) as N →∞.

Then the finite dimensional distributions of ZN,2(t) converge to the corresponding finite
dimensional distributions of the Rosenblatt process RD(t).

By Theorem 3.1, we have the characteristic function of the Rosenblatt distribution
RD(1) in a small neighborhood of the origin:

exp(iθRD(1)) = exp

{
1

2

∞∑
n=2

[
(2iθ)n

n

∫
[0,1]n

1

|x2 − x1|D|x3 − x2|D . . . |x1 − xn|D
dx

]}
,

(3.1)

The Rosenblatt process has the following representation as a Wiener-Itô integral:

RD(t) = c(D)

∫
R2

∫ t

0
(s− y1)

− 1+D
2

+ (s− y2)
− 1+D

2
+ dsdB(y1)dB(y2). (3.2)

The constant c(D) is chosen such that E{RD(1)2} = 1. From (3.2), we see that the Rosen-
blatt process lives in the second order Wiener chaos and is a self-similar process with
stationary increments. The Hurst index H = 1−D.
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3.2 Stochastic integral with respect to Rosenblatt process

The representation (3.2) is not very convenient to define stochastic integrals. Recall that
for fraction Brownian motion, we have:

BH
t =

∫ t

0
KH(t, s)dB(s) (3.3)

with (Bt, t ∈ [0, T ]) a standard Brownian motion and

KH(t, s) = cHs
1
2
−H
∫ t

s
(u− s)H−

2
2uH−

1
2du (3.4)

where t > s and

cH =

(
H(2H − 1)

β(2− 2H,H − 1
2)

) 1
2

. (3.5)

There are similar results for Rosenblatt process:

Proposition 3.2. Let K be the kernel in (3.4) and (RD(t))t∈[0,T ] a Rosenblatt process with
Hurst index H = 1−D. Then it holds that

RD(t) = d(H)

∫ t

0

∫ t

0

[∫ t

y1∨y2

∂KH′

∂u
(u, y1)

∂KH′

∂u
(u, y2)du

]
dB(y1)dB(y2) (3.6)

where (Bt, t ∈ [0, T ]) is a standard Brownian motion, H ′ = H+1
2 , and

d(H) =
1

H + 1

(
H

2(2H − 1)

)− 1
2

. (3.7)

By the representation (3.6), the stochastic integral with respect to Rosenblatt process
can be defined as follows. We first rewrite

RD(t) =

∫ T

0

∫ T

0
I(1[0,t])(y1, y2)dB(y1)dB(y2) (3.8)

where the operator I is defined on the set of functions f : [0, T ] → R, takes values in the
set of functions g : [0, T ]2 → R2 and it is given by

I(f)(y1, y2) = d(H)

∫ T

y1∨y2
f(u)

∂KH′

∂u
(u, y1)

∂KH′

∂u
(u, y2)du. (3.9)

If f is an element of the set E of step functions on [0, T ] of the form

f =

n−1∑
i=0

ai1(ti,ti+1], 0 = t0 < t1 < . . . < tn = T (3.10)
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it is natural to define its stochastic integral with respect to RD(t) as∫ T

0
f(t)dRD(t) =

n−1∑
i=0

ai(RD(ti+1)−RD(ti)) =

∫ T

0

∫ T

0
I(f)(y1, y2)dB(y1)dB(y2). (3.11)

Let H be the set of deterministic functions f such that

||f ||2H = H(2H − 1)

∫ T

0

∫ T

0
f(u)f(v)|u− v|2H−2dudv <∞. (3.12)

It can be shown that

||f ||2H = 2

∫ T

0

∫ T

0
I(f)(y1, y2)2dy1dy2 = 2E{(

∫ T

0
f(t)dRD(t))2}. (3.13)

Therefore the mapping

f →
∫ T

0
f(t)dRD(t) (3.14)

defines an isometry from E to L2(Ω) and it can be extended by continuity to an isometry
from H to L2(Ω) because E is dense in H. We call this extension the Wiener integral of
f ∈ H with respect to RD(t).

4 Analysis of oscillatory integrals

From (2.3) and (2.4), we can see that the rescaled corrector uε−ū
εα contains oscillatory inte-

grals of the form: ∫
R

1

εα
q(
x

ε
)h(x)dx (4.1)

for some compactly supported h(x). The main goal of section is to prove the following
results:

Proposition 4.1. Assume that h(x) is compactly supported in [0,∞) and continuous, then∫
R

1

εα
(g2(

x

ε
)− 1)h(x)dx

distribution−−−−−−−→
ε→0

κg

∫
R
h(x)dRD(x) (4.2)

where RD(x) is the Rosenblatt process with D = α.

