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Abstract
We present the asymptotic expansion of the solution to a diffusion equation
with a finite number of absorbing inclusions of small volume. We use the first
few terms in this expansion measured at the domain boundary to reconstruct the
absorption parameters of the inclusions and certain geometrical characteristics.
We demonstrate theoretically and numerically that the number of inclusions,
their location and their capacity can be reconstructed in a stable way even from
moderately noisy data. The reconstruction of the absorption parameter,which is
important in optical tomography to discriminate between healthy and unhealthy
tissues, requires us however to have far less noisy data. Since the reconstruction
of absorption maps from boundary measurements is an extremely ill posed
problem, the method of asymptotic expansions of small volume inclusions
provides a useful framework to decide which information can be reconstructed
from boundary measurements with a given noise level.

1. Introduction

Optical tomography, which consists of reconstructing physical properties of human tissues
from boundary measurements of near-infrared (NIR) photons, has received considerable recent
attention. This non-invasive medical imaging technique has several benefits: it is harmless as
NIR photons are low energy and it has very good discrimination properties between healthy and
unhealthy tissues. Its drawback is a quite poor spatial resolution because of the high scattering
rate of NIR photons. We refer to [4, 22, 32] for recent references on optical tomography.

Mathematically the image is obtained by solving an inverse problem, where the absorption
and scattering coefficients of a radiative transfer equation, or the absorption and diffusion
coefficients of a diffusion equation, are reconstructed from boundary measurements. Whereas
radiative transfer equations [16, 29] offer a better model for photon propagation than diffusion
equations, they are much more expensive computationally. We only consider the diffusion
approximation in this paper and refer to [5, 10–12, 17, 19, 25, 30] for additional information
on the theory and practice of inverse problems using radiative transfer equations.
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The reconstruction of the coefficients of a diffusion equation from boundary measurements
has been thoroughly studied in the mathematical literature. We refer for instance
to [15, 18, 23, 28]. It has also received a lot of attention in optical tomography [4, 20, 21, 24].
One striking aspect of these inverse problems is their extremely low stability [1, 14], which
implies that very different coefficient profiles have very similar signatures at the domain
boundary, with variations quite often below any experimentally achievable noise level.

This has naturally incited engineers and mathematicians to simplify the inverse problems
by adding a priori information on the physical coefficients so as to improve the reconstruction
stability. The most straightforward simplification consists of assuming that the coefficients
have low contrast. The inverse problem can then be linearized [20, 21, 24]. Another technique
consists of determining the asymptotic fluctuations at the boundary of a domain caused by
inclusions with physical coefficients of arbitrary contrast with respect to a known background
medium but of asymptotically small volume. This technique was pioneered in impedance
tomography in [9] and further developed by Vogelius and co-authors [2, 3, 7, 8].

The first correction term that appears in this asymptotic expansion allows us to reconstruct
the product of the inclusion volume with a nonlinear function of the background and inclusion
conductivities [9]. In the case of absorbing inclusions considered in this paper, the first
correction term takes the form of the product of the volume of the inclusion with the variation of
absorption coefficient. In practice, however, one is interested in both the absorption fluctuation
of the inclusion (which characterizes whether the tissue is healthy or not) and its volume. This
paper’s objective is to address what type of information may be obtained from asymptotic
expansions of well separated inclusions of small volume. We restrict ourselves to the case of
constant diffusion coefficients and varying absorption coefficients. The analysis of absorbing
inclusions is mathematically simpler, but also quite relevant in practice since the absorption
properties of healthy and unhealthy tissues are quite different at the NIR frequencies [27].

Our objectives are twofold. First, we show that the first two terms of the asymptotic
expansion allow us to reconstruct both the volume and absorption fluctuations of small
inclusions in specific cases. Second, we emphasize that no other type of information than
the capacity of the inclusions (the product of their volume with their absorption fluctuation)
can be obtained if the noise level is sufficiently large.

The paper is organized as follows. Section 2 applies the techniques of small volume
expansions developed in [9] to the case of absorption fluctuations. Section 3 extends the
expansion to higher orders and proposes a reconstruction technique for both the volume and
absorption coefficients of ellipsoidal inclusions. Section 4 recalls the stability results of the
general reconstruction problem and shows that the reconstruction of the location, absorption
and volume of inclusions from one boundary measurement is stable. Section 5 proposes
some reconstruction techniques and section 6 presents numerical experiments that quantify
the theory. Section 7 offers some conclusions.

2. First-order effect of small volume inclusions

The full inverse problem in optical tomography based on the diffusion equation as a model for
photon propagation consists of reconstructing the diffusion coefficient D(x) and the absorption
coefficient σa(x) on a domain � from the measurements of u(x; ω) for x ∈ ∂� and at least
two frequencies ω for all possible prescribed currents at the boundary g(x; ω), where u(x; ω)
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solves the following equation:
iω

c
u(x; ω) − ∇ · D(x)∇u(x; ω) + σa(x)u(x; ω) = 0 in �

D(x)
∂u

∂ν
(x; ω) = g(x; ω) on ∂�

u(x; ω) measured on ∂�.

(1)

Here, c is the light speed and ν(x) is the outward unit normal to � at x ∈ ∂�. At a
given frequency ω, only one of the coefficients σa or D can be reconstructed [28]. With
full measurements at two frequencies (two different values of ω), both coefficients can then
be reconstructed [15, 24].

