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Abstract

The energy density of high frequency waves propagating in highly oscillatory
random media is well approximated by solutions of deterministic kinetic models.
The scintillation function determines the statistical instability of the kinetic solu-
tion. This paper analyzes the single scattering term in the scintillation function.
This is the term of the scintillation function that is linear in the power spectrum of
the random fluctuations. We show that the structure of the scintillation function
is already quite complicated in this simplified setting. It strongly depends on the
singularity of the initial conditions for the wave field and on the correlation prop-
erties of the random medium. We obtain limiting expressions for the scintillation
function as the correlation length of the random medium tends to zero.

1 Introduction

The energy density of high frequency waves propagating in highly oscillatory random
media is well-known to be accurately approximated by the solution to kinetic (radiative
transfer) models; see e.g. [2, 3, 7, 11, 12, 18, 22, 23, 24].

It is also well-known that in some weak sense and asymptotically, the approximation
holds for all realizations of the random medium, in the sense that the probability that
the energy density of the waves not be given by the kinetic model converges to 0 when
the correlation length of the random medium converges to 0. This result is referred to
as statistical stability or self-averaging [1, 4, 6, 8, 19, 20]. These results show that the
scintillation function, which is defined as the correlation function of the wave energy
density (in the phase space), tends to 0 in a weak sense. Understanding how fast the
scintillation function converges to 0 is a difficult and complicated problem. It is difficult
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because the algebra is never straightforward and it is complicated because it depends
in a non-trivial way on quite a few physical parameters such as the regularity of the
wave initial condition and on the power spectrum of the random fluctuations in the
underlying medium.

This paper provides a careful analysis of the single scattering contribution in the
scintillation function. By single scattering, we mean the following. The waves are
modeled in this paper by a Schrödinger equation. We consider high frequency waves
with correlation length λ much smaller than the distance L over which propagation
is observed. In other words ε = λ

L
� 1. The random fluctuations of the underlying

medium through which waves propagate are assumed to be stationary. The correlation
length of the random fluctuations is also assumed to be of size εL so that both the
waves and the random medium oscillate at similar frequencies. The power spectrum
of the fluctuations is the Fourier transform of the correlation function of the random
medium. The scintillation function, which is the correlation function for the wave energy
density, may then formally be written as an infinite expansion with terms corresponding
to increasing orders of interaction of the waves with the underlying medium [12, 23, 24].
The first non-trivial term in the scintillation function is the one that is linear in the
power spectrum. All other terms are at least quadratic in the power spectrum or, when
the random fluctuations are not modeled as Gaussian processes, depend on higher-order
statistics of the fluctuations. When scattering is relatively weak, the linear term in the
power spectrum will then presumably be the dominant contribution in the scintillation
function. We referred to this term as the single scattering contribution to scintillation.
A detailed description of the wave equation and the single scattering contribution to
the scintillation function is presented in section 2.

A complete description of the single scattering term is not sufficient to fully character-
ize the scintillation. It is known that in the Itô-Schrödinger regime of wave propagation,
which is a simplified model for wave propagation, the single scattering term may not be
the leading contribution to scintillation [9]. Moreover, the single scattering contribution
to scintillation tends to 0 with ε even in dimension d = 1 even though it is known that
the kinetic model is not the right limit when d = 1 [14, 16] since waves localize (with a
random limit) rather than transport.

Nonetheless, the single scattering contribution is sufficiently rich and interesting
physically that we want to present it in detail. Our main results on the asymptotic
behavior of single scattering scintillation are given in Theorem 3.1 in section 3 below.
There, it is shown that the amplitude of scintillation mainly depends on two ingredients:
the structure (regularity) of the initial conditions for the wave equation; and the long-
range properties of the correlation function of the random fluctuations. Scintillation
is also very much a function of the scale at which the energy is observed. Point-wise
estimates or estimates at a scale smaller than or equal to ε inevitably yield unstable
quantities. The energy density needs to be averaged over a sufficiently large domain in
order to be stable. We mainly consider the stability of the energy density averaged over
such a sufficiently large domain. We briefly comment on the stability of measurements
performed over small domains that are nonetheless of size much larger than ε; see also
[8, 9].

The salient features of Theorem 3.1 below are that scintillation is typically larger
when the initial conditions for the Schrödinger equation are highly localized in space.
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This picture holds when the correlation function of the random medium is integrable.
When the correlation function of the random medium decreases very slowly (this is
the regime of long-range memory effects), then a different behavior emerges and the
maximal scintillation is obtained when the initial condition of the wave equation is
equally singular in the space and momentum variables. This peculiar behavior is also
dimension dependent. The complex behavior of the scintillation function depends on the
detailed structure of the initial conditions for the Schrödinger equation and is explained
in detail in section 2.