Proof. Since g(x) = ξ[x+U ], the LHS of (4.2) can be written as∫
R

1

εα
[g2(

x

ε
)− 1]h(x)dx =

∞∑
k=−∞

Ak,ε(ξ
2
k − 1) (4.3)

where

Ak,ε =

∫ ε(k+1−U)

ε(k−U)

h(x)

εα
dx. (4.4)
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Since h(x) is compactly supported, the sum contains finitely many terms. We compute the
conditional characteristic function of (4.3) as follows:

cε(θ) =E
{

exp

(
iθ

∫
R

1

εα
(g(

x

ε
)2 − 1)h(x)dx

)
| U
}

=E

{
exp

(
iθ

∞∑
k=−∞

Ak,ε(ξ
2
k − 1)

)
| U

} (4.5)

Freeze U , then Ak,ε are constants. If we assume k = m, . . . , n and n−m+ 1 = N , then we
have

cε(θ) =
1

(2π)
N
2 |ΣN |

1
2

∫
RN

exp

(
iθ

n∑
k=m

Ak,ε(x
2
k − 1)

)
exp

(
−1

2
x′Σ−1

N x

)
dx

= |ΣN |−
1
2 ||Σ−1

N − 2AN (ε, θ)|−
1
2 exp(−Tr(AN (ε, θ)))

= |IN − 2ΣNAN (ε, θ)|−
1
2 exp(−Tr(AN (ε, θ)))

(4.6)

where ΣN is the covariance matrix of (ξm, . . . , ξn), and AN (ε, θ) is the N × N diagonal
matrix where the diagonals are iθAk,ε, k = m, . . . , n.

Let λk,ε(θ), k = 1, . . . , N be the eigenvalues of ΣNAN (ε, θ), we claim that there exists
δ > 0, such that if |θ| < δ, we have

cε(θ) = exp

(
−

N∑
k=1

λk,ε(θ)

)
N∏
k=1

(1− 2λk,ε(θ))
− 1

2

= exp

(
−

N∑
k=1

(λk,ε(θ) +
1

2
ln(1− 2λk,ε(θ)))

)
= exp

(
1

2

∞∑
n=2

2n

n

N∑
k=1

λk,ε(θ)
n

)
.

(4.7)

To see this, we only need to show that when |θ| < δ, then for every N , we have

∞∑
n=2

2n

n

N∑
k=1

|λk,ε(θ)|n <∞. (4.8)

Actually, |λk,ε(θ)| ≤M |θ|ε1−α
√∑N

i,j=1 |r(i− j)|2 for some constant M . Since Nε converges

as ε→ 0, and by the result in [11],
∑N

i,j=1 |r(i− j)|2 ∼ O(N2−2α), the claim is proved.

Next, we show that as ε→ 0,
∑N

k=1 λk,ε(θ)
n converges for each n ≥ 2.

Since λk,ε(θ) are the eigenvalues of ΣNAN (ε, θ), we have

N∑
k=1

λk,ε(θ)
n = Tr((ΣNAN (ε, θ))n). (4.9)

If we denote (ΣNAN (ε, θ))ij = ρij , we can write the RHS of (4.9) as follows:

Tr((ΣNAN (ε, θ))n) =

N∑
i1=1

N∑
i2=1

. . .

N∑
in=1

ρi1i2ρi2i3 . . . ρin−1inρini1 . (4.10)
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It is straightforward to check that

ρkj = r(|j − k|)iθAj+m−1,ε. (4.11)

By stationarity, we have

Tr((ΣNAN (ε, θ))n)

=(iθ)n
∑

i1,...,in=m,...,n

Ai1,εAi2,ε . . . Ain,εr(|i2 − i1|)r(|i3 − i2|) . . . r(|i1 − in|). (4.12)

By (4.4), we have

Ak,ε =
1

N1−α (Nε)1−α 1

ε

∫ ε(k+1−U)

ε(k−U)
h(x)dx :=

1

N1−α (Nε)1−αBk,N (4.13)

where

Bk,N =
1

ε

∫ ε(k+1−U)

ε(k−U)
h(x)dx, k = m, . . . , n (4.14)

is an approximation to h(x). Therefore,

Tr((ΣNAN (ε, θ))n)

