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Abstract

We consider the detection and imaging of inclusions buried in highly heteroge-
neous media. We assume that only the statistical properties of the heterogeneous
media can be observed and that the wave energy density may be modeled by
macroscopic equations. The detection and imaging capabilities hinge on ensuring
that the measured data are statistically stable, which means that they depend only
on the macroscopic statistical parameters of the random media and not on the
microscopic statistical realization. In this paper, the macroscopic model is a dif-
fusion equation. In this context, we construct statistical tests to detect inclusions
based on macroscopic diffusion measurements and perform asymptotic expansions
to image their location and volume. We show that time reversal measurements en-
joy a much larger signal-to-noise ratio in the presence of background noise than do
direct wave energy measurements. This is a direct consequence of the enhanced
refocusing properties that characterize time reversed waves propagating in het-
erogeneous media. Finally we present numerical simulations of acoustic waves
propagating in heterogeneous two-dimensional media. The numerical simulations
illustrate which factors contribute to “noise” in the measured data and how they
affect the detection and imaging capabilities.

1 Introduction

Waves emitted by a localized source, propagating in heterogeneous media for a certain
time, recorded by an array of transducers, time reversed, and finally reemitted into the
same media, enjoy striking refocusing properties in the vicinity of the original source
namely, the tightness of the refocusing is very much enhanced when propagation occurs
in highly heterogeneous media rather than in homogeneous media. This enhanced re-
focusing has been observed in many physical settings [24, 26, 29, 33]. It has also been
analyzed mathematically in various regimes of wave propagation such as layered media
[20, 31], directional regimes such as the paraxial or white noise regimes [6, 9, 16, 39], or
more general multi-dimensional regimes based on radiative transport or Fokker-Planck
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equations [8, 10, 11]. In all these regimes, the mechanism leading to super-resolution,
in the sense that the signal focuses more tightly in heterogeneous media than in homo-
geneous media, is multi-pathing. The multi-pathing environment created by the hetero-
geneities may be characterized by macroscopic quantities that depend on the regime of
wave propagation. In the regime of wave propagation of interest in this paper namely,
that of radiative transfer and of its diffusion approximation, the super resolution is char-
acterized by filters, who satisfy macroscopic equations, and whose smoothness properties
indicate how tight the refocusing is [11]. A similar notion in directional regimes is that
of effective aperture [16].

If one knows that a recorded signal propagating in heterogeneous media comes from a
localized source, it is sufficient to time reverse it and send it back into the physical media:
it will refocus at the source location. This has important applications in communication
theory; see for instance [24, 26, 27]. It can also be used in detection and imaging of
inclusions in cluttered media if the clutter is known ezactly, i.e., if the Green function
associated to the heterogeneous media is known [37]. In many practical settings however,
the Green function is not known and the refocusing of time reversed waves cannot be
used in a straightforward manner.

As it turns out, imaging modalities can benefit from another striking property of
time reversed waves: statistical stability, which means that the macroscopic quantities
characterizing multi-pathing are often functions of the macroscopic statistical properties
of the random media and not of its microscopic statistical realization. The main effect
is that the effective aperture in the paraxial regime or the filters in the transport regime
characterizing time reversal are to a large extent statistically stable. This feature was
successfully exploited in [17, 18] to modify imaging functionals so that they would be as
independent as possible of the statistical fluctuations of the random media; see [25, 32]
for other works on the use of time reversal in imaging in cluttered media.

The methods developed in [17, 18] exhibit far superior imaging capabilities than
other classical techniques such as matched field. However, they still very much depend
on the measurement of coherent signals. Such signals can indeed be measured in mod-
erately noisy environments but fade away as randomness increases. It is precisely this
configuration of very dense cluttering that we analyze in this paper. As was said earlier,
imaging is still possible, even with very dense cluttering, when the full Green function
is known. However, the accuracy to which we need to know the Green function is quite
high. In a series of recent papers [1, 12, 13], it was shown that even quite small errors in
the estimate of the Green function could very much perturb the refocusing properties of
the time reversed signal. Sufficiently accurate knowledge of the media at the microscopic
level is therefore out of reach in many interesting applications.

Let us assume that we want to do imaging in highly cluttered media whose properties
are only known in a statistical sense. Since the wave field is highly oscillatory in such
media, it is difficult to use it in the imaging process. Rather, a macroscopic description,
modeling a macroscopic quantity that can be measured, is necessary. In this paper
the macroscopic quantity is the wave energy density and the macroscopic model the
diffusion equation. Most of the results presented in this paper may be generalized to
other macroscopic models (such as for instance the radiative transfer equation [11] or
the Fokker Planck equation [8]) although we shall only consider the diffusive model
here for concreteness. Imaging and detection then depend on the inclusions’ effect on



the constitutive parameter of the macroscopic model, which is the diffusion coefficient
in the diffusive model. We thus replace an inverse problem based on the microscopic
wave equation by an inverse problem based on the macroscopic diffusion equation. The
physically accurate microscopic wave model is too sensitive to the heterogeneities of
the underlying media, and is thus replaced it by a macroscopic model, whose role is
to average out the unimportant fluctuations of the media and retain only its effective
macroscopic features.

Imaging is thus based on fulfilling three main conditions. Firstly, we need to make
sure that the macroscopic model is indeed an accurate description of the physical pro-
cess. Secondly, we need to estimate the macroscopic statistical properties of the random
media (the diffusion coefficient) in the presence and the absence of inclusions. Note that
this is a much easier task than reconstructing the full Green function in heterogeneous
media. Thirdly, we need to ensure that the macroscopic model is statistically stable.
Indeed, the inverse problem associated to imaging in diffusive regimes requires us to
obtain properties of a diffusion coefficient from energy measurements, a highly unstable
(severely ill-posed) problem [5, 28]. It is therefore imperative to ensure that the mea-
sured macroscopic quantities are indeed functions of the macroscopic characteristics of
the random media and not of its fluctuating microscopic realization.

This leaves us with the question of why time reversal may be useful. Whereas the
filters characterizing time reversal indeed solve a diffusion equation [11], the energy
density of classical waves propagating in diffusive media solves the same diffusion equa-
tion [40, 41] and can thus be used to probe fluctuations in the diffusion coefficient.
The answer to why time reversed waves are superior to direct energy density measure-
ments relies on quantifying the background noise. We will demonstrate that direct wave
energy measurements and time reversal measurements have exactly the same imaging
capabilities in the absence of background noise. What distinguishes them is signal to
(background) noise (SNR) ratios. Waves propagating in diffusive environments decay
very rapidly because of geometric spreading. The intensity measured at the array of
detectors may therefore be relatively faint and of the same intensity as uncontrolled
background noise. The relatively low SNR is then a serious impediment to the detec-
tion and imaging of inclusions. Time reversed waves, thanks to their highly efficient
refocusing properties, are not so much affected by the background noise. The reason
is the following. After a noisy signal is recorded and time reversed, the true signal
will indeed refocus, that is, enjoy a sizeable spatial recompression, whereas the noise,
which is incoherent with respect to the initial source term, will not. Time reversal has
therefore this unique advantage that it significantly increases the signal-to noise ratio
between the measured signal and the background noise. The situation is very similar in
communication theory. Whereas multipathing is quite useful, and somewhat necessary,
in multiple antenna communication devices, it also causes a lot of fading [30, 38], re-
sulting in fairly low signal-to-noise ratios. In the regime of diffusion, using time reversal
will have the same advantage as in imaging: it will enhance the signal-to-noise ratio
and allow us to counteract the effects of fading. This enhanced signal-to-noise ratio
may justify in practice the use of time reversal equipment, which allows us to measure
the coherent structure of wave fields before time reversion and is therefore much more
costly than what is needed in direct energy measurements.

