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Abstract. We consider the stabilization (self-averaging) and destabilization of the energy of
waves propagating in random media. Propagation is modeled here by an Itô Schrödinger equation.
The explicit structure of the resulting transport equations for arbitrary statistical moments of the
wave field is used to show that wave energy density may be stable in the high frequency regime,
in the sense that it only depends on the statistics of the random medium and not on the specific
realization. Stability is conditional on having sufficiently smooth initial energy distributions. We
show that wave energy is not stable, and instead scintillation is created by the wave dynamics, when
the initial energy distribution is sufficiently singular. Application to time reversal of high frequency
waves is also considered.
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1. Introduction. Propagation of high frequency waves in random media has
received a lot of attention in the past forty years. Classical (non-dispersive) wave
analysis finds many applications, for instance in light propagating though turbu-
lent atmospheres, microwaves in wireless communication, sound waves in underwater
acoustics, or seismic waves generated by earthquakes. Dispersive waves find applica-
tions in atomic and high-energy physics for instance. We refer to [10, 18, 23, 32, 33, 36].

In the macroscopic description of the wave energy density, radiative transfer equa-
tions play an important role [10, 23, 31] when the fluctuations of the underlying het-
erogeneous medium are weak and have a correlation length comparable to the typical
wavelength of the system. Although they seem to apply in a wide variety of propaga-
tion regimes, only very few rigorous mathematical results exist to derive them from
first principles and only in the framework of quantum waves solution of a Schrödinger
equation [15, 34]. Their derivation from full wave equations being quite challeng-
ing, simpler models of wave propagation have often been considered in the literature.
There are at least two classes of models in which wave propagation greatly simplifies.
The first class consists of replacing waves by particles in a geometrical optics regime.
Particle dynamics are then easier to model; see for instance [2] for a recent appli-
cation. The second class models wave propagation as a moving front and analyzes
wave dynamics within this front. Wave propagation in random media is substantially
simplified compared to the full wave equations in that we know a priori the front
location. In this paper we consider an example in the latter class of models.

One of the most used models based on front propagation is the parabolic wave
approximation. It singles out a main direction of propagation, say z, and analyzes
wave dynamics in the transverse directions. It is accurate provided that backscattering
can be neglected [35]. In this paper we further simplify the parabolic equation by
assuming that the medium mean zero fluctuations are very fast in the direction z. In
such a regime, fluctuations can be approximated by white noise. This results in an Itô
Schrödinger equation to model wave propagation. This equation has been analyzed
mathematically in [13]. It is shown in [1] that the Itô Schrödinger approximation can
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be rigorously derived from the wave equation in a one-dimensional setting. This wave
propagation model is also referred to in the physical literature as the phase screen
method [37, 38].

The main advantage of the Itô Schrödinger equation over other propagation mod-
els is that explicit equations can be obtained for arbitrary statistical moments of the
wave field. Even though most of the resulting equations cannot be solved analyti-
cally, this is an important advantage over full wave or parabolic models. Although
they may not apply in physical settings where backscattering cannot be neglected,
these equations offer an interesting framework to understand macroscopic aspects of
wave propagation. By macroscopic we mean here the description of a quantity that
relies on the statistical properties of the underlying medium and not on its detailed
structure. One such interesting macroscopic quantity is the wave energy density. One
then aims at answering two types of questions. Is it possible to find an expression for
the ensemble average of the energy density of the propagating waves? In the affir-
mative, is the energy density statistically stable, i.e. independent of the realization of
the random medium in some sense to be described, or statistically instable, in which
case scintillation can be introduced to quantify this instability?

Similar questions have been addressed in various regimes, including the parabolic
approximation [2, 3, 4, 7, 29, 30]. We consider them here in the regime modeled by
the Itô Schrödinger equation. The accessibility of equations for various moments of
the wave field (here the second-order and fourth-order moments are utilized) is central
to our results. After suitable scalings are introduced, we obtain that the phase space
energy density (seen as the Fourier transform of the two-point correlation function of
the wave field) may indeed be stable in a weak sense (i.e., after integration against
a test function) provided that the “initial” energy density at z = 0 is sufficiently
smooth. However we show that the energy density does not stabilize when the initial
energy density is sufficiently singular. Instead we show that scintillation that may be
absent at z = 0 is created by the wave dynamics and persists for all times z > 0.
Important tools in the mathematical analysis of energy stability are some properties
of the Wigner transform [20, 26, 31] and of the solutions to linear transport equations
[12].

The results are then analyzed in the context of the time reversal of waves. Time
reversed waves propagating in heterogeneous media have received a lot of attention
recently [4, 5, 6, 7, 11, 17, 22, 29]. These works follow physical experiments performed
by M. Fink showing that time reversed waves propagating in heterogeneous media
enjoy focusing properties that the same waves propagating in homogeneous media do
not. Following result in [4, 7], we show how time reversed waves behave in the Itô
Schrödinger framework.

This paper is organized as follows. Section 2 presents the scalings that allow us to
pass from the full wave equation first to the parabolic approximation and second to the
Itô Schrödinger equation. Such a passage is not justified here. The equations for first,
second, and fourth-order moments of the wave field and the equivalent equations for
the Wigner transforms in the phase space are recalled in section 3. The proper scalings
are then introduced in which one may expect stabilization of the energy density. The
main scaling results are summarized in section 3.4. The main stabilization result is
presented in section 4. Technical results on the transport equations for the second
and fourth moment are postponed to the appendix. Section 5 shows that stability
does not occur when the wave field at z = 0 is sufficiently singular. Section 6 briefly
presents the theory of time reversal of high frequency waves and applies the results
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obtained in the preceding sections to this context.

2. Parabolic wave and Itô Schrödinger equations. The scalar wave equa-
tion for the pressure field p(x, z, t) is given by

1
c2(x, z)

∂2p

∂t2
= ∆xp+

∂2p

∂z2
. (2.1)

Here c(x, z) is the local sound speed and ∆x is the usual Laplacian operator in the
transverse variable x ∈ Rd. Physically d = 2 and we consider more generally d ≥ 1.

The objective is to understand the structure of the wave field p(x, z, t) when the
wave speed c(x, z) is random. This is a quite difficult problem that has received a lot
of attention in the mathematical and physical literatures. One main difficulty is that
very few analytical calculations can be performed directly with (2.1). Here we make
two classical simplifications: first we assume a beam-like structure to derive a wave
parabolic equation; second we assume that the fluctuations in the beam direction are
fast so as to obtain an Itô Schrödinger equation. The latter, which has already been
analyzed in [13, 19] for instance, is more amenable to analytic calculations. Although
its domain of physical validity is somewhat restricted, it enjoys many of the inherent
difficulties of the wave equation (2.1), and thus offers an interesting framework for
mathematical understanding of wave propagation in random media.