In this paper we simplify the above problem quite substantially and assume that the
diffusion coefficient D(x) is known. To simplify we set it to D(x) ≡ 1. Whereas the
reconstruction of D(x) is important in optical tomography, the main discrimination between
healthy and unhealthy tissues comes from differences in the absorption coefficients [27]. We
also make the simplifying assumption that the frequency ω = 0. Generalization of the theory
to other frequencies is straightforward and will not be considered here.

Our objective is to apply the theory of asymptotic expansions developed in impedance
tomography [9] to optical tomography. We thus assume that the absorption map is the sum of
a background contribution, here a constant σ0 to simplify, and a finite number of fluctuations
of arbitrary size but localized in volumes of small diameter. The diffusion equation (1) with
small absorbing inclusions then takes the form

−�uε(x) + σε(x)uε(x) = 0, �

∂uε

∂ν
= g, ∂�,

(2)

where the absorption map is given by

σε(x) = σ0 +
M∑

m=1

σmχzm +εBm (x). (3)

Here, εBm is the shape of the mth normalized inclusion centred at zm , and χzm +εBm (x) = 1 if
x − zm ∈ εBm and 0 otherwise. The inclusions are centred at 0 in the sense that∫

Bm

x dx = 0 for all m, (4)

and are assumed to be at a distance greater than d > 0, independent of ε, from each other and
from the boundary ∂�.

The parameter ε measures the diameter of the inclusions. Our objective is to derive
an asymptotic expansion for uε in powers of ε and address which type of information on the
inclusions we may deduce from the first few terms of this expansion. This section concentrates
on the leading term of the error uε(x)−U(x), where U(x) is the solution of the homogeneous
problem defined in (6) below.

We denote by G(x; z) the Green function of the corresponding homogeneous problem

−�G(x; z) + σ0G(x; z) = δ(x − z), �

∂G

∂ν
(x; z) = 0, ∂�,

(5)

and by U(x) the homogeneous-domain solution of

−�U(x) + σ0U(x) = 0, �

∂U

∂ν
(x) = g(x), ∂�.

(6)
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As ε → 0, the volume of the inclusions tends to zero and uε converges to U . To show this,
we multiply (5) by uε and integrate by parts to obtain

uε(z) =
∫

∂�

g(x)G(x; z) dσ(x) −
M∑

m=1

∫
zm +εBm

σm G(x; z)uε(x) dx.

Using the same procedure for U(x), we obtain

uε(z) = U(z) −
M∑

m=1

∫
zm+εBm

σm G(x; z)uε(x) dx. (7)

In three space dimensions, the Green function is given by

G(x; z) = e−√
σ0|z−x|

4π |z − x| + w(x; z), (8)

where w(x; z) is a smooth function (because it solves (6) with smooth boundary conditions)
provided that ∂� is smooth. For z at a distance greater than d > 0 away from the inclusions
xm + εBm , we then deduce from the L∞ bound on uε (because g and ∂� are assumed to be
sufficiently regular [13]) that

uε(z) = U(z) + O(ε3).

In the vicinity of the inclusions, we deduce from the relation∫
zm +εBm

G(x; z) dx = O(ε2), z − zm ∈ εBm,

that uε(z)−U(z) is of order ε when z is sufficiently close to an inclusion. Notice that the above
relation holds in any space dimension except n = 2, where ε2 should be replaced by ε2| ln ε|.
Although we concentrate here on the case of three space dimensions, the generalization to
arbitrary space dimensions is straightforward. This also shows that the operator

Kεuε(z) = −
M∑

m=1

∫
zm +εBm

σm G(x; z)uε(x) dx (9)

is a bounded linear operator in L(L∞(�)) with a norm of order ε. This implies that for
sufficiently small values of ε, we can write

uε(z) =
∞∑

k=0

K k
ε U(z). (10)

The above series converges fast when ε is small. Notice however that the series does not
converge as fast as ε3, the volume of the inclusions, because of the singular behaviour of the
Green function G(x; z) when x is close to z.

Let us now use that

uε(z) = U(z) −
M∑

m=1

∫
zm +εBm

σm G(x; z)U(x) dx

+
M∑

m=1

M∑
n=1

∫
zm+εBm

∫
zn +εBn

σmσn G(x; z)G(y; x)uε(y) dy dx. (11)

For the same reasons as above, the last term is of order ε5, and expanding smooth solutions
U(x) and G(x; z) inside inclusions of diameter ε, we obtain that

uε(x) = U(x) −
M∑

m=1

G(z; zm)C (1)
m U(zm) + O(ε5), (12)
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where the capacity C (1)
m is given by

C (1)
m = ε3|Bm|σm . (13)

The reason why we obtain a correction term of order ε5 in (12) comes from the fact that (4)
holds so that the terms of order ε4, proportional to x · ∇U or x · ∇G, vanish.

This result is the analogue of the formulae obtained in [9] in the case of small volume
inclusions with different diffusive properties, with the notable difference that (13) is linear in
σm .