The proof of the results is based on the analysis of oscillatory integrals, which is
conducted by means of estimates of various Fourier transforms. The details of the proof
can be found in section 4. It uses standard lemmas of real analysis that are stated
without proofs in section 5.

2 Single scattering scintillation

Although we expect the results mentioned below to generalize to other wave equations,
we restrict ourselves here to the simplest mathematical model for high frequency waves
propagating in random media and define uε as the solution to the following random
Schrödinger equation:(

iε
∂

∂t
+

ε2

2
∆ +

√
εV
(x

ε

))
uε(t, x) = 0, t > 0, x ∈ Rd,

augmented with a deterministic initial condition uε(0, ·) uniformly bounded in L2(Rd)
with respect to ε, for d ≥ 1. Here, V is a mean-zero homogeneous stationary random
field with autocorrelation R(x) := EV (x+y)V (y) and is time-independent. The symbol
E denotes the ensemble average with respect to a given probability space (Ω,F , P) on
which V is defined. The Wigner transform of uε is defined as, see [17]:

Wε(t, x, k) :=
1

(2π)d

∫
Rd

eik·yuε

(
t, x− εy

2

)
ūε

(
t, x +

εy

2

)
dy,

where ūε is the complex conjugate of uε, and Wε satisfies the stochastic Wigner equation

∂

∂t
Wε + k · ∇xWε = AεWε, (1)

with

(AεWε)(x, k) :=

∫
Rd

fε(x, k − η)Wε(x, η) dη,

fε(x, ξ) :=
i√
επd

[
V̂ (−2ξ)e−i2ξ·x/ε − V̂ (2ξ)ei2ξ·x/ε

]
,

where V̂ denotes the Fourier transform of V with the convention

V̂ (k) =

∫
Rd

e−ik·xV (x)dx.
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The initial condition of (1), denoted by W 0
ε (x, k), is the Wigner transform of uε(0, ·).

Let aε := EWε be the ensemble average of Wε. For sufficiently rapidly decaying cor-
relation function R, aε converges in a proper functional setting to the solution a0 of
a radiative transfer equation. Such result has been proved in different frameworks by
several authors: see for instance [5, 6, 21] for time-dependent random potentials, or
[1, 8, 20] for Itô-Schrödinger equations. For the more difficult case of time-independent
potentials, the rigorous convergence is proved in [24, 12] for Gaussian potentials, and a0

solves

∂

∂t
a0 + k · ∇xa0 =

∫
Rd

σ(p, k)[a0(t, x, p)− a0(t, x, k)] dp,

with scattering cross section σ(p, k) = R̂(p − k)δ(|k|2 − |p|2), where δ is the Dirac
distribution and the power spectrum R̂(k) is the Fourier transform of the correlation
function R(x). The above radiative transfer is known to hold for wave equations other
than the Schrödinger equation [18, 22].

Long range correlations. Here, we are interested in random fields with possibly
long range interactions, which can be modeled with slowly decaying autocorrelations
that do not belong to L1(Rd). Assuming R(x) ∼|x|→∞ xδ−d, with 0 < δ < d, some

simple rescaling arguments show that R̂ is singular at the origin and behaves like |k|−δ.
This leads us to consider correlation functions with singular Fourier transforms near the
origin of the form

R̂(k) =
S(k)

|k|δ
, 0 < δ < d, (2)

with S bounded and continuous at zero. Since, 0 < δ < d, R̂ is locally integrable. Phys-
ically realizable media will also have

∫
R̂(k) dk = R(0) < ∞. Short-range correlations

correspond to integrable R. In this case R̂ is bounded so we may take δ = 0 in (2).

Scintillation. Very few results exist on the rigorous limit of the random process Wε. It
is proved in [6] for potentials that are Markovian in time and under additional hypotheses
on the Wigner transform (essentially that it is square integrable by mixture of states)
that Wε converges weakly and in probability to its average aε, that is

P
(
|〈Wε(t), ϕ〉 − 〈aε(t), ϕ〉| ≥ η

)
→ 0, uniformly on compact intervals.