The first step is to assume that the wave field has a beam-like structure at t = 0
propagating in the z direction and to neglect back scattering. Let us introduce the
complex amplitude ψ(x, z; k) implicitly through the relation

p(x, z, t) =
1
2π

∫
R
eik(z−c0t)ψ(x, z; k)c0dk, (2.2)

where c0 is the statistical mean of the sound speed c(x, z). We assume c0 constant.
The amplitude ψ(x, z; k) at position (x, z) of waves with frequency ω = c0k satisfies
the equation

∂2ψ

∂z2
+ 2ik

∂ψ

∂z
+ ∆xψ + k2(n2 − 1)ψ = 0, (2.3)

where the index of refraction is defined by n(x, z) = c0/c(x, z).
Approximations to the above equation for ψ can be obtained in certain physical

regimes of wave propagation. Let us introduce four physical scales. The first two
scales are Lx and Lz. They correspond to the transversal and longitudinal distances,
respectively, at which we want to observe wave propagation. We thus rescale x and
z as Lxx and Lzz, where x and z are now O(1) quantities. The other scales we
introduce are the lengths at which the underlying medium fluctuates. We denote by
lx and lz the transversal and longitudinal correlation lengths, respectively. In the new
variables we recast the refraction index as

(n2 − 1)(x, z) → νµ(
Lxx
lx

,
Lzz

lz
).

Here ν is another scaling factor quantifying the amplitude of the fluctuations, and
µ is a scaled random process with statistics of order O(1). In the rescaled variables
(2.3) becomes

−i
2kLz

∂2ψ

∂z2
+
∂ψ

∂z
+
−iLz

2kL2
x

∆xψ −
ikLz

2
νµ(

Lxx
lx

,
Lzz

lz
)ψ = 0. (2.4)
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The theory in this paper applies to high frequency waves, in the sense that the
longitudinal propagation distance is much larger than the typical wavelength. We
thus introduce the “small” parameter ε and the scaling

kLz =
κ

ε
, so that

λ

Lz
∼ ε, (2.5)

where λ = 2π/k is the typical wavelength of the system. To simplify notation we shall
often assume that κ = 1 as frequency does not influence in any significant way wave
propagation in our setting.

We are now ready to introduce our main assumptions on wave propagation. The
first one is the small angle (small aperture) approximation:

Lx � Lz. (2.6)

Formally we thus deduce that ψ approximately solves the equation

∂ψ

∂z
+
−iLz

2kL2
x

∆xψ =
ikLzν

2
µ(
Lxx
lx

,
Lzz

lz
)ψ. (2.7)

Our second main assumption is that the variations of the medium in the z di-
rection are faster than anything else in the system. This means that lz � λ and we
introduce

klz ∼ εα, or
lz
Lz

∼ ε1+α, where α > 0. (2.8)

Assuming that µ is a mean-zero process with O(1) statistics, we know from the central
limit theorem that the right-hand side in (2.7) will converge to a limit of order O(1)
provided that the size of the fluctuations scales as the square root of Lz/lz [1, 28],
which means more specifically that

(kLzν)2 ∼
Lz

lz
, or equivalently ν ∼ ε

1−α
2 . (2.9)

In this regime we can formally replace

kLzν

2
µ(
Lxx
lx

,
Lzz

lz
)dz by κB(

Lxx
lx

, dz), (2.10)

where B(x, dz) is the usual Wiener measure in z. Its statistics are described by

〈B(x, z)B(y, z′)〉 = Q(y − x)z ∧ z′, (2.11)

where z ∧ z′ is the minimum of z and z′ and Q is the correlation function. The
notation 〈X〉 denotes statistical ensemble average of the quantity X.

The parabolic equation in this regime becomes then

dψ(x, z) =
iLz

2kL2
x

∆xψ(x, z)dz + iκψ(x, z) ◦B(
Lxx
lx

, dz). (2.12)

Here ◦ means that the stochastic equation is understood in the Stratonovich sense
[19, 27]. In the Itô sense it becomes

dψ(x, z) =
1
2

( iLz

kL2
x

∆x − κ2Q(0)
)
ψ(x, z)dz + iκψ(x, z)B(

Lxx
lx

, dz). (2.13)
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We shall not justify the derivation of (2.13). It has been shown in [1] that the
parabolic approximation and the white noise limit can be taken consistently in the
one-dimensional case following the formal scaling arguments presented above. Starting
from (2.13) we analyze regimes in which the energy density of high frequency waves can
be modeled by “macroscopic” equations in the form of radiative transfer equations. In
such regimes, we wish to understand whether the energy density is stable with respect
to the realization of the random medium, and when it is stable, in which sense. We
also wish to understand the mechanisms that may destabilize the wave energy density
and thus render it dependent on the random medium realization. In such a case, a
scintillation function is introduced to characterize destabilization.

The main advantage of (2.13) over (2.1) is that many more explicit analytic
calculations can be performed in the former than in the latter.

3. Moment equations and spatial scalings. It is shown in [13] that the
stochastic partial differential equation (2.13) admits a unique solution as an infinite-
dimensional martingale problem in the case of an initial condition ψ(x, 0) ∈ L2(Rd).
All we need here in the sequel is that explicit equations for arbitrary-order statistical
moments of the random field can be obtained; see for instance [13, 19, 37]. We
recall in this section the derivation of these moment equations, present some relevant
properties for later sections, and introduce the proper scalings in which statistical
stability and instability of the wave energy can be obtained.

To simplify notation we assume that κ = 1 as the reduced wavenumber plays no
role in the sequel. More precisely, all the moments considered in the sequel could be
taken at different wavenumbers. The results would essentially remain identical. Since
all wavenumbers visit the position z at the same time as we consider non-dispersive
waves, there is no qualitative gain to be obtained in this particular regime by looking
at the correlation of fields at different wavenumbers. Restoring frequency dependence
can be achieved by multiplying all instances of the correlation function Q(x) by κ2.

3.1. Coherent field and first moment equation. The first moment is defined
by

m1(x, z) = 〈ψ(x, z)〉. (3.1)

The equation it satisfies is then

∂m1

∂z
(x, z) =

1
2

( iLz

kL2
x

∆x −Q(0)
)
m1(x, z). (3.2)

It is obtained by taking ensemble averaging in (2.13) since ψ(z) and B(dz) are statis-
tically independent by definition of the Itô formulation of the stochastic equation.

Let us consider the L2 norm of the first moment:

M2(z) =
( ∫

Rd

|m1(x, z)|2dx
)1/2

. (3.3)

Upon multiplying (3.2) by m∗
1 (the complex conjugate of m1), adding the complex

conjugate of (3.2) multiplied by m1, and integrating by parts, we deduce that

M2(z) = e−
Q(0)

2 zM2(0). (3.4)

This shows that the coherent field m1 decays exponentially in z. This exponential
decay is not related to intrinsic absorption. Instead it describes the loss of coherence
caused by multiple scattering; see [24].
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More generally the solution to (3.2) is given by

m1(x, z) = e−
Q(0)

2 z
(−ikL2

x

2πLzz

) d
2

∫
Rd

ei
kL2

x
2Lzz |x−ξ|2m1(ξ, 0)dξ. (3.5)

We observe that all terms in (3.2) have the same order provided that

kL2
x ∼ Lz, or equivalently Lx ∼ ε1/2Lz. (3.6)

This means that initial fluctuations in x at z = 0 at the scale ε1/2 will be modified
smoothly from z = 0 to z > 0. Initial fluctuations at the scale Lx/Lz � ε1/2 will
essentially remain unaffected at z = O(1) so that

m1(x, z) ∼ e−
Q(0)

2 zm1(x, 0) + o(1).

Initial fluctuations at the scale Lx/Lz � ε1/2 will be rapidly lost at distances z = O(1)
because of the dispersive effects of the Schrödinger equations:

sup
x
|m1(x, z)| = O

((kL2
x

Lz

)d/2)
� 1,

for z = O(1) provided m1(x, 0) is integrable for instance.