The main drawback of the formula (13) is that it only gives information about the product
of the volume of the inclusion ε3|Bm| and the contrast σm . Since one of the main objectives
in optical imaging is precisely to obtain an accurate estimate of σm so as to know which type
of inclusions we deal with, getting some information about C (1)

m is not sufficient in practice.
As the same time, the above asymptotic analysis shows that if one is not capable of getting
measurements of order ε5, the next-order term in (11), one should not expect to reconstruct
more that C (1)

m . One should then rather look for additional information about the volume of the
inclusions, for instance with another imaging technique, in order to determine their absorbing
properties.

3. Contrast reconstruction

The goal of this section is precisely to push the asymptotic expansion of the preceding section
to higher orders of accuracy and get a reconstruction formula for the absorption fluctuations
σm . We use (7) one more time to obtain that

uε(z) = U(z) −
M∑

m=1

∫
zm +εBm

σm G(x; z)U(x) dx

+
M∑

m=1

M∑
n=1

∫
zm+εBm

∫
zn +εBn

σmσn G(x; z)G(y; x)U(y) dy dx

−
M∑

m=1

M∑
n=1

M∑
l=1

∫
zm +εBm

∫
zn +εBn

∫
zl +εBl

σmσnσl G(x; z)G(y; x)G(p; y)

× uε(p) dp dy dx.

Again, we obtain that the last term is of order ε7. The cross-terms of the second term,
corresponding to values m �= n, contribute to a term of order ε6. Using the same asymptotic
expansions as above, we thus obtain that

uε(z) = U(z) −
M∑

m=1

∫
zm +εBm

σm G(x; z)U(x) dx

+
M∑

m=1

G(zm; z)

[∫
zm +εBm

∫
zm+εBm

σ 2
m G(y; x) dy dx

]
U(zm) + O(ε6). (14)

Expanding again G(x; z)U(x) about the points zm , we get that

uε(z) = U(z) −
M∑

m=1

Cm G(zm; z)U(zm) − ε5σm∇ · αm∇(G(zm; z)U(zm)) + O(ε6). (15)
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Here, we have defined

Cm = ε3|Bm|σm − σ 2
m

∫
zm+εBm

∫
zm +εBm

G(y; x) dy dx

αm = (αm
kl )k,l , αm

kl = 1
2

∫
Bm

xkxl dx.

(16)

Using different values of G(zm; z)U(zm) and ∇zm ⊗∇zm G(zm; z)U(zm), we can have access
to Cm and σmαm . Since the second contribution in Cm is of order ε5, the ratio of σmαm and
Cm gives an approximation of order ε2 of

ρm = |Bm|−1αm .

It is still not possible to obtain the volume of the inclusion from the tensor ρm . To do so,
we need to assume that the inclusion has a specific geometric structure. Assuming for instance
that the inclusion Bm is an ellipsoid, we can then deduce from the tensor ρm the volume |Bm|
of the inclusions. This in turn gives us the constant σm since the capacity Cm is also known.
For instance in the case of a ball Bm of radius R, so that the radius of the real inclusion is Rε,
we obtain that

ρm = R2

10
I3, or Tr ρm = 3R2

10
.

Once R is known, we can obtain the volume of the ball Bm . In the case of a cubic inclusion,
we would obtain that Tr ρm = R2/2. The volumes of spherical and cubic inclusions would
then be given by

VS = 4π

3

(
10

3

)3/2

(Tr ρm)3/2, and VC = 8 23/2(Tr ρm)3/2,

respectively. The ratio VS/VC ≈ 1.1266. So using the ball as a model for a cube would
overestimate the real volume of the inclusion by approximately 12%, hence underestimating
the absorption coefficient by roughly the same amount. This is actually not that big and it
shows a certain robustness of the reconstruction with respect to the geometrical assumptions.

Notice that we could push the asymptotic expansion to higher orders. However, in three
space dimensions, the next term, of order ε6, involves interactions between the inclusions.
We are no longer in the regime where the total effect of the fluctuations is the sum of the
contributions of each fluctuation. Moreover we shall see that the terms of order ε5 turn out to
be quite small already for not-so-small inclusions. It is therefore unclear whether the terms of
smaller order may be used in practice to improve the reconstruction of well separated small
inclusions.

4. Uniqueness and stability results

The reconstruction of arbitrary absorption coefficients σ(x) ∈ L∞(�) (σε(x) in (2)) is known
to be uniquely determined by boundary measurements. More precisely, σ(x) is characterized
by the Neumann-to-Dirichlet map �,which associates�g = (uε)|∂� ∈ H 1/2(∂�) to Neumann
conditions g ∈ H −1/2(∂�). We refer to [14, 28] for such results.

The stability of the reconstruction is however extremely poor. A result expected to be
optimal obtained in [1] shows that

‖σ(x) − σ ′(x)‖L∞(�) � C| log ‖� − �′‖X |−δ. (17)

Here � and �′ are the maps corresponding to the diffusion equations with absorption
coefficients σ and σ ′, respectively, X = L(H −1/2(∂�), H 1/2(∂�)) and δ ∈ (0, 1) is a constant
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that only depends on the spatial dimension (>3). This formula implies that even very small
errors of measurements may have quite large effects on the reconstructed absorption coefficient.