The rest of the paper is structured as follows. Section 2 recalls the derivation ob-



tained in [11] to characterize the filters, which model the macroscopic features of time
reversed waves in diffusive media. The detection and imaging procedure is then based
on analyzing the fluctuations in the diffusion coefficient caused by buried inclusions.
Section 3 recalls how the energy density of waves is modeled in the diffusive regime and
characterizes the direct measurements that can be used towards imaging. In section 4,
we present our main assumptions on the macroscopic diffusion model namely, that it is
composed of a known background with constant diffusion coefficient and inclusions of
small volume characterized by different diffusion coefficients. Because data are expected
to be relatively noisy in practice, and because the reconstruction of diffusion coefficients
from measurements is a highly unstable problem, low-dimensional parameterizations of
the inclusions are necessary. The theory of small volume inclusions [3, 5, 19] is perfectly
adapted to such situations. We generalize the asymptotic formulae developed in [19] to
the time-dependent setting and characterize how the diffusive measurements (both di-
rect and time reversal) are asymptotically affected by the presence of inclusions. Based
on this asymptotic model for the available macroscopic measurements, we present in
section 5 statistical tests whose objective is to minimize the error of missed detections
based on a given level of false alarms. Section 6 is devoted to a careful analysis of the
various noise levels that may affect the macroscopic measurements. We show that sta-
tistical stability is imperative for both the direct and the time reversal measurements,
and that time reversal measurements are far less affected by background noises than
direct measurements. We propose in section 7 numerical reconstructions in diffusive
regimes based on various synthetic noise levels. We present in sections 8 and 9 nu-
merical simulations of wave propagation in highly heterogeneous media and address in
this setting the main aspects of the imaging techniques in diffusive regime introduced
in earlier sections. In section 8, we present the two-dimensional numerical setting and
show how the main constitutive parameters of diffusion equations can be estimated nu-
merically. In section 9, we address the fundamental question of the statistical stability
of measurements. We show that the statistical stability is not always guaranteed and
indicate the type of measurements that should be performed to maximize stability. We
also address detection and imaging capabilities at the end of the section. Concluding
remarks are presented in section 10.

2 Time Reversal and Inverse Problem

Our model for wave propagation in random media will be that of acoustic waves. The
generalization to other classical waves such as electromagnetic waves may be worked
out as in [11]. The first order hyperbolic system for pressure p(¢,x) and velocity v (¢, x)
reads in this context:

)
() Vp =0,
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with suitable initial conditions, where p(x) is density and r(x) is compressibility of the
underlying media. We recast the above system as
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where u = (v, p) is a 4—vector, A = Diag(p, p, p, k) is a positive definite 4 x 4 diagonal
matrix, and DI = = 6,40, + 0palp; is @ 4 X 4 symmetric matrix for 1 < j < 3. We use
the Einstein convention of summation over repeated indices.

Time reversal consists then of two steps. We first let an acoustic signal propagate
in the media for a duration 7" > 0:

Ju . ;jou
u(0,x) = S(x),

where S(x) is a localized source centered at xg, which to simplify we assume is irro-
tational, i.e., of the form S(x) = (V¢y(x),po(x))" for some potential ¢y and pressure
po. Such an initial condition may be obtained physically by sending a superposition of
temporal pulses. For instance, we may consider the equation
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where () is a non-negative smooth function supported on (0, 1) such that fol Wp(t)dt =
1. We may then verify that for the type of underlying media of interest to us, the
solution to (4) verifies

u(0,x) = S(x) + lower-order term in e. (5)

The signal is then recorded by an array of receivers modeled by a function yq(x) (such
that yo(x) = 0 when there is no detector at x). The recording occurs over a time window
modeled by x,(t). After the full signal has been recorded, it is digitally time reversed,
which here corresponds to multiplying it by the matrix I' = Diag(—1,—1,—1,1). This
means that pressure is kept unchanged and that the sign of the velocity field is reversed.
The time reversed recorded signal is thus given by

R(t,x) = x.(t)R(t, %), where R(t,x) = T'u(t, x)xa(x). (6)

In a second step, the time reversed recorded signal is emitted back into the same
media, knowing that what was recorded last is sent back first. This yields the following
modeling:

ou 1 j ou
Y + A7 (x)D e x-(2T — t)R(2T — t,x), T <t <2T, )
u(7,x) = 0.

By superposition, the back-propagated signal is then given by

T
u(2Lx) = [ wlsxio(s)ds. )
0
where the function w(s, x; s) solves the problem
ow - OwW
— Ail D]—. - O 0 <t <
gr tA D55 =0 Ostss, (9)

w(0,x;s) = R(s,x).
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Understanding the refocusing properties of the single-time time reversed signal w (s, x; )
is therefore sufficient to analyze the back-propagated signal u(27,x) by superposition.

We are interested in signals propagating over distances L much larger than the
typical wavelength of the initial condition: ¢ = A\/L < 1. The time T is also of order
L/cy, where ¢ is the average speed of propagation in the media. In adimensionalized
quantities x/L and t/T, we thus consider initial conditions of the form

u(0,x) = 5—3/25(%) =S, (X ;XU), (10)

where X is the average location of the source and where the factor %2 has been added
so that the energy of u(0,x) is independent of £. The back-propagated signal will also
refocus in the vicinity of xq and we consequently introduce the notation

u”(¢;x0) = (2T, x, + <€). (11)

We have multiplied the back-propagated signal by the time reversal matrix I' for the
following reason: assuming that x,(t) = d(t — Tp) and that xq(x) = 1 so that the
whole signal is recorded at time Ty; we can then verify that u?(&;x,) = 5_3/28(5). This
property is ensured by the reversibility in time of the hyperbolic system (2).

One of the striking properties of time reversed signal is that their refocusing is greatly
enhanced by the presence of a highly heterogeneous underlying media. Such a behavior
has been explained for several models of heterogeneous media. A quite satisfactory
model that accounts for the diversity of the wave energy density, both in space and in
wavenumbers, is that of radiative transfer equations [11, 40] and its approximation by
diffusion equations. We shall focus in this paper on the model of diffusion equations for
its relative simplicity.

Let us assume that measurements are performed at a single time so that x,(t) =
d(t — Tp). The theory developed in [11] then tells us that asymptotically, as € — 0, the
back-propagated signal is related to the source term according to the relation

uB(f;Xo) = (F(TO, "3 Xq) * SE('))(£)7 (12)

which upon taking Fourier transforms in the £ variable only (defined in the sequel as
f(k) = [ps e”™Ef(€)dE), yields the equivalent relation

1” (k; x0) = F(Tp, k; x0)S. (k). (13)

The Filter F(Tg, k;x¢) = F(Tp, X, |k|)1 is a 4 x 4 matrix proportional to Identity, where
the coefficient of proportionality F'(7Ty,xo, |k|) solves the following diffusion equation

OF
5 ~ Dk)AxE =0,

F(O,X, |k|) = XQ(X)'

We refer to [11, 40] for details on the derivation of the equation for F' and the definition
of the diffusion coefficient D(|k|); see also (54) and (56) in section 8. The diffusion
coefficient is inversely proportional to the power spectrum of the fluctuations of the
heterogeneous media modeled by p(x) and k(x).

(14)
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When the underlying media is rigorously statistically homogeneous (i.e., its statistics
do not depend on position), then the diffusion coefficient D(|k|) is indeed independent of
any spatial variable and only depends on the wavenumber of the propagating waves. We
now assume that the underlying media is statistically homogeneous, but only “locally”
at the macroscopic scale, so that the resulting diffusion coefficient becomes a function
of position as well: D(x, |k|). The “local” statistical homogeneity only makes sense if
the statistical properties of the underlying media change at the macroscopic scale x and
are indeed homogeneous at the microscopic scale ex. In that case, the theory developed
in [11, 40] may be formally generalized to obtain that the filter F' solves the following
equation

88—]; -V -D(x,|k))VF =0,
F(0,%, [k[) = xa(x).

(15)

Our objective in this paper is to use the enhanced refocusing properties of time reversed
waves to detect spatial variations in the diffusion coefficient D(x, |k|).

Collecting the results obtained above, finally we can characterize the backpropagated
signal u”(&;x,) as

a” (k;xg) = /0 F(t, %o, [K|)S. (k) x,(t)dt, (16)

where F'(t,%o,|k|) is the solution of (15). To simplify the analysis, we shall assume

that . (t) = 6(t — T™) so that u?(k;xq) = F(T,xo, |k|)S:(k). Our data, on which the

detection will be based, are thus local values or moments (integrated quantities) of
u?(k;xo)

F(T, %o, |k[) = TS5k (17)

By measuring the above quantity for various wavenumbers |k|, positions xy, and ex-
periment durations 7', we collect information about the solution of (15) from which we
want to obtain information about the diffusion coefficient D(x, |k|).