3.2. Energy density and second moment equation. The equation for the
first moment is not satisfactory to describe wave propagation as it does not account
for the energy transfer from coherent to incoherent states resulting from multiple
scattering. How energy propagates is better understood by looking at the second
moment

m̃2(x1,x2, z) = 〈ψ(x1, z)ψ∗(x2, z)〉. (3.7)

By application of the Itô calculus [27] we obtain that

d(ψ(x1, z)ψ∗(x2, z)) = ψ(x1, z)dψ∗(x2, z) + dψ(x1, z)ψ∗(x2, z) + dψ(x1, z)dψ∗(x2, z).

Using then (2.13), (2.11), and the fact that ψ(x, z)ψ∗(y, z) and B(ξ, dz) are indepen-
dent in the Itô formulation, we obtain that

∂m̃2

∂z
=

iLz

2kL2
x

(∆x1 −∆x2)m̃2 +
(
Q

(Lx(x1 − x2)
lx

)
−Q(0)

)
m̃2. (3.8)

We want to consider regimes of wave propagation in which the above equation retains
as many terms of order O(1) as possible. We have three scaling parameters at our
disposal: Lx/Lz, lx/Lz, and |x1 − x2|. Indeed we expect that the wave fields at x1

and x2 will be uncorrelated if the distance |x2 − x1| is O(1) and thus need to rescale
|x2 − x1| as well. All the terms in (3.8) are of order O(1) provided that

Lx|x1 − x2|
lx

∼ 1, and
kL2

x|x1 − x2|
Lz

∼ 1. (3.9)

Since there are two constraints for three scaling parameters, we have a free parameter
and assume that

Lx = εγLz, (3.10)



Self-averaging of wave energy in random media 7

for some γ > 0 since Lx � Lz. We then obtain that

lx
Lz

∼ ε1−γ , and |x1 − x2| ∼ ε1−2γ ≡ η = η(ε). (3.11)

We are interested in regimes such that |x1−x2| � 1, which implies with the parabolic
approximation that

0 < γ <
1
2
.

We have thus introduced a family of propagation regimes parameterized by γ. The
limit γ → 0 is interesting physically as it corresponds to the case Lx/Lz → O(1) and
lx/Lz → ε. When moreover α→ 0 so that lz/Lz → ε, we obtain in the limit the weak
coupling regime. In this regime where the parabolic approximation no longer holds,
wave energy in phase space is approximately given by the solution of a radiative
transfer equation [31] of the form (3.16) below. The mathematical justification is
however much more difficult and rigorous derivations have only been obtained for
quantum waves [15, 34]. The other limit γ → 1/2 corresponds to very narrow beam
propagation Lx/Lz → ε1/2. Since lx/Lz → ε1/2 as well, the lateral propagation
distance is not sufficiently large that we can expect any self-averaging of the wave
energy. This will be confirmed by the results presented in section 4.

It is convenient to introduce the rescaled variables

x =
x1 + x2

2
, y =

x1 − x2

η
.

Defining now m2(x,y) = m̃2(x1,x2) for the second moment in the new system of
coordinates, we obtain that it solves:

∂m2

∂z
=

iLz

kL2
xη
∇x · ∇ym2(z)−

(
Q(0)−Q(y)

)
m2(z). (3.12)

Notice that kL2
xη ∼ Lz by choice of η so all the terms in the above equation are of

order O(1). The analysis of (3.12) is more complicated than that of (3.2). However
it is well-posed in the L2 sense thanks to the following a priori bound:

Lemma 3.1. We have that
∫

R2d

|m2(x,y, z)|2dxdy ≤
∫

R2d

|m2(x,y, 0)|2dxdy.

Proof. Indeed upon multiplying (3.12) by m∗
2 and multiplying the equation for m∗

2

by m2, we obtain by integrations by parts and by the self-adjoint property of ∇x ·∇y

that

∂

∂z

∫
R2d

|m2(x,y, z)|2dxdy = −
∫

R2d

(
Q(0)−Q(y)

)
|m2(x,y, z)|2dxdy. (3.13)

Now we have from (2.11) that

0 ≤ 1
2

〈(
B(x1, z)−B(x2, z)

)2
〉

= Q(0)−Q(x2 − x1).

Since the correlation function Q(x) is maximal at x = 0 we deduce that the right-hand
side in (3.13) is non-positive, hence the bound.

When the initial conditions of the wave field ψ oscillate at the scale η, then
m2(x,y, 0) oscillates at the scaleO(1) in both variables x and y and so doesm2(x,y, z)
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given by (3.12) at z ∼ 1. This is the regime we are interested in, and η is the scale of
the transverse wave fluctuations at z = 0.

It is both instructive and mathematically convenient to recast this equation in the
phase space. We introduce the Wigner transform [20, 26, 31, 39] of the field ψ(x, z):

W (x,p, z) =
1

(2π)d

∫
Rd

eip·yψ(x− ηy
2
, z)ψ∗(x +

ηy
2
, z)dy. (3.14)

Up to scaling factors, we observe that 〈W 〉 is the Fourier transform of m2 from the
spatial variable y to the dual variable p, and more precisely

m2(x,y, z) =
∫

Rd

eip·y〈W 〉(x,p, z)dp. (3.15)

Thus W can be interpreted as the energy density of waves (although it is positive only
in the limit η → 0 [20]) at z and x propagating with wavenumber p/η. We obtain by
taking Fourier transforms in (3.12) that 〈W 〉 satisfies the following radiative transfer
equation:

∂〈W 〉
∂z

+
Lz

kL2
xη

p · ∇x〈W 〉 =
∫

Rd

[
Q̂(p− p′)−Q(0)δ(p− p′)

]
〈W 〉(p′)dp′. (3.16)

We deduce the existence of a unique solution to (3.16) in the L2 sense from Lemma
3.1 and the Parseval identity. This equation is analyzed in detail in the appendix.
Notice that the scattering coefficient Q̂ satisfies

Q̂(p) ≥ 0. (3.17)

Indeed we deduce from (2.11) that

〈B̂(x1, z)B̂∗(x2, z)〉 =
∫

R2d

e−i(x1−x2)·ξ2+ix2(ξ1−ξ2)Q(x1 − x2)dx1dx2

= Q̂(ξ1)δ(ξ1 − ξ2).

Upon integrating both sides against any test function λ(ξ1)λ∗(ξ2) we get that

0 ≤
∣∣(B̂(ξ1, z), λ(ξ1))

∣∣2 =
∫

Rd

|λ|2(ξ1)Q̂(ξ1)dξ1,

which implies (3.17). This can also be seen as an application of Bochner’s theorem
[8].

3.3. Scintillation and fourth moment equations. We can similarly obtain
an equation for the fourth moment:

m̃4(x1,x2,x3,x4, z) = 〈ψ(x1, z)ψ∗(x2, z)ψ(x3, z)ψ∗(x4, z)〉. (3.18)

From Itô calculus we get, denoting for brevity ψk = ψ(xk, z),

d(ψ1ψ
∗
2ψ3ψ

∗
4) = ψ∗2ψ3ψ

∗
4dψ1+· · ·+ ψ1ψ

∗
2ψ3dψ

∗
4 + ψ1ψ

∗
2dψ3dψ

∗
4 +· · ·+ ψ3ψ

∗
4dψ1dψ

∗
2 .