The role of the a priori constraint (3) on the absorption coefficient is precisely to improve
the stability (17). Actually, in the asymptotic limit we consider, where only a finite number of
coefficients are unknown, we can show that these coefficients can be reconstructed in a stable
way from the boundary measurements of a single experiment (i.e. we do not need the full
Neumann-to-Dirichlet map �). Our stability results are very similar to those presented in [9].
To simplify the presentation we assume that all inclusions are balls, so that the formula (15)
can be recast as

uε(z) = U(z) −
M∑

m=1

Cm(G(zm; z)U(zm)) − Dm�zm (G(zm; z)U(zm)) + O(ε6). (18)

We denote by uε and u′
ε the solution of two problems with absorption coefficients σε and σ ′

ε

of the form (3). Using (18), we obtain that

uε(z) − u′
ε(z) = F(z) + O(ε6),

with

F(z) = −
M∑

m=1

(Cm(G(zm; z)U(zm)) − C ′
m(G(z′

m; z)U(z′
m)))

+
M∑

m=1

(Dm�zm (G(zm; z)U(zm)) − D′
m�z′

m
(G(z′

m; z)U(z′
m))). (19)

Here we use M = max(M, M ′) with a small abuse of notation; we will see shortly that
M = M ′. The function F(z) satisfies the homogeneous equation −�F + σ0 F = 0 on �

except at the points zm and z′
m . Moreover, we have that ∂ F

∂ν
= 0 at ∂�. If F = 0 on ∂�,

we deduce from the uniqueness of the Cauchy problem for the operator −� + σ0 that F ≡ 0
in �. As ε → 0 and uε − u′

ε → 0, we deduce that F(z) becomes small not only at ∂� but
also inside � (the continuation of F from ∂� to �\{zm ∪ z′

m} is independent of ε). However,
the functions G(zm; z)U(zm) and �zm (G(zm; z)U(zm)) clearly form an independent family.
Each term must therefore be compensated by a term from the sum over the prime coefficients.
We thus obtain that M = M ′ and that

|Cm(G(zm; z)U(zm)) − C ′
m(G(z′

m; z)U(z′
m))| + |Dm�zm (G(zm; z)U(zm))

− D′
m�z′

m
(G(z′

m; z)U(z′
m))| � C(‖uε − u′

ε‖L∞(∂�) + O(ε6)).

The first term can be recast as

(Cm − C ′
m)G(zm; z)U(zm) + C ′

m(zm − z′
m)∂zm (G(z̄m; z)U(z̄m))

where z̄m = θzm + (1 − θ)z′
m for some θ ∈ (0, 1). Again these two functions are linearly

independent so we deduce that

|Cm − C ′
m| + |C ′

m||zm − z′
m | � C(‖uε − u′

ε‖L∞(∂�) + O(ε6)).

We obtain the same result for |Dm − D′
m |.

Using (15) and (16), we then obtain, assuming that ‖uε − u′
ε‖L∞(∂�) ≈ ε6, that

|Bmσm − B ′
mσ ′

m | + |zm − z′
m | � Cε−3‖uε − u′

ε‖L∞(∂�)

|σmαm − σ ′
mαm′ | � Cε−5‖uε − u′

ε‖L∞(∂�).
(20)

Assuming that the accuracy of the measured data is compatible with the expansion (15), i.e. that
the uε is known on ∂� up to an error term of order ε6, we can then reconstruct the location zm
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of the heterogeneities up to an error of order ε3. The product of the volume of the inclusion
and the absorption fluctuation is also known with the same accuracy. The tensor αm , which
allows us to discriminate between the volume and the absorption fluctuations of the inclusion,
is known with a precision of order ε.

We thus obtain that the reconstruction of the location, capacity and tensor αm from
boundary measurements is a stable process. However, the above estimates show that there is
little hope of obtaining the tensor αm when the accuracy of the data is not better than ε5. All that
can be obtained from the data is then the location of the inclusions and their capacity |Bm|σm .
The absorption fluctuation σm , of highest interest in practice, must be obtained by other means.

5. Techniques of reconstruction

The uniqueness and stability results of the last section did not provide any constructive formulae
to recover the characteristics of the inclusions. We now describe explicit techniques to
reconstruct the location, volume and absorption fluctuation of the inclusions based on the
asymptotic expansions of the form (15).

Let w be a test function whose sole requirement is to solve the background equation

−�w + σ0w = 0, �.

We do not specify the boundary conditions. We then define the quantity

�ε =
∫

∂�

(
gw − ∂w

∂ν
uε

)
dσ. (21)

Since w is known and uε is measured on ∂�, the quantity �ε is known. Moreover,by integration
by parts, we obtain that

�ε =
M∑

m=1

∫
zm +εBm

σmw(x)uε(x) dx. (22)

From (11), we deduce that

�ε =
M∑

m=1

∫
zm +εBm

σmw(x)U(x) dx

−
M∑

m=1

M∑
n=1

∫
zm+εBm

∫
zn +εBn

σmσnw(x)G(x; y)U(y) dxdy + O(ε8). (23)

In the right-hand side of the above expression, the first term is of order ε3 and the second term
of order ε5. The non-diagonal contribution (when m �= n) is of order ε6 and can therefore be
neglected. Following the same calculations as in the preceding section, we deduce that

�ε =
M∑

m=1

Cm(wU)(zm) + ε5σm∇ · αm∇(wU)(zm) + O(ε6). (24)