Above, ϕ is a test function in the Schwarz space S(R2d) and 〈·, ·〉 denotes the S ′ − S
duality product, where S ′ is the space of tempered distributions. The latter result means
that the Wigner transform is self-averaging. This is an important property for instance
in the analysis of the refocusing properties of time-reversed waves [6, 10, 13, 19] for
which it is shown that the quality of refocusing is independent of the local fluctuations
of the random medium and hence only depends on macroscopic characteristics. Within
the Itô-Schrödinger regime, the optimal rate of convergence can be computed and shown
to depend on some parameters of the problems such as the size of support of the initial
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condition of the Schrödinger equation, see [8, 9]. The convenient tool in the analysis is
the scintillation function Jε (or covariance function), defined as

Jε(t, x, k, y, p) = EWε(t, x, k)Wε(t, y, p)− EWε(t, x, k) EWε(t, y, p), (3)

whose weak convergence to zero implies the convergence in probability thanks to the
Chebyshev inequality

P
(
|〈Wε(t), ϕ〉 − 〈aε(z), ϕ〉| ≥ η

)
≤ 1

η2
〈Jε(t), ϕ⊗ ϕ〉.

Showing that Jε goes to zero is a difficult task and can be rigorously done within the Itô-
Schrödinger regime for short-range correlations since it satisfies a closed-form equation,
a transport equation with highly oscillating coefficients. In the regime of interest in this
paper, the scintillation does not satisfy a closed-form equation. We will therefore follow
a perturbative approach and only consider the scintillation created by single scattering,
that is after only one interaction with the random potential, assuming scattering is
weak enough so that multiple interactions can be neglected. Doing so, we can obtain
an exact expression of the scintillation and fully characterize its limit. Such expression
follows from a multiple scattering expansion of Wε: introducing first the free transport
semigroup J , Jh(t, x, k) := h(x− tk, k), and the operator

D−1h(t, x, k) :=

∫ t

0

h(t− s, x− sk, k) ds,

then (1) can be recast as the integral equation

(I −D−1Aε)Wε = JW 0
ε ,

whose solution can be decomposed formally as the multiple scattering expansion:

Wε =
∞∑

j=0

(D−1Aε)
jJW 0

ε .

Retaining only the terms j ≤ 1 in the latter decomposition, we have

Jε(t, x, k, y, p) ≈ E
{
(JW 0

ε + D−1AεJW 0
ε )(t, x, k)(JW 0

ε + D−1AεJW 0
ε )(t, y, p)

}
−E

{
(JW 0

ε + D−1AεJW 0
ε )(t, x, k)

}
E
{
(JW 0

ε + D−1AεJW 0
ε )(t, y, p)

}
,

= E
{
D−1AεJW 0

ε )(t, x, k)(D−1AεJW 0
ε )(t, y, p)

}
,

:= EWε
11(t, x, k, y, p).

Above, we used the facts that V is mean-zero and the initial condition is assumed to be
deterministic.

Initial conditions. In the Itô-Schrödinger regime [8, 9], the scintillation function is
known to very much depend on the structure of the initial conditions. Such a statement
remains valid here.

Consider first initial conditions uε(0, ·) oscillating at frequencies of order ε−1 and with
a spatial support of size εα for 0 ≤ α ≤ 1. The parameter α quantifies the macroscopic
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concentration of the initial condition. The simplest example is a modulated plane wave
of the form (or a pure state):

uε(0, x) =
1

ε
dα
2

χ
( x

εα

)
ei

x·q0
ε , (4)

where χ ∈ S(Rd). The direction of propagation is given by q0. Note that the above
sequence of initial conditions is uniformly bounded in L2(Rd), and that the related
Wigner transform reads

W 0
ε (x, q) =

1

εd
a

(
x

εα
,
q − q0

ε1−α

)
, (5)

where a(x, k) is the Wigner transform of the rescaled initial condition uε=1 and is real-
valued. We then slightly generalize the latter expression by considering initial condition
of the form

W 0
ε (x, q) =

1

εd(α+β)
a

(
x

εα
,

q − q0

εβ

)
. (6)

The parameter α measures the concentration of the initial conditions in the spatial
variables while β measures that in the momentum variables. We restrict α and β to
be less than one to ensure that ε−1 is the highest frequency in the problem. Allowing
for higher frequencies while still considering a Wigner transform at the frequency ε−1

will lead to vanishing limiting Wigner transforms and would be of little interest for then
energy is lost when passing to the limit, see e.g. [15, 17].

The most physical case is when α+β = 1 as in (5). This is related to the Heisenberg
uncertainty principle, which states that waves cannot be localized both in space and
momentum. The case α + β > 1 can be treated mathematically in the same fashion as
the physical case and so we present it for completeness. The case α+β < 1 corresponds
to mixtures of states and can be obtained by averaging of a(·, ·; ζ) with respect to an
additional measure in the ζ variable in order to regularize the initial conditions; see e.g.
[6].