3 Direct measurements and Inverse Problem

In the previous section, we saw how the backpropagated signal was related to the original

source term S(x) via (16). The derivation was based on the diffusion theory, which can

also be used to model the energy density of waves propagating in heterogeneous media.
Indeed let us consider the (acoustic) energy

E(t,x) = %u(t,x) CA(x)u(t, x) = %(p(x)|v(t,x)|2 + n(x)pZ(t,x)>. (18)

In the diffusive regime, both terms in the above equation are actually equal (equiparti-
tion between the kinetic energy and the potential energy) and the energy density takes
the form

£t %) = / Ut x, [k|)4r |k[2d]K], (19)
0
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where U(t, x, |k|) solves the following equation

U_y. D(x, |k|)VU = 0,
" §(x — xo) A . . dk (20)
0.l = 2= [ S - Alsa)S K T

Here we have used the notation k = |k|k. The energy density £(,x) does not quite
solve a closed form equation. However, it may be decomposed according to (19), where
each component satisfies a diffusion equation of the form (20).

Since (19) and (20) do not appear explicitly in the literature, we briefly derive them
from the material in [40]. The derivation of (19) and (20) follows from the projection
of the Wigner transform of the initial condition S.(x) onto the propagating mode as
is done in (3.41), (3.42), and (3.47) of [40]. Because of the specific form of the initial
condition S° = (eV¢5, p5)! = e73/2(e Vo (X22), po(X20)), the projection of the Wigner

& &
transform of S.(x) onto the propagating mode reads

+ _ iy pe ey . €y dy
aa(oaxak)_/RSe yf <X7X_?ak)f (X,X—F?,k) (271')3,

where f°(x,z,k) = /22 (eV5(z) - k) + /" Xp5(z). As & — 0, we find the limit

T 3) (0 3 Yo 03—~ ) S )

+ k)=
(03 =" ;

The initial conditions for the diffusion equation are then given by the average over k of
the above a™(0,x,k). This is the initial condition given in (20).

The energy density corresponding to the initial conditions Sg(k) concentrated at one
frequency w = ¢ k| therefore solves the same equation as the filters obtained in (17). We
can thus directly use the measurements xq(x)U (7, x, |k|) to probe the media and detect
the presence of inclusions. In the idealized -though practically quite relevant- case where
both the source term and the array of detectors are localized at the macroscopic location
xo (although both are large compared to the microscopic scale £x), then both the time
reversal and direct measurements provide the same information about the media: the
solution U (T, xo, |k|) at various times 7. One may consequently wonder what advantage
there is to using the data obtained in (17) by the time reversal experiment rather than
the direct measurements. In the absence of external noise in the data, the answer
we have just obtained is simple: none whatsoever. In the presence of external noise
however, the reconstruction very much depends on the signal to noise ratio, modeled
by U(t,x,|k|)/Np for direct measurements and by F(t,x,|k|)/Nrg for time reversal
measurements. We shall see in section 6 that the signal to noise ratio may indeed be
much higher for time reversal measurements than it is for direct measurements, whereby
justifying the use of time reversal based procedures to enhance detection and imaging.

4 Characteristics of media and inclusions

The theory presented in the preceding sections to model the available measurements
fundamentally modifies the detection problem. We started with a microscopic wave
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model, where the background and the inclusions were modeled by variations in the
density and the compressibility parameters and arrived at a macroscopic diffusion model
for the wave energy density, where the background and the inclusions are modeled by a
spatially varying diffusion coefficient.

We may justify this as follows. Because of the highly heterogeneous character of the
underlying media, there is little hope that wave measurements may be successfully used
to detect the inclusions. Indeed, in the regime leading to the diffusion approximation,
coherent signals are exponentially damped by the heterogeneities. Algorithms based
on the coherent information, such as travel time estimates or matched field, cannot be
efficient in such regimes.

Detection must therefore rely on the incoherent structure of the waves. This inco-
herent structure is not arbitrary. In many regimes, we can make sense of macroscopic
quantities, such as the energy density of waves and obtain macroscopic closed form
equations for them. The diffusive regime provides an example of such a macroscopic
equation. When such a regime can be exhibited, it is clearly advantageous to use it for
the detection problem as well. This is the point of view we have taken in this paper.
Rather than modeling inclusions at the microscopic level as fluctuations in the sound
speed, we model them at the macroscopic level as spatial fluctuations in the diffusion
coefficient.

There is a vast literature on the inversion of diffusion coefficients in parabolic equa-
tions and in elliptic equations, its steady-state counterpart; see [3, 28, 34, 36]. One of
their main characteristics is their severe ill-posedness, which imply that small errors in
the data may have very large repercussions on the quality of the reconstruction of D(x).
In this paper, we restrict ourselves to the detection problem of localized inclusions. We
assume that the background is known, so that in the absence of inclusions, D(x) = Dy,
a constant to simplify. This implies that the statistical properties of the underlying
media are known in the absence of inclusion. This, however, clearly does not mean that
the underlying media is completely known, which would imply knowledge of the Green
function associated to (2). As we have already mentioned, detection is much simplified
when full knowledge of the Green function is available [37].

Our second assumption concerns the inclusions. We are typically interested in de-
tection based on only a few measurements of F(T),xg, |Kk|), for instance at fixed |k|, for
a given judiciously chosen 7', and at a few source locations xj. Since the reconstruction
of the diffusion coefficient is an ill-posed inverse problem, drastic assumptions on the
diffusion coefficient are necessary. An interesting framework, not very different from
the point-scatterer approximation used in detection based on coherent signals, is that
of localized inclusions with arbitrary contrast in their diffusive properties but small vol-
ume. Truncated asymptotic expansions in the volume provide us with a finite number
of parameters that one can reconstruct from moderately noisy measured data. In many
situations, they also provide us with the correct information on which detection tests
should be based.

In both cases of time reversal (see (15)) and direct (see (20)) measurements, the
measured data are modeled by a diffusion equation of the form

%(t, x) — V- D(x)Vu(t,x) =0, t>0,

u(0,x) = uin(x).

(21)



We assume that x € R? for d = 2,3 and do not prescribe any boundary conditions
to simplify. We consider the detection and imaging of a single inclusion, although the
generalization to multiple inclusions is theoretically straightforward, and assume that
the inclusion is a ball of radius R. The inclusion is thus modeled by its location x, its
radius R, and its diffusion coefficient D;. We recall that the background is modeled by
a diffusion coefficient D(x) = Dy, which we assume to be known.

Provided that the radius is sufficiently small compared to the main distance of prop-
agation, R < L, where (after appropriate rescaling) L ~ O(1) is the typical macroscopic
scale of the domain of propagation, we can devise an asymptotic expansion for the solu-
tion of (21) in powers of the radius R. Note that the radius of the inclusion still needs to
be very large compared to the transport mean free path ¥1(k), where ¥ (k) is defined
in (54) below, in order for the diffusion approximation to hold. Asymptotic expansions
were first obtained in [19] for the steady-state problem and later extended to other frame-
works; see [3] for a recent reference. In the context of the parabolic equation (21), the
asymptotic expansion takes the following form. Let uq(¢, x) be the solution of the unper-
turbed problem, where D(x) = Dy for all x € R?, and let G(,x,x;) be the fundamental
solution of the same equation with initial conditions d(x — x;) (the Green function de-
pends on possible imposed boundary conditions). Let finally du(t, x) = u(t, x) —ug(t, x).
Then we have

t
du(t,x) = Dng/ Vot — 8,%3) - MV, G(5,%,%3)ds + O(R™™)
0
Dy — D, 7
(d—1)Dy+ Dy ¢

The second-order tensor M is called the polarization tensor. The error estimate in
O(R¥1') is quite conservative; see [3]. Here is a brief derivation of the above formula
based on what exists in the literature. The Laplace transform u(w,x) of u(t,x) in the
time variable on R" satisfies the equation

—V - D(x)Vi(w,x) + wi(w, X) = uin(x).

(22)

M =dm

We may now use the classical formulae in [3, 19] to deduce that
6t(w,x) = Dy RV yiip(w, xp) - MV, G (w, X, %;) + O(R™Y),

where 81, g, and G are the Laplace transforms of du, ug, and G in the time variable,
respectively, and where the polarization tensor M is defined as in (22). It suffices to
take the inverse Laplace transform in the above equation to obtain (22).

Because we are interested in relatively small inclusions in practice, the above formula
may often prove sufficient. The expansion in powers of R can be pushed further to obtain
additional information about the inclusion, as was done in [3, 5]. The latter reference
shows however that more refined information on the inclusions than that retrievable
from (22) requires quite accurate data, which may not be available in practice.