Using then (2.13), (2.11), and the fact that any functional of ψ(z) and B(dz) are
independent in the Itô formulation, we obtain that

∂m̃4

∂z
=

iLz

2kL2
x

(∆x1 −∆x2 + ∆x3 −∆x4)m̃4

−
(
2Q(0) +

∑
1≤m<n≤4

(−1)n−mQ
(Lx(xm − xn)

lx

))
m̃4.

(3.19)
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Again we want as many terms as possible of order O(1). Up to some permutations in
the indices, this implies that the same scaling as for the second order moment holds,
namely

Lx

Lz
∼ εγ ,

lx
Lz

∼ ε1−γ , x1 − x2 ∼ ε1−2γ , x3 − x4 ∼ ε1−2γ , x2 − x3 ∼ 1.

All but four terms in (3.19) are then of order O(1). The latter cross terms involve the
correlation function taken at differences of points other than x1 − x2 and x3 − x4.

The fourth moment equation is easier to analyze after the change of variables

x =
x1 + x2

2
, y =

x1 − x2

η
, ξ =

x3 + x4

2
, t =

x3 − x4

η
, η =

lx
Lx

.

Here we have imposed lx = ηLx to slightly simplify notation. Defining fourth moment

m4(x,y, z, t, z) = m̃4(x1,x2,x3,x4, z)

in the new variables we obtain that

∂m4

∂z
=

iLz

kL2
xη

(∇x · ∇y +∇ξ · ∇t)m4(z)−Qm4(z), (3.20)

where

Q(x,y, ξ, t) =
(
2Q(0)−Q(y)−Q(t) +

∑
εi,εj=±

εiεjQ(
x− ξ

η
+ εiy − εjt)

)
. (3.21)

This allows us to state the following a priori bound:
Lemma 3.2. We have the following bound:∫

R4d

|m4(x,y, ξ, t, z)|2dxdydξdt ≤
∫

R4d

|m4(x,y, ξ, t, 0)|2dxdydξdt.

The proof is similar to that of Lemma 3.1 since Q ≥ 0. Indeed we verify that

0 ≤ 1
2

〈(
B(x1, z)−B(x2, z) +B(x3, z)−B(x4, z)

)2
〉

= 2Q(0) +
∑

1≤m<n≤4

(−1)n−mQ(xm − xn),

which implies that 0 ≤ Q. We deduce that (3.20) admits a unique solution uniformly
bounded for z > 0 in L2(R4d).

We can also analyze fourth order moments in the phase space. Let us introduce

W(x,p, ξ,q, z) = W (x,p, z)W (ξ,q, z). (3.22)

This moment can easily be related to m4 using (3.14). The equation satisfied by 〈W〉
is then:

∂〈W〉
∂z

+
Lz

kL2
xη
T2〈W〉 = R2〈W〉+K12〈W〉. (3.23)
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Here we have defined the following operators

T2W = (p · ∇x + q · ∇ξ)W

K12W =
∫

Rd

Q̂(u)ei
(x−ξ)·u

η

(
W(p− u

2 ,q−
u
2 ) +W(p + u

2 ,q + u
2 )

−W(p− u
2 ,q + u

2 )−W(p + u
2 ,q−

u
2 )

)
du

K2W =
∫

R2d

[
Q̂(p− p′)δ(q− q′) + Q̂(q− q′)δ(p− p′)

]
W(p′,q′)dp′dq′

R2W = K2W − 2Q(0)W,
(3.24)

where T2 is the transport operator, R2 is the product scattering operator and K12

is the cross term scattering. We have also introduced the operator K2 that will be
used later. When x − ξ ∼ 1, the term K12〈W〉 is small since Q̂(p) decays to 0
as |p| → ∞. This means that in some integrated sense these cross terms become
negligible as η → 0. Energy stability is based on this observation.

Let us define the energy fluctuation or scintillation function

Jη(x,p, ξ,q, z) = 〈W(x,p, ξ,q, z)〉 −W22(x,p, ξ,q, z), (3.25)
W22(x,p, ξ,q, z) = 〈W (x,p, z)〉 〈W (ξ,q, z)〉. (3.26)

Then Jη satisfies the equation( ∂

∂z
+

Lz

kL2
xη
T2 −R2 −K12

)
Jη = K12

[
〈W (x,p, z)〉〈W (ξ,q, z)〉

]
, z > 0,

Jη(z = 0) = 〈W(x,p, ξ,q, 0)〉 − 〈W (x,p, 0)〉〈W (ξ,q, 0)〉.
(3.27)

Our main task is then to show in which sense Jη → 0 as η → 0. The answer is
that Jη will converge strongly to 0 when W (x,p, 0) is sufficiently regular. However
for sufficiently singular (but still physical) W (x,p, 0), some scintillation can appear
during wave propagation, even if initially Jη(z = 0) ≡ 0.

3.4. High frequency scalings. Summarizing the above calculations, we have
obtained a family of wave fields and statistical moments parameterized in the high
frequency regime by a parameter 0 < γ < 1/2. The scale ε in the direction of
propagation z, the scale η = ε1−2γ in the transverse directions, and the other scaling
parameters are related by

lz
Lz

= ε1+α � 1
kLz

∼ ε� lx
Lz

∼ ε1−γ � η = ε1−2γ � Lx

Lz
∼ εγ � 1.

To simplify notation, we assume from now on that kL2
xη = Lz.

The Itô Schrödinger equation is then given by

dψη =
1
2
(iη∆x −Q(0))ψηdz + iψηB(

x
η
, dz). (3.28)

Let us consider the Wigner transform of the above field

Wη(x,p, z) =
1

(2π)d

∫
Rd

eip·yψη(x− ηy
2
, z)ψ∗η(x +

ηy
2
, z)dy. (3.29)

Then its average 〈Wη〉 solves

∂〈Wη〉
∂z

+ p · ∇x〈Wη〉 =
∫

Rd

[
Q̂(p− p′)−Q(0)δ(p− p′)

]
〈Wη〉(p′)dp′. (3.30)
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Although η no longer appears in the equation itself, it may appear in the initial
conditions we impose on Wη. Finally we introduce

Wη(x,p, ξ,q, z) = Wη(x,p, z)Wη(ξ,q, z), (3.31)

whose average 〈Wη〉 solves

∂〈Wη〉
∂z

+ (p · ∇x + q · ∇ξ)〈Wη〉 = R2〈Wη〉+K12〈Wη〉. (3.32)

It remains to address the choice of boundary conditions at z = 0 for the Wigner
transform Wη. When Wη is given by (3.29), the initial conditions Wη(z = 0) are
known to be quite singular in the limit η → 0 [20]. More precisely, for initial wave
fields uniformly bounded in L2(Rd) as in the theory of the stochastic equation (2.13)
[13], the Wigner transform is bounded in a space A′ ⊃Mb(R2d) and positive measures
of the form δ(x−x0)δ(p−p0) for x0,p0 ∈ Rd can be attained as limits of Wη(x,p, 0)
as η → 0 [26].