Some notations. We denote by Ff the Fourier transform of f(x, q) with respect to
both variables x and q. For a function f(z1, · · · , zn) ∈ Cm(Rnd), zj ∈ Rd, j = 1, · · · , n
and a multi-index i = (i1, · · · , ind) ∈ Nnd with |i| = i1 + · · ·+ ind ≤ m, we introduce

∂
|i|
z1,··· ,znf :=

∂i1

∂z1
1

· · · ∂
ind

∂zn
d

f.

Let as well 〈x〉 := (1 + |x|2)1/2 for x ∈ Rd and a∧ b (resp. a∨ b) be the minimum (resp.
maximum) of a and b. We denote by a . b the inequality a ≤ Cb, where C > 0 is some
universal constant.

3 Main results

Let ϕ ∈ S(R2d) be a real valued test function and let W ε
11 be the expectation of Wε

11,
W ε

11 := EWε
11. We denote by wε the quantity

wε(t) :=

∫
R2d

W ε
11(t, x, k, y, p) ϕ(x, k) ϕ(y, p)dxdydkdp.
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The main result of the paper is Theorem 3.1 below, which states that the scintillation
corresponding to single scattering is of order ε(d−δ)(1−α)+1−α∧β.

When δ = 0, which corresponds to the case of an integrable correlation function
R(x), we find in the physical case α + β = 1 that scintillation is maximal when β = 0
and α = 1. In this case it is proportional to ε. This corresponds to highly localized initial
conditions in space and is consistent with the results obtained in the Itô-Schrödinger
regime in [8, 9]. The unphysical case α = β = 1 predicts stability of order O(1). This
is consistent with the results obtained in [1] for initial conditions of the form δ in space
and δ in wavenumbers. However, we repeat that the case α = β = 1 is not a physical
description of initial conditions for the Schrödinger equation that are square integrable.

When long range correlations are present, the structure of scintillation is modified.
When δ is close to d, which corresponds to the strongest possible long range interactions
as the correlation function barely decays, the largest scintillation (in the physical case

α + β = 1) is obtained for α = β = 1
2

and thus gives a scintillation of order close to ε
1
2 .

These results show that the single scattering contribution of scintillation converges
to zero and this is consistent with the fact that the Wigner function is self-averaging.
Note however, that in dimension d = 1, the above results also predict self-averaging of
the Wigner transform since scintillation is always smaller than O(ε

1
2 ). Yet it is known

that waves localize in dimension d = 1 and that the deterministic radiative transfer
model is replaced by a stochastic limit [14, 16]. In dimension d = 1, it turns out that
there are larger contributions to scintillation than that given by single scattering. The
single scattering contribution is however dominant in certain regimes and its asymptotic
limit is characterized in detail in the following result.

Theorem 3.1 Assume the initial condition W 0
ε has the form (6) with a ∈ S(R2d) and

that the scattering cross section is given by (2). Then ε−(d−δ)(1−α)−1+α∧βwε(t) is bounded
in L∞((0, T )), converges pointwise on (0, T ] and uniformly on [t0, T ] to w(t), for any
t0 > 0 independent of ε, where:

• if α = 0, 0 < β ≤ 1:

w(t) =
1

2d−δ

∫
Rd

S(0)

|k|δ

∣∣∣∣∫ t

0

e−isq0·kF(fa)(k, 0) ds

∣∣∣∣2 dk,

f := f(t, s, x, k) = k · ((t− s)∇xϕ(x + tq0, q0) +∇qϕ(x + tq0, q0)),

• if β = 0, 0 < α < 1:

w(t) =
1

2d−δ

∫
Rd

S(0)

|k|δ

∣∣∣∣∫ ∞

0

e−isq0·kF(fa)(k, sk) ds

∣∣∣∣2 dk,

f := f(t, q, k) = k · (t∇xϕ(t(q + q0), q + q0) +∇qϕ(t(q + q0), q + q0)),

• if β = 0, α = 1:

w(t) =
1

2d−δ

∫
Rd

S(k)

|k|δ

∣∣∣∣∫ ∞

0

e−isq0·kF(fa)(k, sk) ds

∣∣∣∣2 dk,

f := f(t, s, q, k) =
∑
±

±ϕ(t(q + q0)± (t− s)k, q + q0 ± k),
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• if 0 < β < α < 1:

w(t) =
2π

2d−δ|q0|

∫
{q0·k=0}

∫ ∞

0

S(k)

|k|δ
|F(fa)(k, sk)|2 ds dk,

f := f(t, k) = k · (t∇xϕ(tq0, q0) +∇qϕ(tq0, q0)),

• if 0 < α ≤ β < 1:

w(t) =
2π

2d−δ|q0|

∫
{q0·k=0}

∫ t

0

S(k)

|k|δ
|F(fa)(k,K)|2 ds dk,

f := f(t, k) = k · ((t− s)∇xϕ(tq0, q0) +∇qϕ(tq0, q0)),

K = sk if α = β and zero otherwise,

• if α = β = 1:

w(t) =
2π

2d−δ|q0|

∫
{q0·k=0}

∫ t

0

S(k)

|k|δ
|F(fa)(k, sk)|2 ds dk,

f(t, s, k) =
∑
±

±ϕ(tq0 ± (t− s)k, q0 ± k).

Above F(fa) denotes the Fourier transform of the product fa with respect to the variables
x and q.

All the integrals appearing in the above theorem are finite since the product fa belongs
to S(R2d) and so does F(fa). Such a regularity on the initial condition a is not used
in the analysis and only simplifies the calculations. The hypotheses a ∈ S(R2d) could
thus be relaxed to a large extent. Note also that the above integrals do not vanish for
generic choices of a and ϕ. The above terms indeed characterize the limiting scintillation
functions.

We repeat that the physical case of a pure state initial condition (4) yields initial
conditions for the Wigner transform of the form (5), i.e., with α + β = 1. The case
α = β = 1 is therefore presented for completeness only as such initial conditions cannot
be obtained from taking the Wigner transform of solutions to the Schrödinger equation.

The results of the theorem can be straightforwardly generalized to some particular
cases. For instance, when α = β = 0, which corresponds to choosing smooth initial
conditions for the Wigner equation, we can actually consider test functions of the form

1

εd(γ1+γ2)
ϕ

(
x

εγ1
,
q − q0

εγ2

)
, (7)

and simple calculations show that the roles of (α, β) and (γ1, γ2) are symmetrical. As
another example, when α = γ2 = 0, the theorem applies with minor changes with α
replaced by γ1. More precisely, we have the following proposition:

Proposition 3.2 Assume the initial condition W 0
ε has the form (6) with a ∈ S(R2d)

and that the scattering cross section is given by (2). Assume moreover that the test
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function ϕ in the definition of wε is replaced by (7). Then, there exist two non-identically
zero continuous functions w1 and w2 on [0, T ], such that, if α = β = 0,

ε−(d−δ)(1−γ1)−1+γ1∧γ2wε(t) → w1(t),

or if α = γ2 = 0,
ε−(d−δ)(1−γ1)−1+γ1∧βwε(t) → w2(t),

pointwise on (0, T ] and uniformly on [t0, T ], for any t0 > 0 independent of ε.

According to the proposition, when α = 0 and β = 1, the scintillation is of order
O(ε(d−δ)(1−γ1)), so that statistical stability occurs as soon as γ1 < 1, i.e., as soon as the
array of detectors is large compared to the wavelength, as we expect physically. When
γ = 1, scintillation is an O(1). These results are consistent with the ones obtained in
[8]. The proof of the proposition is postponed to section 4.8.

4 Proofs

The proof is done by deriving an exact expression for wε and by passing to the limit in
it. The general equation for wε is obtained in section 4.1. We then treat the different
cases in the following sections according to α and β. The schemes of the proofs are all
essentially the same: we perform Taylor expansions of the function f ε defined in (10) and
carefully estimate the growth of the remainders according to the different variables. This
allows to recast wε as a leading term and a negligible one and the different expressions
of the limiting wε follow from a passage to the limit in the leading order.

4.1 Equation for Scintillation.

Here we derive an equation for the lowest order scintillation term W ε
11, and an expression

for its integral against a pair of test functions of S(R2d). When there is no confusion,
we do not precise the domains of integration to simplify the presentation. We have, for
the first order scintillation:

Wε
11(t, x1, q1, x2, q2) = (D−1AεJW 0

ε )(t, x1, q1)(D
−1AεJW 0

ε )(t, x2, q2)

=

∫ t

0

∫ t

0

∫ ∫
fε(x1 − s1q1, q1 − η1)fε(x2 − s2q2, q2 − η2)

× JW0(t− s1, x1 − s1q1, η1)JW0(t− s2, x2 − s2q2, η2) dη1 dη2 ds1 ds2.