=(iθ)n(Nε)n(1−α)
∑

i1,...,in=m,...,n

1

Nn
Bi1,N . . . Bin,Nr(|i2 − i1|)Nα . . . r(|i1 − in|)Nα. (4.15)

By assumption, r(k) ∼ κg|k|−α so that there exists some constant M independent of n and
ε such that

|Tr((ΣNAN (ε, θ))n)| ≤ |θ|nMn (4.16)

and

Tr((ΣNAN (ε, θ))n)→ (iθκg)
n

∫
Rn

h(x1)h(x2) . . . h(xn)

|x2 − x1|α|x3 − x2|α . . . |x1 − xn|α
dx1 . . . dxn (4.17)

as ε → 0, where we have used the fact that h(x) is continuous. Therefore, if |θ| < δ, we
have

cε(θ)→ exp

(
1

2

∞∑
n=2

(2iθκg)
nCn

n

)
(4.18)

where

Cn =

∫
Rn

h(x1)h(x2) . . . h(xn)

|x2 − x1|α|x3 − x2|α . . . |x1 − xn|α
dx1 . . . dxn. (4.19)

We have shown that the conditional characteristic function cε(θ) converges in a small
neighborhood of the origin, and we verify that

c0(z) = exp

(
1

2

∞∑
n=2

(2izκg)
nCn

n

)
(4.20)
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is analytic when |z| < δ. Therefore, c0(z) agrees with a unique characteristic function for
all real values of z. We still denote the characteristic function as c0(z). Take expectation
of cε(θ) in (4.5), by the Dominated Convergence Theorem, we have

E
{

exp

(
iθ

∫
R

1

εα
(g(

x

ε
)2 − 1)h(x)dx

)}
→ c0(θ). (4.21)

Therefore, the random variable
∫
R

1
εα (g(xε )2 − 1)h(x)dx converges in distribution and we

claim that the limit is κg
∫
R h(x)dRD(x). To see this, we only have to prove that the

characteristic function of κg
∫
R h(x)dRD(x) agrees with c0(θ) when |θ| < δ.

Let hε(x) =
∑N

i=1 aε,i1(tεi−1,t
ε
i ]

(x), 0 = tε0 < tε1 < . . . < tεN = T be an approximation to

h(x) in the sense that
||hε(x)− h(x)||H → 0 (4.22)

as ε→ 0. So
∫
R h

ε(x)dRD(x) =
∑N

i=1 aε,i(RD(tεi )−RD(tεi−1)). We claim that

exp

(
iθ

∫
R
hε(x)dRD(x)

)
= exp

(
1

2

∞∑
n=2

(2iθ)n

n

∫
Rn

hε(x1)hε(x2) . . . hε(xn)

|x2 − x1|α|x3 − x2|α . . . |x1 − xn|α
dx

)
(4.23)

when θ is sufficiently small.

To see this, we consider∫
Rn

hε(x1)hε(x2) . . . hε(xn)

|x2 − x1|α|x3 − x2|α . . . |x1 − xn|α
dx

=

N∑
i1,...,in=1

[(
n∏
k=1

aε,ik

)∫ tεi1

tεi1−1

. . .

∫ tεin

tεin−1

1

|x2 − x1|α|x3 − x2|α . . . |x1 − xn|α
dx

] (4.24)

If we define θε,i = aε,i − aε,i+1 for i = 1, . . . , N − 1 and θε,N = aε,N , then we have aε,i =∑N
k=i θε,k and (4.24) can be rewritten as∫

Rn

hε(x1)hε(x2) . . . hε(xn)

|x2 − x1|α|x3 − x2|α . . . |x1 − xn|α
dx

=
N∑

j1,...,jn=1

[(
n∏
k=1

θε,jk

)∫ tεj1

0
. . .

∫ tεjn

0

1

|x2 − x1|α|x3 − x2|α . . . |x1 − xn|α
dx

]
.

(4.25)

On the other hand, ∫
R
hε(x)dRD(x) =

N∑
k=1

θε,kRD(tεk). (4.26)

By the results in [11], the characteristic function of
∫
R h

ε(x)dRD(x) in a small neigh-
borhood of the origin is

exp

(
iθ

∫
R
hε(x)dRD(x)

)

= exp

1

2

∞∑
n=2

(2iθ)n

n

N∑
j1,...,jn=1

(
n∏
k=1

θε,jk

)∫ tεj1

0
. . .