In several applications of wave propagation, one may not be interested in pure
states given by (3.29), but in a mixture of states. It this case one is interested in a
quantity of the form

Wη(x,p, z) =
1

(2π)d

∫
S

∫
Rd

eip·yψη(x− ηy
2
, z; b)ψ∗η(x +

ηy
2
, z; b)dyµ(db). (3.33)

Here S is a state space equipped with a non-negative bounded measure µ that may
or may not depend on the scaling parameter η. The equations that 〈Wη〉 and 〈Wη〉
satisfy still are (3.30) and (3.31), respectively. The principal difference with respect
to (3.29) is that Wη(z = 0) can now be arbitrarily smooth for appropriate choices of
S and µ (see also section 6).

The main question we want to answer in this paper is whether 〈Wη〉 is a good
approximation to Wη. In the affirmative case, we have stabilization of the wave energy
density as Wη approximately solves a deterministic equation. In the negative case, the
equation for 〈Wη〉 still provides a tool to estimate the energy density, but fluctuations
and scintillation effects arise that need to be accounted for.

We shall see in the coming two sections that the statistical stability or instability
of Wη with respect to the statistical realization of the underlying medium very much
depends on the regularity of the initial condition Wη(z = 0), which we shall assume
deterministic here since it is obviously independent of B(x, z).

4. Stabilization: deterministic energy densities. The main result of this
section is to show that 〈Wη〉(x,p, z) introduced in the previous section indeed offers a
good description of wave propagation in random media because statistical fluctuations
Wη − 〈Wη〉 vanish in the limit η = η(ε) → 0 weakly. This relies on assuming that
Wη(z = 0) is sufficiently regular.

Let us recall that 〈Wη〉 is the solution of (3.30) and 〈Wη〉 the solution of (3.32).
We still denote by m2 = m2(η) the solution of (3.12) and by W22 = W22(η) the
function given by (3.26). We define the following Banach spaces

Xm,n = Lm(Rd
p;Ln(Rd

x)). (4.1)

Our main result stating that the scintillation function Jη defined in (3.27) is small
when the initial condition Wη(z = 0) is sufficiently smooth is the following.
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Theorem 4.1. Let us assume that Wη(x,p, 0) is deterministic and in X2,2 ∩
X2,∞, i.e., ∫

R2d

|Wη(x,p, 0)|2dxdp +
∫

Rd

sup
x
|Wη(x,p, 0)|2dp ≤ C,

where C is a constant independent of η. Let us also assume that the correlation
function Q(x) ∈ L1(Rd) ∩ L∞(Rd). Then the scintillation function Jη(x,p, ξ,q, z)
satisfies

‖Jη‖2(z) ≤ Cηd/2, (4.2)

uniformly in z on compact intervals.
Proof. Here ‖·‖2 is the usual L2 norm on R4d. The proof is based on the results on

the transport equations presented in the appendix. Since Wη(z = 0) is deterministic
we obtain that Jη(z = 0) = 0. Thus from (3.27) and Theorem A.4 we deduce that

‖Jη‖2(z) ≤ C

∫ z

0

‖K12W22(s)‖2ds.

The Parseval identity yields that

‖Jη‖2(z) ≤ C

∫ z

0

‖Q12m22(s)‖2ds,

where

m22(x,y, ξ, t, z) = m2(x,y, z)m2(ξ, t, z)

and

Q12(x,y, ξ, t) =
∑

εi,εj=±
εiεjQ

(x− ξ

η
+ εiy − εjt

)
.

We deduce from Corollary A.3 that m2(s) ∈ X2,∞ ∩X2,2 uniformly for s ∈ (0, z). It
thus remains to show that the L2 norm of a function in (X2,∞ ∩X2,2)2 multiplied by
Q12 is of order ηd/2 to conclude the proof of the theorem. More precisely we want to
show that:

I2 =
∫

R4d

Q2(
x− ξ

η
+ εiy − εjt)|m2|2(x,y, s)|m2|2(ξ, t, s)dxdξdydt = O(ηd),

uniformly for s ∈ (0, z). We introduce the change of variables

r =
x− ξ

η
− εjt

and get

I2 = ηd

∫
R4d

Q2(r + εjy)|m2|2(x,y)|m2|2(x− η(r + εjt), t)drdxdydt

≤ ‖m2‖X2,∞(s)ηd

∫
R3d

Q2(r + εjy)|m2|2(x,y)drdxdy

≤ ηd‖m2‖X2,∞(s)‖m2‖2(s)‖Q‖22.
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This concludes the proof of the theorem since Q ∈ L2(Rd) by interpolation.
We can use this result to show that Wη is indeed stable in a weak sense. Let us

consider a test function λ ∈ L2(R2d). Then we obtain that (Wη, λ), where (·, ·) is the
usual inner product in L2(R2d), is close to (〈Wη〉, λ). More precisely, we have

Theorem 4.2. Under the assumptions of Theorem 4.1 and λ ∈ L2(R2d), we
obtain that 〈{(

(Wη, λ)− (〈Wη〉, λ)
)2}〉

≤ Cηd/2‖λ‖22. (4.3)

Also (Wη, λ) becomes deterministic in the limit of small values of η as

P
(∣∣(Wη, λ)− (〈Wη〉, λ)

∣∣ ≥ α
)
≤ Cηd/2‖λ‖22

α2
→ 0 as η → 0. (4.4)

Let us assume moreover that the initial conditions Wη(x,p, 0) converge strongly in
L2(R2d) to W (x,p, 0) as η → 0. Then the Wigner transform Wη of the stochastic
field ψη solution of (3.28), converges weakly and in probability to the deterministic
solution W (x,p, z) of (3.30) uniformly in z on compact intervals.

The proof of the theorem is based on the results of Theorem 4.1 and the calcula-
tion:〈(

(Wη, λ)− (〈Wη〉, λ)
)2〉

= (〈Wη〉, λ⊗ λ)− (〈Wη〉, λ)2 = (Jη, λ⊗ λ) = O(ηd/2)‖λ‖22.

By application of the Chebyshev inequality [9] we obtain (4.4).
The convergence result provides an error bound for the fluctuations (4.3). How-

ever, stability only occurs in a weak sense. The field Wη(x,p, z) does not stabilize
pointwise as Wη(x,p, z) and Wη(ξ,q, z) are uncorrelated provided that |x− ξ| � η.
In the case where |x − ξ| ∼ η we do not expect Wη(x,p, z) and Wη(ξ,q, z) to be
uncorrelated as the cross terms (the operator K12) in (3.23) then become an O(1)
contribution and generate scintillation that will persist when |p − q| is also of order
η. Thanks to the error control in (4.3) these stability results are nevertheless stronger
than the ones we can obtain in the parabolic approximation regime without passing
to the White Noise limit [4]. For instance error control in (4.3) allows us to choose a
test function that depends on η. For a test function of unit mass of the form:

λη(x,p) =
1
ηαd

φ(
x− x0

ηα
)

1
ηβd

ϕ(
p− p0

ηβ
),

with α ≥ 0, β ≥ 0, and φ and ϕ smooth non-negative functions of compact support
with unit mass in Rd, we obtain that〈(

(Wη, λη)− (〈Wη〉, λη)
)2〉

≤ Cηd/2−(α+β)d.