5 Statistical tests

The asymptotic formula (22) allows us to acquire knowledge about the presence or not
of an inclusion. In this section we are interested in testing the hypothesis whether the

10



presence of an inclusion is compatible with the measured data. We first assume that we
have access to one measurement du = du(t, x,,) for a given time ¢ and location x,,.

Let us assume that x,, = x(, which corresponds to the echo mode. In the absence
of noise, we can detect an inclusion less diffusive than the background media if we
observe that du < 0 and can detect an inclusion more diffusive than the background
provided that du > 0. We shall simplify the presentation by assuming that D; = 4oc.
This corresponds to a perfectly homogeneous inclusion (the power spectrum of the
heterogeneities vanishes within the inclusion). Because energy can propagate more
freely within the inclusion than in the background, we expect to observe a drop of
energy ou(t,X,,) < 0 in the echo mode.

In practice, the measured data du(t,x,,) differ from the model du(t,x,,) because
of the presence of uncertainties. In the present case, we can distinguish two types of
uncertainties. The first one is classical and models measurement errors at the detectors.
These errors may be caused by defects in the detectors or by a “background noise”. The
latter will be important to distinguish the detection capabilities of time reversal when
compared to direct energy measurements. We will model this error at the detector array
as an additive noise with Gaussian statistics nqg ~ N(0, 03).

The second type of error pertains to the accuracy of the diffusive model itself. The
diffusion equations recalled in earlier sections are valid in the high-frequency limit only.
At fixed e, their validity holds only in an approximate sense, and the error may very much
depend on the realization of the random media used to model wave propagation. It seems
realistic to model this error as a multiplicative noise, and for want of a better statistical
model, we shall also assume that the noise has Gaussian statistics: n, ~ N(0,02).
This noise will be defined more carefully in a later section.

Upon compounding these errors, we may relate our measurements to the true model
as

6t = du(t, Xp; R, xp) +n = R4Gu(t,xpm; 1,%3) + n, (23)

where n ~ N(0,0?) for some o > 0. Here ¢ and x,, are fixed. The parameters R and
x;, are yet unknown. Constructing a test for such a model is classical. The test is based
on two hypotheses

e Hy: hypothesis that there is no inclusion (null hypothesis).
e H,: hypothesis that there is an inclusion (alternate hypothesis).

We want to test Hy against H4. Two types of independent errors can be made. Type
[ errors correspond to rejecting Hy when it is correct (false alarm). Their probability is
given by:

« = P(rejecting Ho|H, is true), (24)

also called the level of significance of the test. Type II errors correspond to accepting
Hy when it is false (missed detection) and have probability

(8 = P(accepting Hy|H 4 is true). (25)
The success of the test (probability of detection) is therefore given by

Power of the test =1 — . (26)
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Let us assume that the inclusion is non-scattering Dy = oo so that du < 0. The test
is then based on the signal to noise ratio. When —du is much larger than o, we want
to conclude that there is an inclusion. This implies the existence of a threshold above
which we reject the null hypothesis. Such a threshold may be obtained as follows.

We want to construct a test that minimizes the probability of Type II error (proba-
bility of missed detection) for a given level of confidence of Type I error (false alarms).
Such optimal tests are called most powerful [23]. The answer to such a problem is given
by the Neyman Pearson lemma. Let us assume that (R,x;,) are known so that H, is
a non-composite hypothesis. We thus wish to know whether the data —du was drawn
from the null distribution A(0,0?) or from the alternate distribution N'(u,o?) with
p = —0u(R,xp) > 0. The corresponding likelihoods ly(z) and [4(x) are given by

1 2? 1 _e=w?

e 207, la(x) = e 27 . 27
2o A() 2o ( )

lo (IL’) =

The likelihood ratio is then given by

lA(IL’) _ Z%

(28)

We deduce from the Neyman-Pearson lemma that all the tests that minimize Type II
errors for a given Type I error are automatically of the form

Reject Hy if  A(=du) >n,

29
Accept, H, otherwise, (29)

for some threshold n > 0. The relationship between 1 and « is given by

/ lo(z)dx = a. (30)
A(z)>n

The calculations may be simplified by remarking that the log of the likelihood ratio in
(28) is affine in x so that tests of the form A(z) > n are equivalent to tests of the form
x > 7 for a suitable 7 > 0. Let ®(x) be the (cumulative) distribution function of the
random variable X = N (0,1), i.e., ®(z) = P{X < x}. The test (29) may thus be recast
as

Reject H, if —du>r,

31
Accept H, otherwise, (31)

where
-

o= / hfa)ds = /  omydlon) =1~ 2(7). (32)

The relation o = «(7) may be inverted to give
m(o;0) = 0® (1 — ). (33)

The threshold 7(c; o) does not depend on the inclusion’s properties (R,x;). The test
is therefore optimal (uniformly most powerful (UMP) in the statistical literature) inde-
pendent of the inclusion.
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The power of the test however, certainly depends on the inclusion’s properties. By
definition, it is given by

(o 0) + R4Gu(1; X(,)>. (34)

1—ﬁ:/A(x)>nlA(x)dx:/DTZA(x)dx: 1—@( =

We observe that 1 — 3 is an increasing function in —R%ju(1;x,) converging to o as
—R%u(1;x,) — 0 (corresponding to small objects or objects very far |x;| > 1), and
converging to 1 as —R%u(1;x,) — oo.
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Figure 1: Power of the statistical test (31) for measurements du given in (23) based
on (22) for the diffusion solution. The measurements are performed for two inclusions
and three noise levels given in percentage of ug(T,X,,). Top-left: geometry of the two
inclusions. Measurements are performed at the source location (a peaked Gaussian in
the simulations) x,, = xo = (10, 35). Bottom two left pictures: ROC curves for the two
inclusions (power of the test as a function of «) for different noise levels. Right row:
power of the test as a function of the radius R of the inclusion for a fixed o = 0.05.
In all simulations, the background diffusion is Dy = 23 and the inclusion’s diffusion
D, = +oco. For the inclusion at d = 50, we have chosen T' = 100 and for the inclusion
at d = 80, T' = 250.

The above formula (34) is quite classical. A common means of displaying the power
is with the receiver operating characteristic (ROC) curve. We plot this probability of
detection versus the probability of false alarm in Fig. 1 for various inclusions and noise
levels. We also plot the probability of detection for a given a. = 0.05 as a function of the
radius R. We use arbitrary units in this section. One unit of distance corresponds to one
wavelength and one unit of time to one wave period (with effective sound speed equal to
1) in section 9 devoted to the numerical simulation of wave equations. In such arbitrary
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units, the background coefficient Dy = 23 has been chosen to match those obtained in
later sections. Note that the measurements performed at the source location and may
correspond to direct measurements or time reversal measurements. For the inclusion at
d = 50, time 7' = 100 maximizes the fluctuation du/uy (on the order of 2%). For the
inclusion d = 80, time 7' = 250 is roughly 25% larger than the time that maximizes
the fluctuation du/ug (on the order of 1.8%). In both cases, d measures the distance
between the source and the inclusion’s center.

Case of multiple measurements. Let us now consider the case of multiple measure-
ments. We still assume that 7" is fixed and consider measurements at different locations
X,, for 1 < m < M. The inclusion will still be of the form D; = 400 and we assume
that du(t,x,,) < 0 for all x,,,. In the case of infinite media, this is equivalent to having
(Xm — Xp) * (X0 — Xp) > 0, Xq is the source location, for all 1 < m < M.
We assume that the noise contributions at different locations x,, are uncorrelated.
We can thus model the measurements as
_5am ~ N(Rdll’ma 02 )7 Hm = _6um(ta Xm; L, Xb)' (35)

m

Let us define
r = (_5am)1§m§M; o = (/Lm)lngM, Y= Diag(a%, Ce ,0']2\4). (36)

We wish to test H, against the alternative H,. The corresponding likelihoods take the
form

_exp(—3z-S'x) _exp(—3(z—R'p) -7 (x — Ru))

lo(x) = , T) = , (37
(@) V27 |dets|1/2 A(®) V27 |dets| /2 (37)

so that the likelihood ratio is given by
Alz) = cexp (R'zX "), (38)

for some constant ¢ independent of the data @ and of the inclusion’s parameters (R, x;).
The Neyman-Pearson lemma again asserts that Type II errors for a given Type I error
are minimized for tests of the form (29).