We now have complete choice of the background function U and the test function w so long
as they are in the kernel of −� + σ0 on �. We can then use Calderòn’s formula to obtain an
explicit reconstruction formula [6]. Let η ∈ R

3 be given. We define by η⊥ a vector orthogonal
to η and of the same length. Let us choose

U(x) = ei(η+iγη⊥)·x, w(x) = ei(η−iγη⊥)·x,

where γ is such that

γ 2 = 1 +
σ0

|η|2 . (25)
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The choice of the sign of γ does not matter and can be absorbed in the choice of η⊥. We verify
that U(x) and w(x) are in the kernel of −� + σ0. Straightforward calculations show that

�ε = �ε(η) =
M∑

m=1

(Cm − 4ε5σmη · αmη)e2iη·zm + O(ε6). (26)

Upon taking the inverse Fourier transform of the preceding expression, we obtain delta
functions and second-order differential of delta functions with support at the points zm . The
more singular part can be used to recover the tensors αm . The less singular part is used to
reconstruct the coefficients Cm . So, at least theoretically, we obtain from Calderòn’s formula
that the boundary measurements are sufficient to reconstruct the location and the coefficients
αm and Cm of each inclusion. The Calderòn formula was used in [2] to reconstruct the diffusion
coefficient of small volume inclusions from boundary measurements.

In practice however, the Calderòn formula is not very useful because a new experiment
needs to be carried out for each value of η. Another possible choice for U and w is

U(x) = e−√
σ0x·k̂, w(x) = e−√

σ0x·p̂, (27)

for any unit vectors k̂ and p̂. We then obtain that

�ε(k̂, p̂) =
M∑

m=1

(Cm + ε5σmσ0(k̂ + p̂) · αm(k̂ + p̂))e−√
σ0zm ·(k̂+p̂).

The advantage of such a method is that we can have as many measurements as we choose
values of k̂ for each physical experiment p̂. The reconstruction of the locations zm and the
parameters Cm and αm cannot be shown rigorously as with Calderòn’s technique because we
can no longer take inverse Fourier transforms. The numerical simulations of the next section
are based on a similar reconstruction algorithm that requires us to solve only a few forward
problems.

6. Numerical simulations

6.1. Minimization problem

The setting of the numerical simulations is the following. The domain � is the unit cube
[0, 1]3 and the inclusions are balls of radius Rm and absorption fluctuation σm . We consider
the following approximation of the inverse problem. The ‘exact’ model is given by

uε(z) = U(z) −
M∑

m=1

∫
zm+εBm

σm G(x; z)U(z), (28)

where

G(x; z) = e−√
σ0|x−z|

|x − z| , (29)

which is the Green function of the full domain R
3 instead of the cube �. Replacing G(x; z)

by the real Green function on � would make the numerical analysis more complicated because
we would no longer have the analytic expression (29) but would not modify the complexity of
the inverse problem. What is missing in (28) are terms of order ε6 and higher. We shall see
later on that adding the only contribution of order ε6, namely the extra-diagonal terms on the
second line in (11), to the measured data does not substantially change the reconstruction.

The asymptotic approximation our reconstruction is based on then takes the form

uε(z) = U(z) −
M∑

m=1

Cm G(zm; z)U(zm) − Dm�zm (G(zm; z)U(zm)) + O(ε6), (30)
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where

Cm = ε3σm
4π R3

m

3
, Dm = ε5σm

2π R5
m

15
. (31)

The homogeneous solution U(x) is chosen to be of the form

U(x) = exp
(−√

σ0k · x
)
, (32)

for some unitary vector k ∈ S2. In practice this requires that we are able to impose a current
of the form

∂U

∂ν
(x) = −√

σ0k · ν exp
(−√

σ0k · x
)

at the boundary of the domain �. Measurements are made on three faces of the cube, the
forward face (x = 1), the East face (y = 1), and the North face (z = 1). Each face has
5 × 5 measurements at the points of an equidistant two-dimensional grid. There is therefore
a total of Nm = 75 measurements per experiment (choice of k). The number of ‘physical’
experiments Ne has been chosen to be three, and corresponds to values of k in (32) of (1, 0, 0),
(0, 1, 0) and (0, 0, 1). The ‘data’ collected from (28) are called d p

n for 1 � p � Ne and
1 � n � Nm . This set of data is equivalent in complexity to choosing Nm independent test
functions w in (27). In both cases, we do not have any proof that the reconstruction is possible
from such measurements.

The location and characteristics of the inclusions are obtained by least-squares
minimization:

min
zm ,σm ,Rm

Ne∑
p=1

Nm∑
n=1

(d p
n − u p

n )2, (33)

where u p
n is obtained from (30). The minimization is performed by a Newton method [26, 31].

The gradient of the cost function (33) is calculated analytically since the functions U and G
in (30) are known exactly. We do not have any theoretical convergence result for the Newton
method. We found numerically that the Newton algorithm was much more stable with three
experiments (Ne = 3) than with only one experiment (Ne = 1). Starting from a relatively poor
initial guess, the algorithm often converges to a good reconstruction with three experiments
and often diverges with only one experiment. In the absence of noise, the reconstructions with
one and three experiments are comparable when the initial guess is sufficiently close to the
exact solution. In the numerical experiments presented below, the initial guess was chosen
with an error on the location of order 0.1 and with vanishing initial coefficients Cm and Dm .