∫ tεjn

0

1

|x2 − x1|α|x3 − x2|α . . . |x1 − xn|α
dx


(4.27)
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Therefore, (4.23) is proved.

As ε→ 0,

exp

(
1

2

∞∑
n=2

(2iθ)n

n

∫
Rn

hε(x1)hε(x2) . . . hε(xn)

|x2 − x1|α|x3 − x2|α . . . |x1 − xn|α
dx

)

→ exp

(
1

2

∞∑
n=2

(2iθ)n

n

∫
Rn

h(x1)h(x2) . . . h(xn)

|x2 − x1|α|x3 − x2|α . . . |x1 − xn|α
dx

)
.

(4.28)

Since
∫
R h

ε(x)dRD(x) →
∫
R h(x)dRD(x) in L2(Ω) by the definition of stochastic integral

with respect to Rosenblatt process, we have

exp

(
iθ

∫
R
h(x)dRD(x)

)
= exp

(
1

2

∞∑
n=2

(2iθ)n

n

∫
Rn

h(x1)h(x2) . . . h(xn)

|x2 − x1|α|x3 − x2|α . . . |x1 − xn|α
dx

)
(4.29)

in a small neighborhood of the origin. This completes our proof. �

Proposition 4.2. Under the same assumption as in Proposition 4.1, we have∫
R

1

εα
q(
x

ε
)h(x)dx

distribution−−−−−−−→
ε→0

V2κg
2

∫
R
h(x)dRD(x). (4.30)

Proof. By Hermite expansion,

q(
x

ε
) = Φ(g(

x

ε
)) =

∞∑
n=2

Vn
n!
Hn(g(

x

ε
)). (4.31)

We claim that ∫
R

1

εα
(q(

x

ε
)− V2

2
(g(

x

ε
)2 − 1))h(x)dx→ 0 (4.32)

in probability.

Actually, we have

E

{(∫
R

1

εα
(q(

x

ε
)− V2

2
(g(

x

ε
)2 − 1))h(x)dx

)2
}

=

∞∑
n=3

∫
R2

1

ε2α

V 2
n

n!
Rg(

x− y
ε

)nh(x)h(y)dxdy

(4.33)
and

1

ε2α
|
∫
R2

Rg(
x− y
ε

)nh(x)h(y)dxdy|

≤M
ε2α

∫
|x−y|<Mε

|h(x)h(y)|dxdy +
M

ε2α

∫
|x−y|>Mε

εnα

|x− y|nα
|h(x)h(y)|dxdy

(4.34)

for some constant M . Since α ∈ (0, 1
2) and n ≥ 3, we show that the RHS of (4.34) is

uniformly bounded in n and converges to 0 as ε→ 0.
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Because
∑∞

n=3
V 2
n
n! < ∞, by the Dominated Convergence Theorem, the LHS of (4.33)

converges to 0 as ε→ 0. By Proposition 4.1,∫
R

1

εα
V2

2
(g(

x

ε
)2 − 1)h(x)dx→ V2κg

2

∫
R
h(x)dRD(x) (4.35)

which completes the proof. �

Remark 4.3. Although we assume that h(x) is continuous in Propositions 4.1 and 4.2, we see
from the above proof that h(x) can be allowed to have finitely many jump discontinuities,
and we will use this fact later.

5 Proof of the main theorem

Recalling (2.3) and (2.4), we have

uε(x)− ū(x) = −
∫ x

0
q(
y

ε
)F (y)dy + (cε − c∗)

x

a∗
+ c∗

∫ x

0
q(
y

ε
)dy + rε(x) (5.1)

where

rε(x) = (cε − c∗)
∫ x

0
q(
y

ε
)dy (5.2)

and

cε − c∗ = a∗
∫ 1

0
(F (y)−

∫ 1

0
F (z)dz − a∗b)q(y

ε
)dy + ρε (5.3)

with ρε the remainder term.

Define

Uε(x) = −
∫ x

0
q(
y

ε
)F (y)dy + (cε − c∗ − ρε)

x

a∗
+ c∗

∫ x

0
q(
y

ε
)dy (5.4)

so that
uε(x)− ū(x) = Uε(x) + rε(x) + ρε

x

a∗
(5.5)

The proof of Theorem 2.2 contains two steps. First, we prove the weak convergence of
1
εαUε(x) as a process in C([0, 1]). Then we control the remainder term rε(x) + ρε

x
a∗ . We use

the notation a . b when there exists a constant M such that a ≤Mb.