Using the fact that
EV̂ (ξ)V̂ (ν) = (2π)dR̂(ξ)δ(ξ + ν),

where δ is the Dirac distribution, we obtain

Efε(x1 − s1q1, q1 − η1)fε(x2 − s2q2, q2 − η2)

=
2

ε
cos

{
2

ε
(q1 − η1) · (x1 − s1q1 − x2 + s2q2)

}
× R̂(2(q1 − η1))

[
δ(q1 − η1 + q2 − η2)− δ(q1 − η1 − (q2 − η2))

]
.
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So

W ε
11 = EWε

11

=
2

ε

∫ t

0

∫ t

0

∫
cos

{
2

3
(q1 − η1) · (x1 − s1q1 − x2 + s2q2)

}
R̂(2(q1 − η1))

× JW 0
ε (t− s1, x1 − s1q1, η1)

[
JW 0

ε (t− s2, x2 − s2q2, q2 + (q1 − η1))

− JW 0
ε (t− s2, x2 − s2q2, q2 − (q1 − η1))

]
dη1 ds1 ds2.

Now make the substitution k = q1 − η1. Since R̂ and cos are even functions, only the
even part of the remaining terms survives. We thereby conclude

W ε
11 =

1

ε

∫ t

0

∫ t

0

∫
cos

{
2

ε
k · (x1 − s1q1 − x2 + s2q2)

}
R̂(2k)

×
[
JW 0

ε (t− s1, x1 − s1q1, q1 + k)− JW 0
ε (t− s1, x1 − s1q1, q1 − k)

]
×
[
JW 0

ε (t− s2, x2 − s2q2, q2 − k)− JW 0
ε (t− s2, x2 − s2q2, q2 − k)

]
dk ds1 ds2,

=
1

ε

∫ t

0

∫
R̂(2k)

(
2∏

j=1

∫ t

0

exp

{
(−1)j−1i

2k

ε
· (xj − sjqj)

}

×

[∑
±

±JW 0
ε (t− sj, xj − sjqj, qj ± k)

]
dsj

)
dk,

where, since the integrand is even, we have replaced cos θ by exp[iθ]. The moment may
now be written∫

W ε
11(t, x1, q1, x2, q2)ϕ(x1, q1)ϕ(x2, q2) dx1 dx2 dq1 dq2

=
1

ε

∫
R̂(2k)

(∫ 2∏
j=1

∫ t

0

exp

{
(−1)j−1i

2k

ε
· (xj − sjqj)

}
ϕ(xj, qj)

×

[∑
±

±JW 0
ε (t− sj, xj − sjqj, qj ± k)

]
dsj dxj dqj

)
dk.

Now change k 7→ εk to get

wε(t) = εd−1

∫
R̂(2kε)

(∫ 2∏
j=1

∫ t

0

exp
{
(−1)j−1i2k · (xj − sjqj)

}
ϕ(xj, qj)

×

[∑
±

±JW 0
ε (t− sj, xj − sjqj, qj ± εk)

]
dsj dxj dqj

)
dk.

10



Substituting for JW 0
ε using (6) and the expression of the free transport semigroup J ,

and get

wε(t) = εd−1−d(α+β)

∫
R̂(2kε)

(∫ 2∏
j=1

∫ t

0

exp
{
(−1)j−1i2k · (xj − sjqj)

}
ϕ(xj, qj)

×

[∑
±

±a

(
xj − sjqj − (t− sj)(qj ± εk)

εα
,

qj ± εk − q0

εβ

)]
dsj dxj dqj

)
dk.

(8)

Changing variables, in order, x 7→ x + sjqj + (t − sj)(qj ± εk), q 7→ q ∓ εk, x 7→ xεα,
q 7→ q0 + qεβ, 2k 7→ ε−αk and s 7→ t− s, we obtain the final expression:

wε(t) =
ε(d−δ)(1−α)−1

2d−δ

∫
dk

S(kε1−α)

|k|δ

×
∣∣∣∣∫ t

0

e−iε−αsq0·kF(f ε
s a)(k, εβ−αsk, ε1−αk) ds

∣∣∣∣2 , (9)

f ε
s (x, q, k) :=

∑
±

±ϕ(xεα + tqεβ + tq0 ± (t− s)k/2, qεβ + q0 ± k/2). (10)

Above, we recall that F(f ε
s a)(ξ, ν, k) denotes the Fourier transform of f ε

s (x, q, k)a(x, q)
with respect to x and q. Equations (9) and (10) are the starting points of the proof of
the theorem. We treat now the different cases separately.