6.2. Reconstruction of similar inclusions

We now present two numerical experiments with three inclusions. In the first experiment,
all inclusions have very similar sizes. The background absorption is σ0 = 1 and the
characteristics of the inclusions are given in table 1. Using the minimization algorithm
presented above with exact data given by (28) and approximated data given by (30), we
obtain the reconstruction presented in table 2. The reconstruction is almost perfect and
relatively stable. The initial conditions for the reconstruction were z1 = (0.4, 0.3, 0.4),
z2 = (0.4, 0.6, 0.6) and z3 = (0.6, 0.4, 0.6), and the constants Cm and Dm were set to zero.

The recorded values d p
n range between 1.5 × 10−4 and 7.5 × 10−4. We now consider

noisy data with an additive noise term uniformly distributed on (−ε, ε). For ε = 10−7, which
corresponds to a noise of at most 0.1%, we show in table 3 the reconstruction for a ‘typical’
realization. Whereas the locations zm and coefficients Cm are still perfectly reconstructed,
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Table 1. Characteristics of absorbing inclusions. The physical absorption of the inclusion m is
given by σ0 + σm .

Inclusion, m zm Rm σm 103Cm 106 Dm

1 (0.3000, 0.2000, 0.3000) 0.1000 0.5000 2.0944 2.09
2 (0.4000, 0.7000, 0.7000) 0.0900 1.0000 3.0536 2.47
3 (0.7500, 0.2500, 0.7500) 0.1000 0.7500 3.1416 3.14

Table 2. Characteristics of the reconstructed absorbing inclusions without noise. The physical
absorption of the inclusion m is given by σ0 + σm .

Inclusion, m zm Rm σm 103Cm 106 Dm

1 (0.3004, 0.2002, 0.3004) 0.1011 0.4844 2.0951 2.14
2 (0.4000, 0.6999, 0.7000) 0.0902 0.9932 3.0539 2.49
3 (0.7501, 0.2500, 0.7501) 0.0998 0.7537 3.1403 3.13

Table 3. Characteristics of the reconstructed absorbing inclusions. The physical absorption of the
inclusion m is given by σ0 + σm . The noise level is ε = 10−7, which corresponds to up to 0.1% of
the exact data uε − U .

Inclusion, m zm Rm σm 103Cm 106 Dm

1 (0.3002, 0.2002, #0.3004) 0.0966 0.5547 2.0955 1.96
2 (0.4000, 0.7000, 0.7000) 0.0918 0.9414 3.0538 2.58
3 (0.7501, 0.2500, 0.7501) 0.0999 0.7523 3.1401 3.13

the coefficients Dm are up to 10% inaccurate, which propagates in the reconstruction of σm

and Rm .
If we now increase the noise level to ε = 10−6, which corresponds to up to 1% of the

measured data, we show in table 4 the reconstruction for a ‘typical’ realization. Whereas
the reconstruction of the locations zm and capacities Cm is still roughly 1% accurate, the
reconstruction of the coefficients Dm is no longer possible. We cannot reconstruct both the
absorption and the radius of the inclusions with data with roughly 1% of noise. If we further
increase the noise level to ε = 10−5, which corresponds to data with up to 10% of noise,
we also obtain a reconstruction of the location and capacity of the inclusions with an error of
roughly 10% as can be observed in table 5. This is consistent with the stability estimates given
in the previous sections with ε ≈ 0.1.

The above results are based on using (28) as a model for the exact measurements. Two
approximations have been made in this model. First the capacity (16) has been replaced
by (13). Accounting for this modification in the capacity is straightforward since the difference
between (16) and (13) is an explicit function of the radius and the absorption parameters of
the inclusions. It does not substantially modify the reconstruction algorithm. The second
assumption is the removal of the higher-order terms in (11). The terms that have been neglected
are asymptotically of order O(ε6) and the leading term is given by

M∑
m=1

M∑
n=1

CmCn G(zm; z)G(zn; zm)U(zn), (34)

with an accuracy of order O(ε7). This is the leading term in the manifestation that the total
influence of the inclusions on the boundary measurements is not the sum of their individual
influences. The maximal value taken by this nonlinear term is roughly 2.7 × 10−7. We have
added this term to the solution given by (28). In the absence of noise, the results of the
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Table 4. Characteristics of the reconstructed absorbing inclusions. The physical absorption of the
inclusion m is given by σ0 + σm . The noise level is ε = 10−6, which corresponds to up to 1% of
the exact data uε − U .

Inclusion, m zm Rm σm 103Cm 106 Dm

1 (0.2955, 0.1946, 0.2941) 0.0175 92.468 2.0843 0.06
2 (0.4002, 0.6998, 0.6996) 0.1007 0.7171 3.0631 3.10
3 (0.7496, 0.2501, 0.7497) 0.1026 0.6957 3.1513 3.32

Table 5. Characteristics of the reconstructed absorbing inclusions. The physical absorption of the
inclusion m is given by σ0 + σm . The noise level is ε = 10−5, which corresponds to up to 10% of
the exact data uε − U .