5.1 Weak convergence in C([0, 1])

Rewrite

Uε(x) =

∫
R

(c∗1[0,x](y)− F (y)1[0,x](y))q(
y

ε
)dy

+

(∫ 1

0
(F (y)−

∫ 1

0
F (z)dz − a∗b)q(y

ε
)dy

)
x.

(5.6)

Define F (x, y) = c∗1[0,x](y)− F (y)1[0,x](y) + x(F (y)−
∫ 1

0 F (z)dz − a∗b)1[0,1](y) so that

1

εα
Uε(x) =

1

εα

∫
R
F (x, y)q(

y

ε
)dy. (5.7)
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Lemma 5.1. Let

Ū(x) =
V2κg

2

∫
R
F (x, y)dRD(y). (5.8)

Then
1

εα
Uε(x)

distribution−−−−−−−→
ε→0

Ū(x) (5.9)

in C([0, 1]).

Proof. We first prove the weak convergence of finite dimensional distributions and then
prove tightness.

∀x1, x2, . . . , xn ∈ [0, 1] and c1, c2, . . . , cn ∈ R, consider

n∑
i=1

ci
1

εα
Uε(xi) =

1

εα

∫
R

n∑
i=1

ciF (xi, y)q(
y

ε
)dy. (5.10)

We see that
∑n

i=1 ciF (xi, y) is compactly supported and has only finitely many discontinu-
ities. Then by Proposition 4.2 we have

n∑
i=1

ci
1

εα
Uε(xi)

distribution−−−−−−−→
ε→0

n∑
i=1

ciŪ(xi). (5.11)

Therefore, we have proved the weak convergence of the finite dimensional distributions. To
prove tightness, we apply the Kolmogorov criteria [5]. Note that Uε(0) = 0, so we only need
to show that there exist δ, β, C > 0 such that

E{| 1

εα
Uε(x)− 1

εα
Uε(y)|β} ≤ C|x− y|1+δ. (5.12)

Define F1(y) = c∗−F (y) and F2(y) = F (y)−
∫ 1

0 F (z)dz− a∗b. Then for 0 ≤ y < x ≤ 1,
we have

1

εα
(Uε(x)− Uε(y)) =

1

εα

∫ x

y
F1(z)q(

z

ε
)dz +

1

εα
(x− y)

∫ 1

0
F2(z)q(

z

ε
)dz. (5.13)

So

E{| 1

εα
Uε(x)− 1

εα
Uε(y)|2} ≤ 2

ε2α

∫
[y,x]2

F1(z1)F1(z2)R(
z1 − z2

ε
)dz1dz2

+
2

ε2α
(x− y)2

∫
[0,1]2

F2(z1)F2(z2)R(
z1 − z2

ε
)dz

:=(I) + (II).

(5.14)

F2 is bounded, α ∈ (0, 1
2) and by Lemma 2.1, we have

(II) . (x− y)2. (5.15)

For (I), we distinguish the cases |y − x| < ε and |y − x| ≥ ε.
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If |y − x| < ε, since F1 and R are both bounded, we have (I) . |x− y|2−2α.

If |y − x| ≥ ε, by Lemma 2.1, we have

(I) .
∫

[y,x]2

1

|z1 − z2|2α
dz1dz2

. |x− y|
∫ x−y

0

1

t2α
dt . |x− y|2−2α.

(5.16)

Choose δ = 1− 2α. We have

E{| 1

εα
Uε(x)− 1

εα
Uε(y)|2} ≤ C|x− y|1+δ (5.17)

for some constant C. The proof is completed. �

5.2 The remainder term

To analyze the remainder term, we first write

cε − c∗ =

∫ 1
0 F (y)q(yε )dy∫ 1

0
1

aε(y)dy
+

(
b+

1

a∗

∫ 1

0
F (y)dy

) 1∫ 1
0

1
aε(y)dy

− 1
1
a∗

 , (5.18)

which gives

ρε =
a∗∫ 1

0
1

a( y
ε

)
dy

[
(a∗b+

∫ 1

0
F (y)dy)

(∫ 1

0
q(
y

ε
)dy

)2

−
∫ 1

0
F (y)q(

y

ε
)dy

∫ 1

0
q(
y

ε
)dy

]
. (5.19)

We have the following lemma:

Lemma 5.2.
E{|ρε|}+ sup

x∈[0,1]
E{|rε(x)|} ≤Mε2α (5.20)

for some constant M . Furthermore, we have

1

εα
(ρε

x

a∗
+ rε(x))

probability−−−−−−→
ε→0

0 (5.21)

in C([0, 1]).