Upon taking the log of the above likelihood ratio, we observe that these tests are
equivalent to tests of the form ¢t = £X~'p > 7. In other words, t = t(x) is a sufficient
statistic for the data. Moreover, we verify that

t~N(0,07), where o}=p-S 'pu. (39)

Assuming that g is known, i.e., that x; is known, we obtain a UMP test (optimal
independent of the value of R > 0) as follows:

Reject  Hy  if  t((—=0tm)1<menr) > T,
Accept  Hy,  otherwise,

where

o= /t(w)>T lo()de = /m lo(t)dt =1 — ¢<5)' (41)
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The above test is clearly optimal (uniformly most powerful) when the inclusion is at
Xp. However, in practice, the location x; is not known and the test has to be modified.
Since p is not available, we replace it by some M —vector pu® and define

th(z) = 227 'uf ~ N(0, (6f)?),  where (0f1)? = pu® X7 uf (42)

For this new scalar data t%(z), we can now construct a UMP test consisting of rejecting
Hy when tR((—(Sﬂm)lSmSM) > T, where

a=1-0(Z).  1-s-1-9(Z=0).

O O

(43)

How powerful the test will be depends on the accuracy of the estimate p* with respect
to . In practice, where one may expect to perform several measurements at locations
X, that are relatively close to each other (but still sufficiently far apart so that the
measures are statistically independent), and far away from the inclusion x,, we can
expect that —du(t, x,,; R, xp) is almost independent of x, and that o, = o is relatively

close to a constant. In such an idealized case, u® = (1,...,1) is quasi optimal and the
level of confidence and the power of the statistical test are given by
T T —1tR
a:1—c1>( ) 1-5:1-@( ) 44
VMo VMo (44)

Not surprisingly, we observe that M measurements have the effect of increasing the
signal-to-noise ratio by a factor v/M.

All the above results can easily be generalized to arbitrary values of D;. However
the tests are based on whether Dy < D; (the case considered here) or Dy > Dy, in
which case du > 0, and therefore incorporate which type of inclusions one expects.
For instance, D; = 0 corresponds to a perfectly reflecting inclusion characterized by
Neumann boundary conditions at its boundary. As far as detection goes, the signal
variation v — uy coming from such inclusions will be the exact opposite to the case
D, = oo treated above as an example. When the sign of Dy — D; is not known a priori,
statistical tests may still be developed, however they will no longer be uniformly most
powerful; we refer to [23].

6 Direct versus Time Reversal measurements

We have seen in the preceding section how to construct statistical tests to detect the
presence of inclusion from diffusion measurements. We have also seen that the time
reversal filters F(t,x, k) defined in (15) and the direct measurements U (t, x, k) defined
in (20) both satisfied the same equation. The only difference in the equations is the
choice of initial conditions namely, of the form yx(x) for F' and 6(x — x¢) for U by
appropriately choosing S(x). These initial conditions are qualitatively quite similar,
and one could choose x(x) = d(x — x¢) (modeling an array of detectors small at the
diffusive scale x but nonetheless large compared to the wavelength at the scale £x) so
that F(t,x, k) = U(t,x, k).

In such a context, the reconstruction of the inclusion from U(t,x,k) and from
F(t,x,k) would give qualitatively quite similar results in the presence of very small
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noise. Large differences between reconstructions from direct and from time reversal
measurements are therefore to be looked for in regimes of large noise levels. We assume
that t, x, and k are fixed so that we have access only to one measurement to simplify
namely, F' in the time reversal framework and U in the direct framework. We also
assume that U is the total energy measured on the array of detectors xq(x). Note that
the direct measurement U only requires us to measure the total energy at the detectors.
In comparison, F' requires us to measure the whole wave field on the detectors, time
reverse it, and send it back into the media. The latter measurements thus necessitate a
much more elaborate (and expensive) setting than the former.
Let us introduce the notation

F=Fins, U=U-+ny, (45)

where F and U are the measured data. We now characterize the noise levels ny and
ny and show that in some important practical situations, the signal to noise ratios
F/ng > U/ny. We distinguish three types of noise:

e Noise n,, with variance o2, caused on the diffusion solutions by the random

fluctuations in the underlying media.

e Noise nq, with variance o3, caused on the measured fields at the recording array
(assumed additive to model background noise).

e Noise ng, with variance of, caused on the measured filter at the source location
(assumed multiplicative to model detector defects).

The two last noises are classical and merely correspond to errors in the measured data.
The first error models the accuracy of the diffusion approximation. Three mechanisms
contribute to this error. Firstly, the asymptotic limit is derived in the limit ¢ — 0
whereas ¢ is finite in practice. Secondly, the estimate on the background diffusion
coefficient Dy may not be perfect. Thirdly, the diffusion approximation may often be
valid only for the statistical average (with respect to the realizations of the random
media) of the energy density. The approximation may be valid independent of the
realization only in cases of statistical stability. Several theories exist that show that
macroscopic quantities such as the energy density of waves are statistically stable [8, 9,
39]. There are however situations in which the statistical stability does not hold even
though the wave energy density solves on average a macroscopic equation [6]. Moreover,
statistical stability can often be proved only in an integrated sense (see the references
mentioned above). The statistical instability is modeled by 2. For want of a better
model, we shall assume that all these errors are mean-zero Gaussian processes.

It remains to relate the variances o2, 02, and o7 to the noise levels np and ny. Let
u.(t,x) be the solution of (3) with initial condition such that S(k) is supported on the
sphere of modulus k. This is how the filters F' and the direct measurements U are
constructed. At times ¢ of order O(1), the energy recorder at the array of detectors
Xa(x) will be of order O(1), i.e., a fraction of the initial energy. The signal at the array
of detectors will be

u.(t,x) = u.(t,x) + nq(x). (46)
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We assume that the noise distribution is independent of the solution u., which is quite
reasonable in practice if ng models a background noise. Further assuming that ng(x)
and ny(y) for two different detectors at y # x are uncorrelated to simplify, and that
the number of detector in the array is large so that the law of large numbers applies,
we obtain

U= (1+nm)U+ 02, o2 = /R3 Xz(x)%]E{ ng(x) - A(x)nq(x) }dx. (47)

In other words, the direct energy measurements consist of the sum of the energy of the
true signal and the energy of the background noise since both signals are uncorrelated.
We recall that U is the exact solution of the diffusion approximation and that n,U
models the accuracy of that diffusion approximation. This is the model for the direct
measurements. We observe that U is a biased estimate of U. In practice, we may be
able to estimate the variance o2, for instance by probing the background noise level
before starting the measurements. We may for instance assume that

sz = (ﬁd + Nge,
where ¢, is known and nge is a mean zero Gaussian variable with variance o3,. Then
U — 52, becomes an unbiased estimate for U with law N (0, 02,).

Let us now consider the time reversal measurement F. The filter is obtained by
backpropagating the measured signal in (46) for a duration ¢. The noise signal n4(x)
has amplitude and energy of order O(1) and is not correlated to the true signal u. (¢, x).
Its amplitude will therefore remain of order O(1) after back-propagation. In contrast,
the true signal u.(t,x) will backpropagate to give a signal of order Fe3/28 according
to (13), i.e., of order £73/2 in the vicinity of xo. We can thus model the measured filter
as

F = (14n¢+ nm)F 4 0, (48)

where n,q is obtained by backpropagating ng(x) through the random media for a du-
ration ¢ and dividing by S(k) as in (17). Thanks to the powerful refocusing property of
time reversed waves, the amplitude of the back-propagated measured signal is of order
£73/2. This implies that the signal-to-noise ratio F/nyq ~ £~%2, which renders legiti-
mate the assumption that the errors performed in the measurements are multiplicative
rather than additive, whence the multiplicative noise n.

We have modeled unbiased estimates for U and F' based on noise scenarios, which
we believe are realistic, at least qualitatively. In order to test for the presence of an
inclusion, we can now subtract the solution U, and Fj obtained by solving the diffusion
equations in a homogeneous known background. We thus obtain

U = U—35%—Uy = 06U +nnU + nge (49)
5F = F— Fy = 0F+ (ng+nm)F + 32,04
Thus 6U and §F are both unbiased estimates of 60U = U — U, and 6F = F — F,,
respectively. The main difference is how the detector noise nq is handled.