4.2 The case α = 0, 0 < β ≤ 1.

For such a configuration, we have:

wε(t) =
εd−δ−1

2d−δ

∫
S(kε)

|k|δ

∣∣∣∣∫ t

0

e−isq0·kF(f ε
s a)(k, εβsk, εk) ds

∣∣∣∣2 dk. (11)

We single out the leading order in wε by applying lemma 5.1 to f ε
s with y = x + tq0,

α1 = α2 = β, y1 = tq, β1 = β2 = 1, y2 = (t− s)k/2, p = q0, p1 = q, p2 = k/2. It comes:

f ε
s (x, q, εk) = εfs(x, k) + ε1+βrε

s(x, q, k),

fs(x, k) = k · ((t− s)∇xϕ(x + tq0, q0) +∇qϕ(x + tq0, q0)),

rε
s(x, q, k) = (ε1−βrε

1 + rε
2 + rε

3)(x + tq0, tq, (t− s)k/2, q0, q, k/2),

where, for any multi-index λ, and t ≤ T ,

|∂|λ|x fs(x, k)| . |k| ; |∂|λ|x,qr
ε
s(x, q, k)| . |k|(|k|+ |q|). (12)

It thus follows that∣∣∣∣∫ t

0

e−isq0·kF(f ε
s a)(k, εβsk, εk) ds

∣∣∣∣2 = ε2|Lε(t, k)|2 + ε2+βRε(t, k),

11



where

Lε(t, k) =

∫ t

0

e−isq0·kF(fsa)(k, εβsk, εk) ds,

Rε(t, k) = εβ

∣∣∣∣∫ t

0

e−isq0·kF(rε
sa)(k, εβsk, εk) ds

∣∣∣∣2
+2Re

∫ t

0

e−isq0·kF(fsa)(k, εβsk, εk) ds

∫ t

0

eiuq0·kF(rε
ua)(k, εβuk, εk) du.

As a belongs to S(R2d), so do the quantities F(fsa) and F(rεa). In particular, using
(12) and lemma 5.2 with f(x, q, k) = rε

s(x, q, k) and g = a, it follows that Rε decays
fast enough with respect to k so that |k|−δS(kε)Rε(t, k) is integrable in k (recall that
S is bounded) with a bound independent of ε, for any 0 ≤ t ≤ T . As a result, the
contribution to wε from the term involving Rε is of order εd−δ+1+β, uniformly in time.
In the same way, (12) together with lemma 5.2 gives for instance, ∀(t, s, k) ∈ [0, T ]2×Rd,

|F(fsa)(k, εβsk, εk)| . |k|
(1 + |k|d+1)(1 + (εβs|k|)d+1)

.
1

1 + |k|d
,

which allows first to pass to the limit pointwise in k and uniformly for t ∈ [0, T ] in
Lε(t, k) using dominated convergence and then in (11) uniformly for t ∈ [0, T ] to obtain
the announced result.

4.3 The case β = 0, 0 < α < 1.

In this case, after the change of variable s 7→ sεα, we find:

wε(t) =
ε(d−δ)(1−α)−1+2α

2d−δ

∫
S(kε1−α)

|k|δ

∣∣∣∣∣
∫ tε−α

0

e−isq0·kF(f ε
sεαa)(k, sk, ε1−αk) ds

∣∣∣∣∣
2

dk.

(13)

Applying lemma 5.1 to f ε
s with y = t(q + q0), α1 = α, y1 = x, β1 = β2 = 1 − α,

y2 = (t− sεα)k/2, p = q + q0, p1 = 0, p2 = k/2, we have

f ε
sεα(x, q, εk) = ε1−αfsεα(q, k) + ε1−α+α∧(1−α)rε

s(x, q, k),

fsεα(q, k) := k · ((t− sεα)∇xϕ(t(q + q0), q + q0) +∇qϕ(t(q + q0), q + q0)),

rε
s(x, q, k) := (ε0∨(1−2α)rε

1 + ε0∨(2α−1)rε
2)(t(q + q0), x, (t− sεα)k/2, q + q0, 0, k/2).

We have, for any multi-index λ,

|∂|λ|q fsεα(q, k)| . |k| ; |∂|λ|x,qr
ε
s(x, q, k)| . |k|(|k|+ |x|). (14)

Note that we used above the fact that 0 ≤ sεα ≤ t and 0 ≤ t ≤ T . We thus can write:∣∣∣∣∣
∫ tε−α

0

e−isq0·kF(f ε
sεαa)(k, sk, ε1−αk) ds

∣∣∣∣∣
2

= ε2(1−α)|Lε(t, k)|2 + ε2(1−α)+α∧(1−α)Rε(t, k),

12



where, with k̂ := k
|k| ,

Lε(t, k) =

∫ tε−α

0

e−isq0·kF(fsεαa)(k, sk, ε1−αk) ds,

=
1

|k|

∫ tε−α|k|

0

e−isq0·k̂F(fsεαa)(k, sk̂, ε1−αk) ds,

Rε(t, k) = εα∧(1−α)

∣∣∣∣∣
∫ tε−α

0

e−isq0·kF(rε
sa)(k, sk, ε1−αk) ds

∣∣∣∣∣
2

+2Re

∫ tε−α

0

e−isq0·kF(fsεαa)(k, sk, ε1−αk) ds

×
∫ tε−α

0

eiuq0·kF(rε
ua)(k, uk, ε1−αk) du.