Let us assume for instance that W = 〈Wη〉 is continuous and independent of η, which
is the case if W (z = 0) = 〈Wη〉(z = 0) is continuous (we can apply Theorem A.1 with
X the Banach space of continuous functions equipped with the sup norm). Provided
that 1/2 > α+ β we obtain that

(Wη(z), λη) →W (x0,k0, z), as η → 0,

in mean square, hence in probability, and this uniformly in z on compact intervals.
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5. Destabilization and scintillation effects. We saw that the scintillation
function Jη was negligible in the limit η → 0 when Wη(z = 0) was sufficiently smooth.
This is no longer the case when Wη(z = 0) is sufficiently singular.

We show in the appendix that (3.32) is well-posed in the space of bounded mea-
sures. Let us assume that

Wη(x,p, 0) = δ(x− x0)δ(p− p0), (5.1)

which as we have already mentioned may happen as the limit Wigner transform of
pure states bounded in L2(Rd) [26]. It this case, the scintillation function Jη does not
converge to 0 as η → 0. Instead, scintillation of order O(1) is created and its total
intensity does not decay as z increases. More precisely we have the following result:

Theorem 5.1. Let us assume that the initial conditions for Wη are given by
(5.1). Then the scintillation function Jη is composed of a singular term of the form

δ(x− ξ)δ(p− q)
(
α(x,p, z)− e−2Qzα(x− zp,p, 0)

)
. (5.2)

The other contributions to Jη are mutually singular with respect to this term. More-
over the density α(x,p, z) solves the radiative transfer equation

∂α

∂z
+ p · ∇xα+ 2Qα =

∫
Rd

Q̂(u)
(
α(x,p +

u
2
, z) + α(x,p− u

2
, z)

)
du. (5.3)

Its initial condition is a0(x,p) = δ(x−x0)δ(p−p0) so that α is a non-negative density
that satisfies ∫

R2d

α(x,p, z)dxdp =
∫

R2d

α(x,p, 0)dxdp = 1.

The total intensity of this singular part of the scintillation function is thus given by

(1− e−2Qz)
∫

R2d

α(x,p, 0)dxdp = (1− e−2Qz).

In this theorem we have introduced the notation Q = Q(0). We see that the intensity
of scintillation, which vanishes at z = 0, increases like 2Qz for small values of z and
reaches 1 exponentially fast for large values of z.

Proof. The result is based on an analysis of the solution in integral form (A.13)
that 〈Wη〉 satisfies, of the transport semigroup Gt = e−tT2 and on the integral opera-
torsK2 andK12 defined in (3.24). The rules of creation and destruction of scintillation
are essentially the following. The operator K12 creates scintillation when it acts on
functions supported on the subspace {x = ξ}. It is composed of two parts, one that
preserves {p = q} and one that does not. Moreover it destroys scintillation outside
of the manifold {x = ξ}:

K12[δ(x− ξ)δ(p− q)α(x,p)] = −δ(x− ξ)2Q̂(p− q)α(x, p+q
2 )

+δ(x− ξ)δ(p− q)
∫

Rd

Q̂(u)(α(x,p +
u
2

) + α(x,p− u
2

))du,

K12[δ(x− ξ − τ(p− q))α(x,p,q)] = δ(x− ξ − τ(p− q))×∫
Rd

ei
τ(p−q)·u

η Q̂(u)
∑

εi,εj=±
εiεj α(x,p + εi

u
2
,q + εj

u
2

).
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The latter term converges to 0 weakly as η → 0 as soon as τ > 0. In view of the above
formula, we decompose K12 as K+

12 + K−
12, where K+

12 preserves {x = ξ} ∩ {p = q}
(it is composed of the two terms such that εi = εj) and K−

12 does not (it is composed
of the two terms such that εi = −εj).

The operator Gt preserves {x = ξ} only when acting on functions supported on
the subspace {p = q}. However it does not preserve {x = ξ} otherwise:

Gs[δ(x− ξ)δ(p− q)α(x,p)] = δ(x− ξ)δ(p− q)α(x− sp,p)
Gs[δ(x− ξ)α(x,p,q)] = δ((x− ξ)− s(p− q))α(x− sp,p,q)

The operator K2 preserves {x = ξ} but not {p = q}:

K2[δ(x− ξ)δ(p− q)α(x,p)] = δ(x− ξ)Q̂(p− q)(α(x,p) + α(x,q)).

The equation for W22 is the same as that for 〈Wη〉 except that the cross terms
K12 are replaced by 0. Thus Jη is given by the terms in the expansion (A.13) that
involve at least one time the operator K12. Since the initial condition for both W22

and 〈Wη〉 is of the form

δ(x− ξ)δ(p− q)α(x,p, 0),

where here α is a positive bounded measure, we deduce from the analysis of the above
operators that the part of the solution that is supported on the subspace {x = ξ} and
{p = q} is the part that never involves the operators K−

12 and K2. It is not difficult
to realize that this part solves

∂α

∂z
+ p · ∇xα+ 2Qα =

∫
Rd

Q̂(u)
(
α(x,p +

u
2
, z) + α(x,p− u

2
, z)

)
du. (5.4)

We then observe that the total mass∫
R2d

α(x,p, z)dxdp =
∫

R2d

α(x,p, 0)dxdp = 1.

Now the ballistic part of α(x,p, z), which is given by

e−2Qzα(x− zp,p, 0),

is not scintillation as it is also present in W22. This is the only part that does not
involve the operator K12. Hence the scintillation component is given by

α(x,p, z)− e−2Qzα(x− zp,p, 0).

There are other contributions of order O(1) to the scintillation function. They are
however mutually singular with respect to measures supported on {x = ξ}∩{p = q}.
It does not mean that these contributions are necessarily small. However since they
are mutually singular with respect (5.2), the latter persists. This concludes the proof
of the theorem.

Notice that the above theorem singles out one specific contribution to the scin-
tillation function. There are other contributions that do not decay exponentially in
time, for instance:

K−
12Gsa0 = δ(x− ξ)δ(x− sp− x0)Q̂(p− q)δ(

p + q
2

− p0). (5.5)
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This term is mutually singular with respect to (5.2) and yet will contribute a source
term to Jη whose total intensity is preserved by the evolution operator ∂z +2Q−K2.
Notice however that (5.5) will be regularized by ∂z + 2Q − K2 in the sense that
the singular part of (∂z + 2Q − K2)(K−

12Gsa0) decays exponentially in z. We have
concentrated on the part described in Theorem 5.1 because its density α describes a
closed-form equation (5.3).

We have seen that the scintillation function Jη converges to 0 in the “generic”
case, where the initial conditions of the Wigner transform Wη(x,p, 0) are sufficiently
smooth. However when the initial conditions are sufficiently singular, such as for
instance Wη(x,k, 0) = δ(x − x0)δ(p − p0), the scintillation function Jη does not
converge to 0 as η → 0. Instead it increases as z → ∞, which implies that the
quantity 〈Wη〉 is no longer sufficient to completely characterize wave propagation in
the random medium. A complete characterization would require to analyze higher
moments of the wave field as is done in [19].

Let us conclude this section with a remark on the large z behavior. All the esti-
mates we have obtained in previous sections hold uniformly in z on compact intervals.
Since the L2 norm is preserved by the equation (3.27) as shown by Lemma 3.2, we
can show that Jη is small in the L2 sense uniformly for z � η−d/2. Since the operator
K12 is of order η−d when applied to smooth functions, we may expect that Jη is
small in some sense for distances z � η−d although we have no rigorous argument to
substantiate this claim.