In practice, where the distance between the object and the detectors is sufficiently
large, we may expect the energy level at the detectors to be quite small. It is then not
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unrealistic to assume that nge, even after suitable filtering, is comparable to the signal
dU. The signal to noise ratio §U/ng. may then be too faint to allow for good detection
capabilities, as the test (31) shows. In contrast, the signal to noise ratio 6 F/(£*/?ny4) is
quite large, and it is likely that the detection limit will be caused by errors in the model

N F > €%/?n4, or by errors in the measurements of the refocused signal n¢F > £3/2npg.

7 Reconstructing the inclusion

Once an inclusion has been detected, one may want to obtain additional information. In
the model proposed in this paper, the reconstruction consists of identifying the diffusion
coefficient from measurements of the diffusion solution at different locations x and times
t. Although the full diffusion coefficient may be identifiable from a reasonably large set
of measurements [34, 36], the problem is severely ill-posed so that even small errors in
the measured data may have drastic consequences on the reconstruction.

Here we assume that the asymptotic expansion (22) holds and that the remainder
may be neglected. The Green function and the solution ug(7,x) are those of an infinite
homogeneous medium. We also assume that D; = 400 and that Dy = 23 as in the
previous numerical simulations. There are therefore d + 1 parameters to reconstruct
namely, x, = (90,50) (in arbitrary units) and R. We consider the two-dimensional
configuration d = 2 and assume that we have access to four measurements. Because the
inverse problem has been simplified so as to involve only a finite number of parameters,
the reconstruction becomes stable, in the sense that noise in the data is not amplified
during the reconstruction by more than a constant [2, 5]. We have performed some

Sources x=10

R=12
Object (90,50)

Figure 2: Geometry for the reconstruction of inclusions from noisy measurements 0
based on fluctuations du given by the leading term in (22) and Gaussian multiplicative
noise (see text).

numerical reconstructions from synthetic diffusion data based on the formula (22). The
geometry is presented in Fig. 2 and is similar to one of the cases treated in Fig. 1.
We consider a configuration with four measurements in the echo-mode all situated on
one side of the domain, which corresponds to situations encountered in practice. The
background uo(250, x) is evaluated at T'= 250 and at the four source locations (where
detectors are also located). In this configuration, Ju (250, x) given by the leading term in
(22) is roughly 1.8% of u4(250, x) for the inclusion depicted in Fig. 2, whereas the time
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maximizing du(-,x)/ug(-,x) is T'= 200. A background mean-zero Gaussian noise n,, of
variance o2 = (kug)? is added to the data du = du + n,, where k = 0.25%, 0.5%, 1%.
The best fit to the data given by (22) is calculated by least-square minimization. The
standard deviation of the reconstructed characteristics of the inclusion (z,ys, R) is
estimated from 10 realizations of the random noise and displayed in Tab. 1. The errors

on/ug | error on R (%) | error on x, (arb. units) | error on y, (arb. units)
0.25% 12 9.0 3.5
0.5% 25 15 5.0

1% 33 30 10

Table 1: Error in the reconstruction of the characteristics of inclusions (radius R and
position x, = (xp,yp)) in the setting of Fig. 2. An error of order 0.25% for du/ug
corresponds to an error of order 15% for du.

on the location and volume of the inclusion (the error on the volume R? is roughly twice
that on R) should grow linearly with the noise level, which is roughly observed in the
data.

Let us conclude this section with a few remarks. Firstly, the cost function used in
the minimization has many local minima. A Newton-type technique will thus converge
to the global minimum only if the initial estimate is sufficiently accurate. Global min-
imization algorithms are thus necessary. Secondly, although the noise level is indeed
small compared to the measurements u(7,x), it is already relatively large compared to
the signal du(T, x). Quite accurate measurements are therefore necessary to obtain good
reconstruction capabilities. An error of order 1% on four detectors that are relatively
closely spaced as in Fig. 2 correspond to an error of order 0.5% if we had only one
detector (assuming that noise at the four detectors is uncorrelated). In the ROC curves
presented in Fig. 1, we see that an error of order 0.5% gives very good detection proba-
bilities (the probability of missed detection is 3 = 310~* for a probability of false alarm
a = 0.05). Yet the errors on the reconstructions for k = 1% are quite large. Much more
accurate data are required to reconstruct the inclusion than to simply detect it. Finally,
we see in Tab. 1 that the cross-range reconstructions (y;,) are better than the range
reconstructions (z3), which is classical (and obvious) in the geometry of Fig. 2. It is
substantially better because of the larger aperture of the chosen array of measurements.

8 Acoustic wave simulation

The preceding sections were concerned with an analysis of the detection and imaging
capabilities of time reversal techniques when the energy density of waves is modeled
by a macroscopic diffusion equation. The theory could be modified to accommodate
various macroscopic regimes for the energy density, such as radiative transfer [11, 40],
Fokker-Planck [8] or a paraxial approximation [9, 16, 39]. A fundamental property in all
these models is the statistical stability of the wave energy density. Indeed, in situations
where only a few measurements may be performed, it is important that they depend
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as little as possible on the realization of the underlying media and rather only on its
statistical properties.

The objective of this section and the next section are precisely to verify this statistical
stability numerically. The main challenge numerically is that wave propagation should
occur over a domain very large compared to the typical wavelength in the system.
Moreover the random media need to be carefully simulated so that prescribed statistical
properties are satisfied. Once this is achieved, we need to demonstrate that the regime
of radiative transfer, and then its diffusion approximation, are good models for the wave
energy density.

This section describes the numerical setting and the validity of the macroscopic
model for the wave energy density. The next section addresses the question of the
statistical stability of different types of measurements and considers the detection ca-
pabilities of time reversal techniques in such synthetic environments.

Computational setting. We discretize the first-order hyperbolic system (1) for pres-
sure p(t,x) and velocity v(¢,x) augmented with suitable initial conditions and sur-
rounded by a perfectly matched layer [14, 15] by finite element method [21]. This yields
the discrete linear system

AYA dP
My— = R'P, Mp— = —RV, 50
e P (50)
for the discrete pressure P and velocity V. By appropriate mass lumping [21] both mass
matrices Mp and My are diagonal and the scheme is second-order accurate.
In all our simulations, we assume that

p=1, k(x)=1+ \/EKIG), (51)

where k; is a stationary mean-zero random variable. The effective sound speed in thus
¢o = 1. The fluctuations are characterized by the two-point correlation function

R(x) = E{ri (x +y)r1 (%)},

and by their power spectrum R(k), the Fourier transform of R(x). The fluctuations of
the compressibility 1 (y) have been carefully modeled to verify prescribed power spectra
as in [13]. When we say that the media have fluctuations of order 2%, we refer to the
standard deviation of k; (with respect to kg = 1).

The theory of time reversed waves in diffusive regimes was summarized in (13). The
source terms need to be localized in the vicinity of a point X and at the same time have
an oscillatory behavior at the frequency k/e (reduced frequency k). In the simulations,
the localized source term at wavenumber kg is chosen of the form

S(x) = <O,exp (""#j‘w) cos(ko - x))t. (52)

Typically o is on the order of 5 wavelengths A\g = 27/|ky| so that the frequency content
of S is primarily that of a single (standing) planewave. When we talk about the typical
wavelength in the system, we refer to that specific A\g. The simulations are performed
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using on the order of 13 grid points per wavelength and are two-dimensional. Once the
simulations are run, the filters are calculated according to (17). In all our simulations,
the array of detectors is a rectangle whose boundary has been smoothed out (xq(x) is
a regularized version of the characteristic function on the rectangle) to avoid spurious
numerical oscillations.

Transport and diffusion equations. The transport (or radiative transfer) regime
is characterized by knowledge of a transport mean free path ¥~!(k), which is also here a
transport mean free time since ¢y = 1. The transport mean free path roughly indicates
the mean distance between successive interactions of the wave energy density with the
underlying media. (k) is also called the total scattering coefficient.

The transport mean free path can be related to the power spectrum R(k) of the com-
pressibility fluctuations as follows. In our numerical simulations, the power spectrum is

chosen as
. 1 for k<M

R(k) = Ry { 0 for k> M. (53)

The value M is chosen slightly larger than the wavenumbers kg in the system so as
to maximize interaction between the waves and the underlying fluctuations. In the
simulations, we use the adimensionalized values ky &~ 6.28 (corresponding to \g = 1
precisely) and M a 8.08. In two space dimensions, we obtain [40] that

. M
k3R0 s fOI' k < ?