Inclusion, m zm Rm σm 103Cm 106 Dm

1 (0.2852, 0.1732, 0.2685) 0.1351 0.2111 2.1824 3.99
2 (0.4013, 0.6998, 0.7012) 0.1584 0.1833 3.0537 7.66
3 (0.7489, 0.2532, 0.7522) 0.1484 0.2291 3.1370 6.91

Table 6. Characteristics of the reconstructed absorbing inclusions. The physical absorption of the
inclusion m is given by σ0 + σm . An approximation (up to terms of order ε8) of the extra-diagonal
terms on the second line in (11) has been added to the data given by (28).

Inclusion, m zm Rm σm 103Cm 106 Dm

1 (0.3003, 0.2001, 0.3003) 0.1027 0.4614 2.0942 2.21
2 (0.4000, 0.7000, 0.7000) 0.0907 0.9777 3.0527 2.51
3 (0.7501, 0.2500, 0.7501) 0.1002 0.7458 3.1391 3.15

reconstruction are given in table 6. The increase in the error obtained by adding these non-
linear terms is relatively small for inclusions of radius of order 0.1, which are already quite
large for practical purposes. A more troublesome difficulty in using the asymptotic model (30)
to reconstruct both the absorption and geometric properties of the inclusions is to assume that
we ‘know’ something about the geometry of the inclusions (for instance that they are balls) and
that we have sufficiently accurate data. We have seen that misinterpreting cubic inclusions as
spherical inclusions only has the effect of underestimating the absorption coefficient by a little
more than 10%. At the same time, a noise level of 1% is already too large in this numerical
setting to allow for the reconstruction of the coefficients Dm , although the location and the
capacity of the inclusions are still very well reconstructed.

6.3. Reconstruction of different size inclusions

An additional difficulty arises when the inclusions have quite different sizes. The characteristics
of the inclusions of the second numerical experiment are given in table 7. The background
absorption is σ0 = 1 and we still aim at reconstructing three spherical inclusions. The main
difference from the previous experiment is that the second inclusion is now much bigger than
the two other ones, with coefficients C2 and D2 one order of magnitude larger than Ci and Di

for i = 1 and 3.
The results of the numerical experiments are the following. The reconstruction obtained

without the nonlinear terms and without noise is given in table 8. These results show that the
large inclusion is perfectly reconstructed, but not the other ones. The reason is that higher-
order terms in the asymptotic expansion for uε coming from the second inclusion are no longer
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Table 7. Characteristics of absorbing inclusions. The physical absorption of the inclusion m is
given by σ0 + σm .

Inclusion, m zm Rm σm 103Cm 106 Dm

1 (0.3000, 0.2000, 0.3000) 0.1000 0.5000 2.0944 2.09
2 (0.4000, 0.7000, 0.7000) 0.1500 1.0000 14.137 31.81
3 (0.7500, 0.2500, 0.7500) 0.0800 0.7500 1.6085 1.03

Table 8. Characteristics of absorbing inclusions. The physical absorption of the inclusion m is
given by σ0 + σm .

Inclusion, m zm Rm σm 103Cm 106 Dm

1 (0.3009, 0.1996, 0.3004) 0.1034 0.4511 2.0891 2.23
2 (0.4000, 0.6999, 0.6999) 0.1498 1.0047 14.140 31.7
3 (0.7499, 0.2501, 0.7499) 0.0755 0.8934 1.6094 0.92

Table 9. Characteristics of absorbing inclusions. The physical absorption of the inclusion m is
given by σ0 + σm .

Inclusion, m zm Rm σm 103Cm 106 Dm

1 (0.3005, 0.1996, 0.3004) 0.1074 0.4019 2.0871 2.41
2 (0.4000, 0.7000, 0.6999) 0.1499 1.0014 14.135 31.8
3 (0.7499, 0.2501, 0.7499) 0.0775 0.8235 1.6077 0.97

Table 10. Characteristics of absorbing inclusions. The physical absorption of the inclusion m is
given by σ0 + σm . The noise level is ε = 3 × 10−6, which corresponds to up to 1% of the exact
data uε − U .

Inclusion, m zm Rm σm 103Cm 106 Dm

1 (0.3035, 0.1959, 0.3003) 0.1074 0.4019 2.0909 0.24
2 (0.3999, 0.6999, 0.6999) 0.1499 1.0014 14.142 32.0
3 (0.7512, 0.2496, 0.7510) 0.0775 0.8235 1.5976 1.47

negligible. Whereas they do not affect the reconstruction of the second inclusion, they have
an impact on the reconstruction of the other ones.

When the nonlinear term (34) is added to the measured data, the reconstruction is given
in table 9. The error term is roughly comparable to the case of table 8 so that we can again
neglect this term in the reconstruction.

The results with roughly 1% of noise (the noise level is 1% of the smallest measurement at
the boundary) are shown in table 10. Here we see that 1% of noise still allows us to reconstruct
the large inclusion number 2 quite accurately. However the error on the coefficient Dm of the
other inclusions is now of order O(1). The capacity of these inclusions as well as their location
is still well reconstructed. Yet the data are no longer sufficiently accurate to image both the
volume and the absorption of these smaller inclusions.

6.4. Reconstructing the number of inclusions

In the preceding sections the number of reconstructed inclusions was equal to the physical
number of inclusions. We deal here with the case where the number of physical inclusions
is smaller. Let us consider the case of one inclusion as described in table 11. The locations



384 G Bal

Table 11. Characteristics of absorbing inclusions. The physical absorption of the inclusion m is
given by σ0 + σm .