Proof.

E

{(∫ 1

0
q(
y

ε
)dy

)2
}

=

∫
[0,1]2

R(
y − z
ε

)dydz. (5.22)

By lemma 2.1, R(y−zε ) ∼ κ ε2α

|y−z|2α , so we have

E

{(∫ 1

0
q(
y

ε
)dy

)2
}
. ε2α. (5.23)
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By the Cauchy-Schwartz inequality, we can show in the same way that

E
{
|
∫ 1

0
F (y)q(

y

ε
)dy

∫ 1

0
q(
y

ε
)dy|

}
. ε2α. (5.24)

Since
∫ 1

0
1

a( y
ε

)
dy is bounded from below, we have E{|ρε|} . ε2α.

For rε(x) = (cε − c∗)
∫ x

0 q(
y
ε )dy, we write it in two parts:

rε(x) =

(
a∗
∫ 1

0
(F (y)−

∫ 1

0
F (z)dz − a∗b)q(y

ε
)dy

)∫ x

0
q(
y

ε
)dy + ρε

∫ x

0
q(
y

ε
)dy

=r1
ε(x) + r2

ε(x).

(5.25)

By Cauchy-Schwartz, E{|r1
ε(x)|} . ε2α and the constant does not depend on x. q(y) is

bounded and since E{|ρε|} . ε2α, we also have supx∈[0,1] E{|r2
ε(x)|} . ε2α. Thus, we have

proved (5.20), and we have

sup
x∈[0,1]

1

εα
E{|ρε

x

a∗
+ rε(x)|} → 0. (5.26)

So we have the weak convergence of finite dimensional distribution. Now we prove tightness.

We have rε(0) = 0, and

rε(x1)− rε(x2)

=

(
a∗
∫ 1

0
(F (y)−

∫ 1

0
F (z)dz − a∗b)q(y

ε
)dy

)∫ x1

x2

q(
y

ε
)dy + ρε

∫ x1

x2

q(
y

ε
)dy.

(5.27)

Following the proof of (5.14), we have

E{|rε(x1)− rε(x2)|2} . |x1 − x2|2−2α. (5.28)

Therefore,

E{|ρε
x1

a∗
− ρε

x2

a∗
+ rε(x1)− rε(x2)|2} ≤ C|x1 − x2|2−2α (5.29)

for some constant C.

Thus ε−α(ρε
x
a∗ + rε(x)) converges in distribution to 0 as ε → 0, so it converges in

probability to 0, which completes the proof. �

Recall that
uε(x)− ū(x)

εα
=

1

εα
Uε(x) +

1

εα
(rε(x) + ρε

x

a∗
). (5.30)

We only need to combine lemma 5.1 and 5.2 to complete the proof of Theorem 2.2.
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6 Conclusions and further discussion

We considered the homogenization and corrector (random fluctuation) theory of a one di-
mensional elliptic equation with highly oscillatory coefficients. For a certain class of random
coefficients with long range correlations, we were able to show that the properly rescaled
corrector converges in distribution in the space of continuous function to a stochastic in-
tegral with respect to the Rosenblatt process. Moreover, the corrector’s amplitude is of
order εα and α ∈ (0, 1/2) such that R(x) ∼ κ|x|−2α. Therefore, the longer the range of the
correlations, the larger is the amplitude of the corrector.

The appearance of the Rosenblatt process is due to the fact that the Hermite rank of
Φ is 2. It is natural to ask what would happen if the Hermite rank of Φ was greater than
2. In [7, 12], the non-central limit theorems for functionals of Gaussian fields of arbitrary
Hermite rank was proved. When the Hermite rank is greater than 2, the limit is the so-
called Hermite process. In that case, we expect the properly rescaled corrector to converge
in distribution to some stochastic integral with respect to the Hermite process although we
have not carried out the calculations in detail.

It would also be interesting to generalize proposition 4.1 and 4.2 to the case of elliptic
equations in higher dimensions, at least in the setting considered in [2]. To do this, we
would have to first find the counterpart of the Rosenblatt process in higher dimensions,
which is a nontrivial problem.
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