S (k) = A M?2 M (54)
arccos (1 — W> for k> >

We now want to estimate the transport mean free path numerically. It turns out
that ¥ 71 (k) also indicates how the coherent energy (coherent with respect to the initial
source term) in the system decays as a function of time. Let u(¢,x) be the solution
of the hyperbolic system (1) in heterogeneous media, ug(¢,x) the same solution in a
homogeneous domain, and £(t,x) and £y (t,x) the corresponding energies defined in
(18). It is then well-known that the coherent energy decays exponentially [35] so that
we have approximately

(E(t,-),Enlt,")) _ o—Slko)t (55)

(gH(ta ')7 gH(ta )) ,
at least in the limit of high frequencies. We recall that the speed ¢y = 1. Here ky = |ko|
is the wavenumber of the source term. This is the test we use to estimate ¥ numerically
and compare it to the theoretical prediction (54). The log of left- (right-) hand side
in (55) is estimated numerically (theoretically) in Fig. 3. We observe a very good
qualitative agreement between the numerical simulation and the theoretical prediction.
Notice that for an object about 100 wavelengths apart from the source in a media with
8% fluctuations, the signal will travel at least six transport mean free paths before
reaching the detectors (also at the source location). The coherent signal will thus be
about one part in a thousand of the original signal and is likely to be too faint to be
useful in practical detections. Based on knowledge of the transport mean free path, we
can estimate the diffusion coefficient according to the formula:

D(k) = (56)
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Figure 3: Left: geometry of the simulation (surrounded by a perfectly matched layer).
Right: theoretical and numerical estimation of ¥. In media with 8% fluctuations, the
theoretical value of ¥ based on (54) is Xy, = 0.0338. The estimated value through (55))
is Xpum = 0.0328. The curve presents the log of normalized correlation defined in (55).
The solid line is the left-hand side and the dotted line —X¢.

in two space dimensions, where
0 for k< M/2,

Ak)=—=k$ RoM /. M2\1/2 (57)
m -
—(1-1) for k> M/2.

Based on the numerical and theoretical estimates for ¥, we find for D(k) the values
23.64 and 22.87, respectively. The mean free path (X(k) — A(k))~' =2D(k) > ©7(k) is
a good indication of the distance that waves need to travel before a significant change of
direction may be observed because of scattering effects. Its numerical value is roughly
46 in our experiments compared to 30 for the transport mean free path.

A direct numerical evaluation of the diffusion coefficient (without using the formula
(56)) would be much more satisfactory as it would not rely on knowing the specific
shape of the power spectrum. This is however a much more difficult task as waves need
to propagate for quite a few mean free times before they can reach the diffusive regime.
An additional complication in bounded domains arises with the boundary conditions
one has to impose to the diffusion equation. It is well known that appropriate boundary
conditions to model escape of energy at the domain boundary (through the perfectly
matched layer in our simulations) are of the form [7, 22]

ou
U+2LD o 0, (58)
where L is an extrapolation length and v the normal unit vector at the boundary of the
domain.

We have fitted the diffusion solution with the above boundary conditions to the time
reversal filters for the geometry presented in Fig. 6 in the next paragraph (reproduced
on the left picture in Fig. 4) and for an initial condition of Bessel type given in (59).
Initial conditions of the form (59) are much better than (52) because of their directional
independence. Note however that most of the signal has frequency ko = |ko| and is thus
expected to diffuse according to the diffusion coefficient D (k). The numerical fit for the
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diffusion coefficient and the extrapolation length L in (58) was based on measurements
of the filters and of the diffusion approximation for times between 7T} = 220 and T, =
270. This corresponds to a propagation of roughly 4 — 5 mean free paths (defined as
2D). The time reversal filters calculated from the wave simulations and the diffusion
approximation are presented in Fig. 4. The results of the best fit are D,,, = 26.56
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Figure 4: Right: Comparison between the time reversal filters obtained from wave
calculations in the geometry the left picture and the diffusion approximation.

(whereas the exact coefficient is Dy &~ 23) and Ly, = 1.12. Although the reconstruction
is not nearly as accurate as for 3, we were still able to obtain a reasonable value for
the diffusion coefficient. Further numerical simulations in much larger domains are
necessary to address the reconstruction of diffusion coefficients in random media.

9 Stability and Statistical tests

The preceding section showed how the main characteristics of the transport and diffusive
regimes, namely Y(k) and D(k) could be estimated numerically from simulation of waves
in highly heterogeneous media. The successful detection and imaging of inclusions from
time reversal data presented in earlier sections hinges on one major assumptions namely,
that the noise level n,, is smaller than the fluctuation caused by the presence of the
object. Smallness of n,, follows from: (i) we can assess the statistical properties of
the random media with sufficient accuracy; (ii) the macroscopic solution is sufficiently
stable statistically, in the sense that it does not depend too largely on the realization of
the random media with prescribed statistics.

The preceding section dealt with (i). We now address (ii), which to a large extent
we believe is the most important impediment to successful detection from time reversal
measurements. Indeed, whereas background noise can significantly be reduced by time
reversal measurements (nq is replaced by £¥?nq4 in d space dimensions), detection and
imaging eventually require a stable model for the measured macroscopic quantity (the
filters). Errors in the model for the measurements, including their statistical stability,
strongly correlate with detection and imaging capabilities as we have seen in sections 5
and 7.

Many macroscopic models for wave propagation in random media enjoy statistical
stability properties [8, 9, 39], though statistical stability is not always ensured [4, 6,
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41], for instance because of localization effects or because very singular objects are
considered. Even when statistical stability is ensured, it holds for various averaged
(integrated) quantities (see the references mentioned above) and not point-wise in x
and k for the filter F'(t,x,k). The question should therefore be raised in a slightly
different context. What one should ask is how much the specific measurement (possibly
averaged) we have at our disposal is statistically stable based on what we know about
the random media.

Stability of the Filters. In order to gain stability in the measurements, we construct
a source term whose wavenumber content is localized in k = |k| € RT rather that k € R?
(the simulations are performed in two-space dimensions). Such a source takes the form
of a localized Bessel function spatially localized by a Gaussian envelope. More precisely,
we choose )

pulx) = o (ol = xal) exp (-5 250, (59)
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where Jj is the zero-th order Bessel function of the first kind and ¢ = 3. The initial ve-
locity v(0,x) is set to 0. Because the initial condition is highly peaked for wavenumbers
such that |k| = k, we verify that (17) can be approximated by

~B "
F(t, %0, ko) = i/ 07 (kolk) g (60)
21 Js1 11p(|kolk)

Here ug(x) = u(0,x) the initial source term. Numerically the filters are obtained by
taking the ratios of the pressure fields (the third component of the vector u(k) in two
space dimensions) and approximating the above integral. We consider the configuration
of the simulation described in Fig. 5. We have considered two sizes for the array of

75
medium fluctuations 8%
13 points per wavelength
A=1
15
75 Antenna — —n— 30
Detector

Figure 5: Numerical setting to assess the stability of the filters.

detectors 15 x 15 and 30 x 30 wavelengths recording the signal at 7" = 160, and an
antenna of size 30 wavelengths recording a signal between times 7" = 120 and 7" = 160
(a time span of 40 periods since ¢y = 1). In all configurations, the filters are calculated
for an initial condition of the cosine type as in (52) and for an initial condition of the
Bessel type as in (59). The simulations were performed with 16 different realizations
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of the random media characterized by the power spectrum described in (53) in which
Ry = 0.08. Since (2(k) — A(k))* ~ 45, a simulation with 7" = 160 corresponds to
waves propagating for roughly 4 mean free paths before time reversal, which is already
significant. The standard deviation of the filters in (60) has been estimated for each
configuration. The results are presented in Tab. 2.

‘ Bessel H Cosine
Detection | 30 x 30 | 15 x 15 | Antenna || 30 x 30 | 15 x 15 | Antenna
STD (%) 4.6 6.8 4.6 5.9 6.6 6.1

Table 2: Statistical stability of the measured signals after time reversal in several con-
figurations; see text.

In the above simulations, we indeed observe a relatively good statistical stability
of the filters (on the order of a few percents) that should provide us with reasonable
detection capabilities for sufficiently large inclusions. This behavior depends however
very much on the size of the array of detectors and on the frequency content of the
initial condition.

Detection based on simulated data. The (relative) statistical stability demon-
strated in the previous paragraph is independent of macroscopic models that the filters
may or may not satisfy and is a prerequisite to imaging in media whose exact Green
function is not known.