Another quantity of interest to measure scintillation is the so-called scintillation
index, which is an integrated version of the rescaled quantity h = Jη/W22. There are
several works on the numerical behavior of h as z →∞. We refer to [21, 37, 38]. All
numerical simulations suggest that h converges to 1 as z →∞, which is incompatible
with energy stability (where h ≈ 0). Scintillation eventually dominates the dynamics
of wave propagation. This would be consistent with other results obtained on the
long “time” behavior of the Itô Schrödinger equation [19], where the energy density
follows an exponential law, hence is by no means deterministic.

6. Application to time reversal of waves in random media. The propa-
gation of time reversed waves in random media has received a lot of attention recently
in the physical [14, 16, 17, 22, 25] and mathematical [4, 5, 6, 7, 11, 29] literatures. In
the original experiments carried out by M. Fink, propagating waves emanating from
a spatially localized source are recorded in time by an array of transducers. They are
then time reversed and sent back into the medium, so that what is recorded last is sent
back first. The striking aspect of time reversed waves is that they refocus better at
the location of the initial source when propagation occurs in a heterogeneous medium
than in a homogeneous medium.

The first quantitative explanation to this phenomenon for multidimensional waves
was obtained in [7] and further studied in [4, 5, 29, 30]. An important question that
arises in the context of time reversed waves is to understand how stable the back-
propagated signal is with respect to the realizations of a random medium with given
statistics. The framework introduced in [7] allows us to respond precisely to this
question if wave propagation is modeled by the Itô Schrödinger equation and the
scalings introduced in earlier sections are appropriate.

Let us briefly recall the mathematical framework for the propagation of time
reversed waves. We follow the presentation in [4]. Let us denote by ψη(x, z = 0) =
ψ0((x− x0)/η) the initial source term, where x0 is the center of the source term and
ψ0 is a given smooth function. We assume here that the reduced frequency κ = 1
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throughout. We let the signal propagate till z = L modeling wave propagation by
the Itô Schrödinger equation (3.28). At z = L the signal is truncated (multiplied by
χ(x)), filtered (convolved with f(x)), and time reversed (complex conjugated in this
context). It is then sent back to z = 0. This corresponds to a single time time reversal
experiment [5]. Following [4, 7] the back-propagated signal can be written as

ψB
η (ξ;x0) =

∫
R2d

eik·(ξ−y)Wη(x0 + η
y + ξ

2
,k, L)ψ0(y)

dydk
(2π)d

. (6.1)

The function Wη(x,k, z) has a very similar expression to the mixture of states
(3.33). More precisely it is given by

Wη(x,k, z) =
∫

Rd

f̂(q)Uη(x,k, z;q)dq, (6.2)

where

Uη(x,k, z;q) =
∫

Rd

eik·yQη(x− ηy
2
, z)Q∗η(x +

ηy
2
, z)

dy
(2π)d

, (6.3)

and Qη is the solution of (3.28) with initial condition

Qη(x, 0) = χ(x)e−
iq·x

η .

We are thus in the framework described in section 3.4 and can apply the results
obtained in sections 4 and 5. Our main result is the following:

Theorem 6.1. Let us assume that the initial condition ψ0(y) ∈ L2(Rd), the filter
f(y) ∈ L1(Rd) ∩ L2(Rd), and the detector amplification χ(x) is sufficiently smooth.
Let us also consider two test functions λ̃(x0) and µ(ξ) in L2(Rd). All functions here
are supposed real-valued to simplify.

Then ψB
η (ξ;x0) converges weakly and in probability to the deterministic signal

ψB(ξ;x0) =
∫

Rd

eik·ξW (x0,k, L)ψ̂0(k)dk,

where W (x0,k, L) is the solution of (3.30) with initial conditions given by

W (x,k, 0) = f̂(k)|χ(x)|2.

Moreover, introducing λ(ξ,x0) = λ̃(x0)µ(ξ) we have the following estimate〈
(ψB

η − 〈ψB
η 〉, λ)2

〉
≤ Cηd‖ψ0‖22‖λ‖22 = Cηd‖ψ0‖22‖µ‖22‖λ̃‖22, (6.4)

uniformly in L on compact intervals.
Proof. The boundary condition at z = 0 for Wη is given by

Wη(x,k, 0) =
∫

Rd

dye−ik·yf(y)χ(x +
ηy
2

)χ(x− ηy
2

).

As χ is a smooth function independent of η and f(y) ∈ L1(Rd) ∩ L2(Rd), we observe
that Wη(x,k, 0) belongs to X2,2 ∩X2,∞. Thus the results of Theorem 4.1 apply. Let
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us now calculate∫
R2d

(ψB
η − 〈ψB

η 〉)(ξ;x0)λ(x0, ξ)dx0dξ

=
∫

R4d

eik·(ξ−y)(Wη − 〈Wη〉)(x0 + η
y + ξ

2
,k, L)ψ0(y)µ(ξ)λ̃(x0)dx0dξdydk

=
∫

R2d

(Wη − 〈Wη〉)(x0,k, L)
∫

Rd

ĥ(k,Y)λ(x0 − ηY)dYdkdx0.

where h(ξ − y, ξ+y
2 ) = ψ0(y)µ(ξ) and ĥ(k,Y) is its Fourier transform with respect

to the first variable only. It remains to observe that∫
R2d

( ∫
Rd

ĥ(k,Y)λ(x0 − ηY)dY
)2

dkdx0 ≤ ‖λ0‖22‖h‖22 = ‖λ0‖22‖λ̃‖22‖µ‖22,

to apply the result of Theorem 4.2 and obtain (6.4). The rest of the theorem follows
from the strong convergence of 〈Wη〉(z = 0) to W (z = 0) and the L2 stability of
(3.30).

This uniform control makes the convergence stronger than the result obtained in
the parabolic approximation of wave propagation in [4]. As in section 4 we can choose
λ̃(x) of the form

λ̃(x) =
1
ηαd

φ(
x− x0

ηα
),

and obtain the convergence result〈
(ψB

η − 〈ψB
η 〉, λ̃⊗ µ)2

〉
≤ Cηd(1/2−α)‖ψ0‖22‖µ‖22‖φ‖22 → 0 (6.5)

provided that α < 1/2. This shows that the average in the center point x0 may be
performed over a domain of diameter ηα, much larger than the transverse scale η but
much smaller than O(1).

We may also have destabilization when Wη(z = 0) is singular although this case
is not very physical. In the limit η → 0, the initial condition for Wη(z = 0) is given by
f̂(k)|χ(x)|2. This term is very singular if the support of χ(x) becomes concentrated
at one point as η → 0 and the filter f̂(k) also picks one given wavenumber k0 in
the limit η → 0. Whereas the former is physical if one assume that the volume
covered by the transducers is small, the latter is not very physical as “good” detectors
with minimal blurring correspond to f̂(k) close to a constant. In the setting where
Wη(z = 0) converges to δ(x)δ(p−p0) however, the results of Theorem 5.1 apply and
the refocused signal ψB

η is no longer stable.

Acknowledgments. This work was supported in part by ONR grant N00014-
02-1-0089, NSF grant DMS-0239097, and an Alfred P. Sloan fellowship.