Inclusion, m zm Rm σm 103Cm 106 Dm

1 (0.3000, 0.2000, 0.3000) 0.0000 0.5000 0.0000 0.00
2 (0.4000, 0.7000, 0.7000) 0.1500 1.0000 14.137 31.81
3 (0.7500, 0.2500, 0.7500) 0.0000 0.7500 0.0000 0.00

Table 12. Characteristics of absorbing inclusions. The physical absorption of the inclusion m is
given by σ0 + σm . The noise level is roughly 1% of the exact data.

Inclusion, m zm Rm σm 103Cm 106 Dm

1 (0.3245, 0.1974, 0.3112) 1.5521 0.0000 0.0015 0.35
2 (0.4000, 0.7000, 0.7000) 0.1488 1.0239 14.1368 31.31
3 (0.8512, 0.4847, 0.8298) 0.8327 0.0000 −0.0004 0.03

Table 13. Characteristics of absorbing inclusions. The physical absorption of the inclusion m is
given by σ0 + σm . The noise level is roughly 3% of the exact data.

Inclusion, m zm Rm σm 103Cm 106 Dm

1 (0.5480, 0.9000, 0.9000) 1.0910 0.0000 −0.0025 0.30
2 (0.4015, 0.7015, 0.7014) 0.1522 0.9524 14.124 32.56
3 (0.8970, 0.3094, 0.7928) 0.9977 0.000 0.0414 4.12

of the first and third inclusions are used as initializations in the optimization problem. They
obviously have no physical meaning.

The results of the reconstruction are the following. In the absence of noise, the location
of inclusions 1 and 3 fluctuates significantly from one iteration to the next since their capacity
is negligible. Their location was actually constrained to staying within the cube [0.1, 0.9]3

during the Newton iterations. The reconstruction of the second inclusion is quite good; see
table 12. The reconstructed capacity gives us an estimator of the number of inclusions. The
capacity of the first and third inclusions is here roughly 104 times smaller than that of the
second inclusion.

In the presence of roughly 3% of noise, the reconstruction of the second inclusion and the
estimate of the number of inclusions is still acceptable since the capacity of inclusions 1 and
3 is at least 300 times smaller than that of the second inclusion; see table 13.

When almost 15% is added to the measured data, the reconstruction becomes more delicate.
The numerical results are presented in table 14. The location and capacity of the second
inclusions are relatively well reconstructed knowing that the noise level is 15%. However
the estimation of the number of particles is much less accurate since the capacity of the first
inclusion now is only one-third of that of the second inclusion. The algorithm has in effect
created two particles to compensate for the noise. Notice that at this noise level only the
capacity is well reconstructed, not the individual radius and absorption coefficients.

Similar results can be obtained for two physical inclusions. The reconstruction is quite
satisfactory in the presence of moderate noise. The reconstructed capacities give a good
estimate of the number of physical inclusions. When the noise level reaches a large fraction of
the exact data, even the number of physical inclusions becomes more difficult to assess. But
then the separate reconstruction of the radius and absorption of the inclusions is also no longer
possible.
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Table 14. Characteristics of absorbing inclusions. The physical absorption of the inclusion m is
given by σ0 + σm . The noise level is roughly 15% of the exact data.

Inclusion, m zm Rm σm 103Cm 106 Dm

1 (0.5571, 0.7455, 0.7643) 0.4409 −0.0143 −5.1440 −100.00
2 (0.4341, 0.7263, 0.7128) 0.2319 0.3562 18.5994 100.00
3 (0.8306, 0.3765, 0.6591) 1.2022 0.0001 0.5550 −80.21

7. Conclusions

We have presented the asymptotic expansion of the solution to a diffusion equation with
absorbing inclusions of small volume. We have shown that the first term in the expansion,
after the solution to the homogeneous problem is subtracted, allows us to reconstruct the
number of isolated inclusions and their capacity. The capacity of an inclusion is defined as the
product of its volume with the variation of absorption between the inclusion and the known
background. We have shown that the next-order term of this asymptotic expansion allows us to
gain additional information about the inclusions. Assuming that the inclusion is an ellipsoid, we
are then able to reconstruct both the absorption of the inclusion and the geometrical parameters
of the ellipsoid. This is important in practice since healthy and unhealthy tissues have different
absorption properties.

We have then presented some numerical simulations showing that the reconstruction of
the parameters of spherical inclusions from boundary measurements is quite stable. However,
we have seen that relatively small amounts of noise in the data prevent us from reconstructing
both the absorption parameter and the radius of the inclusions, whereas the capacity and the
location (centre of mass) of the inclusions are still very well reconstructed. When the number
of inclusions is unknown, we also obtain a good estimate of that number when the noise level
is sufficiently small.

Asymptotic expansions are of somewhat limited applicability since they assume that most
of the domain (the background) is known. However, they give quite satisfactory results for
inclusions of relatively large size for practical purposes and provide a good framework to
understand what can and what cannot possibly be reconstructed from boundary measurements
with a given noise level. In a sense, they provide an analytical tool to face the daunting stability
estimate provided by (17).
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