Let us now consider the geometry presented in Fig. 6. In all simulations, the media

140
medium fluctuations 8%
13 points per wavelength
Source (12,35) =1
Detector IF?EISUSI on (110,35)

Figure 6: Geometry of the detection problem in the numerical simulations.

fluctuations are 8% and the initial condition is the Bessel function in (59). We have
estimated the variation of the filters caused by inclusions located as in Fig. 6 and with
radius between R = 3 and R = 8 for a duration of time reversal experiment 7" = 160.
The filter variations as a function of inclusion’s radius should scale as R? according
to (22). We have observed numerically a variation of the form R'?! in quite good
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agreement with theory, although many macroscopic models share a scaling in R? for the
measurement variations.

For a radius R = 8 as in Fig. 6, we have numerically computed the time reversal
filters and the direct energy measurements for various experiment durations 7. Fig. 7
shows the total energy U(T) measured at the array of detectors as a function of time.
Three energies are presented: Uy(T) in the absence of inclusion, U(T) in the presence
of the inclusion, and U(T) in the presence of an inclusion and of noise modeled as in
(47) with ny, = 0 and nq in (46) a mean-zero Gaussian variable with standard deviation
oq = T%||u(T,-)||L~ added to the measured field u(7,-) at the array of detectors. We

x 107 Energies, x =110, y =35, R=8 Er/u:::rgy ratios, xb=1 10, yb=35, R=$

6 140 )
\\ . — Inclusion i
- ~. | --- Inclusi ise |/
> — Inclusion 1.05 M- l\?g iL:wscllc::irgr?Ise
4 ---- Inclusion+noise Do N ;
--- No inclusion = 17 i U Attt
-
23 0.95
2,
0.9
1t
0.85; ‘ ‘ | | |
- : : 180 200_220 240 260
‘PSO 200 Time(s) 250 300 Time (S)

Figure 7: Left: Energies Up(T) (no inclusion; dash-dotted line), U(T") (inclusion, no
noise; solid line) and U(T') (inclusion with noise; dotted line) for different values of 7" in
the configuration presented in Fig. 6. Right: Energy ratios; same energies divided by

Uo(T).

have not tried to remove the energy 2, from the unbiased estimate U of U. Note that
in such a configuration, the noise level is such that it renders detection of the object
impossible since the error U — U is comparable or in size to U — U,. Since we have
chosen the variance of the noise to be a constant percentile of Uy(T") (for illustration
purposes only as this is unlikely to happen in practice), filtering such a component out
of the data may be relatively easy. However background noise with more complicated
unknown time dependence may be more difficult to handle.

Time reversal measurements are immune to such noise. We present in Fig. 8 the
filters measured in the same configuration of Fig. 6. Filters are evaluated at the source
location x¢ and for the wavenumber |ky|. As for direct measurements, three filters are
presented: Fy(T') in the absence of inclusion, F(T') in the presence of the inclusion, and
F(T) in the presence of an inclusion and of noise modeled as in (47) with n, = 0 and ng
in (46) a mean-zero Gaussian variable with standard deviation o4 = 100%||u(T),-)||L=
added to the measured field u(7, -) at the array of detectors. We observe that the added
background noise added at the level of the detectors has a minor influence on the filters.
A noise of standard deviation roughly 15 times higher than for the direct measurements
U(T) barely modifies the filters (since F/(T) — F(T) is less that one percent of Fy(T))
and much smaller than the fluctuations n,, Fo(T') expected from the statistical instability
of the medium (on the order of five percent of Fy(T') for the simulations presented in
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Tab. 2).

In the absence of background noise, both the direct measurements U(T") and the time
reversal measurements F'(7T') offer the same detection and imaging capabilities. The
variation of measurements reach 15% of the inclusion-free measurement for 7 = 220.
Provided that the error due to statistical instability is 5% to fix ideas, this gives us
a probability of detection 1 — 3 = 0.99 for a = 0.05 based on the statistical tests
developed in section 5. For variations of order 10% and 5% (obtained at sub-optimal
times), the probabilities of detection drop to 0.88 and 0.41, respectively. When statistical
instability increases to 10%, the three probabilities of detection become 0.68, 0.41,
and 0.17, respectively. Filters calculated by time averages as in (8) also need to be
modified accordingly. Notice that estimating the maximum of U(T') (provided that the
background noise is sufficiently small so that U(T") can be estimated) is simple: we just
have to observe the measured intensity as a function of time. Estimating the maximum
of F(T') is a much harder problem as the filters at each duration 7" correspond to a totally
different time reversal experiment. Time reversal thus offers a very powerful technique
to eliminate the effect of background noise in the measurements, but its utilization is
more delicate than that of direct energy measurements.

gX 10™*  TRFilters, x =110, y =35, R=8 TR Filter ratios, x =110, y, =35, R=8
— Inclusion | |
6 ---- Inclusion+noise Th 1
w --- No inclusion L
0
@ Ke]
9] <0.95+
= 4 = -
i 5 — Inclusion
|n_: = --- Inclusion+noise
[T . .
o 0.9 ---- Noinclusion
2r = /
‘ ‘ ‘ 0.85¢ ‘ ‘ ‘ ‘ ‘ ‘
‘P 50 200 250 300 160 180 200 _ 220 240 260 280
Time (s)

Time (s)

Figure 8: Left: Filters (modeled by (60)) Fo(T') (no inclusion; dash-dotted line); F(T)
(inclusion, no noise; solid line) and F(T') (inclusion with noise; dotted line) for different
values of T in the configuration presented in Fig. 6. Right: Filter ratios; same filters

divided by Fo(T).

Let us conclude this section by a remark on the variations F' obtained in Fig. 8.
Although the diffusion approximation was a sufficiently accurate representation of our
numerical simulations to provide a reasonable fit for the diffusion coefficient in Fig. 4, it
fails to give any accurate results for the variations JF' in the geometry of Fig. 6. There
are several explanations for why we should not expect diffusion to work. First of all, the
variations in Fig. 8 are of order roughly similar to the variations expected from having
an inclusion. The main reason is however the following: the models (21)-(22) assume
that the fluctuations are much larger than the mean-free path in order for the diffusion
approximation to hold. Even though the inclusion in Fig. 6 is large compared to the
wavelength, it is small compared to the mean free path (on the order of 45 wavelengths).
The fluctuations should thus not expect to follow a diffusive model (22) in this situation.
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A more refined model of time reversal based on the equations of radiative transfer [11]
is what we believe will give us the right macroscopic model for the curves observed in
Fig. 8. This will be investigated in subsequent studies.

10 Conclusions

We have analyzed the detection and imaging of inclusions buried in highly heterogeneous
media where the energy density of waves may be modeled by a diffusion equation. In
this model, the inclusions are modeled as local fluctuations of the diffusion coefficient
and must therefore typically be large compared to the wavelength of the waves used
to probe them. Provided that the diffusive model is reasonably accurate and that the
diffusion measurements are sufficiently stable statistically, we have developed statistical
tests towards detection of the inclusion and asymptotic models to image the inclusions.
We have demonstrated that time reversed waves, thanks to their enhanced refocusing
properties, could efficiently be used even in the presence of strong background noise
levels that would hamper the use of direct diffusion measurements to detect the buried
inclusions. In the regime of interest in this paper, the media are also too heterogeneous
for imaging techniques based on coherent signals and travel time measurements, for
instance, to be efficient.

Unlike imaging methods based on wave propagation, the reconstructions proposed
here rely on the availability of a macroscopic model and on the statistical stability of
the measured data. Although detection and imaging becomes problem dependent, this
is in our opinion the price to pay when the random media is not known exactly but
rather only in a macroscopic statistical sense. We have insisted on the diffusion model
in this paper for expository reasons. Very similar theories can be developed in other
statistically stable macroscopic models, such as for instance models based on radiative
transfer equations, which we plan to investigate further in the future. No matter what
macroscopic model is retained, it is very likely that noise in the data (coming from
approximate knowledge of the macroscopic model as well as from statistical instabilities)
will be quite large. In such situations, imaging based on asymptotic expansions in the
size of the inclusion provide powerful tools to understand which characteristics of the
inclusions may or may not be reconstructed from data with a given noise level.

Further numerical and experimental studies are certainly necessary to assess the
practical quality and validity of the imaging techniques proposed in this paper. This is
the object of ongoing research by us and other groups.
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