Appendix A. Results on radiative transfer equations. This appendix
presents some properties satisfied by the solutions of the transport equations defined
in previous sections. Similar results can be found in [12] for instance. However they are
not quite stated in the form that we need in this paper and are concerned specifically
with transport equations of the form (3.16) and not (3.23).
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A.1. Analysis of second-order transport equation. Let us consider the
transport equation for a(x,p, z)

∂a

∂z
+ p · ∇xa =

∫
Rd

[
Q̂(p− p′)−Q(0)δ(p− p′)

]
a(x,p′, z)dp′ + f(x,p, z)

a(x,p, 0) = a0(x,p),
(A.1)

where f(z) is an additional source term. With obvious notation we recast this equation
as

∂a

∂z
+ Ta+Qa = Ka+ f(z)

a(x,p, 0) = a0(x,p),
(A.2)

where Q = Q(0) is a constant and K is a positive operator. The solution can be
written in integral form

a(z) = e−zQHza0 +
∫ z

0

e−(z−s)QHz−s(Ka+ f)(s)ds, (A.3)

where the free transport semigroup is defined by

Hz = e−zT , i.e., Hzh(x,p) = h(x− zp,p). (A.4)

Let X be a Banach space of functions on R2d. We deduce from the fact that
Q̂ ≥ 0 and from the Minkowski inequality that for all function g ∈ X,

‖Kg‖X =
∥∥∥∫

Rd

Q̂(p− p′)g(x,p′)dp′
∥∥∥

X
≤

∫
Rd

Q̂(p− p′)‖g‖Xdp′ = Q‖g‖X . (A.5)

We can then show the
Theorem A.1. Let us assume that

‖Hz‖L(X) ≤ 1 for all z ≥ 0.

Then the unique solution to the transport equation (A.1) satisfies that

‖a‖X(z) ≤ ‖a0‖X +
∫ z

0

‖f‖X(s)ds. (A.6)

Proof. Indeed when f = 0 we obtain from the assumptions on Hz and K that

‖a‖X(z) ≤ e−Qz‖a0‖X +
∫ z

0

e−(z−s)QQ‖a‖X(s)ds.

We see that ‖a‖X(z) = ‖a0‖X is a majorizing solution of the above equation so that

‖a‖X(z) ≤ ‖a0‖X .

Similarly when a0 = 0 we have

eQz‖a‖X(z) ≤
∫ z

0

Q[eQs‖a‖X(s)]ds+
∫ z

0

eQs‖f‖X(s)ds.
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This shows that

eQz‖a‖X(z) ≤
∫ z

0

eQ(z−s)eQs‖f‖X(s)ds = eQz

∫ z

0

‖f‖X(t)dt.

This implies the result.
Corollary A.2. Let 1 ≤ m,n ≤ ∞. Provided that a0 and f are uniformly in

Xm,n = Lm(Rd
p;Ln(Rd

x)), we obtain that the solution a(z) to (A.1) is also in Xm,n

uniformly in z on compact intervals.
The proof is based on the fact that∫

Rd

|Hsf(x,p)|ndx =
∫

Rd

|f(x− sp,p)|ndx =
∫

Rd

|f(x,p)|ndx.

Corollary A.3. Let us assume that a0 ∈ X2,2 ∩X2,∞ and f = 0. Then

m2(x,y, z) =
1

(2π)d

∫
Rd

eiy·pa(x,p, z)dp, (A.7)

where a(x,p, z) solves (A.1), is such that m2 ∈ X2,∞ ∩X2,2, i.e.,∫
R2d

|m2(x,y, z)|2dxdy +
∫

Rd

sup
x
|m2(x,y, z)|2dy ≤ C, (A.8)

uniformly in z on compact intervals.
This follows from Corollary A.2 with (m,n) = (2, 2) and (m,n) = (2,∞) and the
Parseval identity.

A.2. Analysis of fourth-order transport equations. We now consider the
equation for a(x,p, ξ,q, z):

∂a

∂z
+ (p · ∇x + q · ∇ξ)a

=
∫

R2d

[
Q̂(p− p′)δ(q− q′) + Q̂(q− q′)δ(p− p′)](a(p′,q′)− a(p,q))dp′dq′

+
∫

Rd

Q̂(u)ei
(x−ξ)·u

η

(
a(p− u

2 ,q−
u
2 ) + a(p + u

2 ,q + u
2 )

−a(p− u
2 ,q + u

2 )− a(p + u
2 ,q−

u
2 )

)
du + f(z)

a(x,p, ξ,p, 0) = a0(x,p, ξ,q).
(A.9)

We recast the above equation as

∂a

∂z
+ T2a+ 2Qa = K2a+K12a+ f ≡ S(z),

a(x,p, ξ,p, 0) = a0(x,p, ξ,q),
(A.10)

where K2 is the scattering operator K ⊗K and K12 accounts for the cross terms.
In integral form we get

a(x,p, ξ,q, z) = e−2Qza0(x− zp,p, ξ − zq,q)

+
∫ z

0

e−2QsS(x− sp,p, ξ − sq,q, z − s)ds. (A.11)

This allows us to obtain the following result:
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Theorem A.4. Let a0 ∈ Lp(R4d) for 1 ≤ p ≤ ∞. Then the unique solution to
(A.11) satisfies that

‖a‖p(z) ≤ e4Qz‖a0‖p + e4Qz

∫ z

0

e−4Qs‖f‖p(s)ds. (A.12)

Proof. Following the same calculations as for Theorem A.1, we obtain that

‖a‖p(z) ≤ e‖K12‖pz‖a0‖p + e‖K12‖pz

∫ z

0

e−‖K12‖ps‖f‖p(s)ds.

Now it follows from Hölder’s inequality with 1/p+ 1/p′ = 1 that∥∥∥∫
Rd

Q̂(u)
∣∣a(p−u

2
,q−u

2
)
∣∣du∥∥∥p

p
≤ ‖Q̂‖

p
p′

1

∥∥∥∫
Rd

Q̂(u)
∣∣a(p−u

2
,q−u

2
)
∣∣pdu∥∥∥

1
≤ Qp‖a‖p

p.

This shows that ‖K12‖p ≤ 4Q.
When p = 2 we deduce from Lemma 3.2 that the above theorem holds with Q

replaced by 0 in (A.12) since the L2 norm is at most preserved by the evolution in z.

A.3. Integral formulation of fourth-order transport. Let us assume that
f = 0 in (A.10). We define the semigroup

Gz = e−zT2 .

We can therefore recast (A.10) as

a(s0) = e−2Qs0Gs0a0 +
∫ s0

0

e−2Q(s0−s1)Gs0−s1(K2 +K12)a(s1)ds1.

By induction we get that

a(s0) = e−2Qs0Gs0a0

+e−2Qs0

∞∑
k=0

∫ s0

0

· · ·
∫ sk

0

Gs0−s1(K2 +K12) · · · Gsk+1a0ds1 · · · dsk+1.
(A.13)

We deduce from this integral formulation that the equation (A.10) is bounded in
Mb(R4d), the space of bounded measures, for instance. Indeed we verify that

‖Gsµ‖Mb
≤ ‖µ‖Mb

for all µ ∈Mb(R4d). This can be shown by duality since Gs preserves the supremum
of bounded functions. We also verify that K2 and K12 are bounded in L(Mb(R4d))
since their kernels are bounded measures. This implies that the infinite sum in (A.13)
converges in L(Mb(R4d)) and we have proved the:

Lemma A.5. Let us assume that a0 ∈ Mb(R4d). Then so is a(z) uniformly on
compact intervals.
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