Using (12) and lemma 5.2 with f(x, q, k) = fsεα(q, k), rε
s(x, q, k) and g = a yields for

instance

|F(fsεαa)(k, sk̂, ε1−αk)|+ |F(rε
sa)(k, sk̂, ε1−αk)| .

|k|
(1 + |k|d+1)(1 + sd+1)

. (15)

Consequently,

|Lε(t, k)| ≤ 1

1 + |k|d+1

∫ ∞

0

ds

1 + sd+1
, (16)

with equivalent relation for Rε. This shows first that |k|−δS(kε1−α)Rε(t, k) is integrable
in k with a bound independent of ε, for any 0 ≤ t ≤ T , so that the remainder is of order
ε(d−δ)(1−α)+1+α∧(1−α) uniformly in time.

Regarding the leading term, we first fix |k| > 0, and 0 < t ≤ T . Using dominated
convergence, thanks to estimates (15) above, we have,

Lε(t, k) → 1

|k|

∫ ∞

0

e−isq0·k̂F(f0a)(k, sk̂, 0) ds, ε → 0.

If t > t0, where t0 is independent of ε, then the convergence is uniform with respect to
t. We then pass to the limit in (13) using dominated convergence and (16). I.e.

ε−(d−δ)(1−α)−1wε → 1

2d−δ

∫
S(0)

|k|δ
lim
ε→0

Lε(t, k) dk

=
1

2d−δ

∫
S(0)

|k|δ

∣∣∣∣∫ ∞

0

e−isq0·kF(f0a)(k, sk, 0) ds

∣∣∣∣2 dk.

Therefore, ε−(d−δ)(1−α)−1wε(t) converges pointwise (0, T ] and uniformly on [t0, T ] to the
expression above.
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4.4 The case β = 0, α = 1.

Since this case is very similar to the previous one, we only underline the main differences.
Directly starting from (13) with α = 1, we use here the expansion

f ε
sε(x, q, k) =

∑
±

±ϕ(xε + t(q + q0)± (t− sε)k/2, q + q0 ± k/2)

=
∑
±

±ϕ(t(q + q0)± (t− sε)k/2, q + q0 ± k/2)

+ ε
∑
±

±
∫ 1

0

x · ∇xϕ(xετ + t(q + q0)± (t− s)k/2, q + q0 ± k/2) dτ,

:= fsε(q, k) + ε rε
s(x, q, k),

and have consequently the following estimates, valid for any multi-index λ.

|∂|λ|q fsε(q, k)| . |k| ; |∂|λ|x,qr
ε
s(x, q, k)| . |x||k|. (17)

We then obtain the following decomposition into leading and negligible terms:∣∣∣∣∣
∫ tε−1

0

e−isq0·kF(f ε
sεa)(k, sk, k) ds

∣∣∣∣∣
2

= |Lε(t, k)|2 + εRε(t, k),

where

Lε(t, k) =

∫ tε−1

0

e−isq0·kF(fsεa)(k, sk, k) ds,

Rε(t, k) = ε

∣∣∣∣∣
∫ tε−1

0

e−isq0·kF(rε
sa)(k, sk, k) ds

∣∣∣∣∣
2

+2Re

∫ tε−1

0

e−isq0·kF(fsεa)(k, sk, k) ds

∫ tε−1

0

eiuq0·kF(rε
ua)(k, uk, k) du.

As before, (17) and lemma 5.2 give majorizing functions to apply the Lebesgue domi-
nated convergence theorem. It follows that the remainder involving Rε is of overall order
ε2 and can be neglected. Passing to the limit in the leading term then gives, pointwise
in (0, T ] and uniformly on [t0, T ],

ε−1wε → 1

2d−δ

∫
S(k)

|k|δ

∣∣∣∣∫ ∞

0

e−isq0·kF(fsεa)(k, sk, k) ds

∣∣∣∣2 dk.

4.5 The case 0 < β < α < 1.

After the change of variable s 7→ sεα−β, (9) becomes:

wε(t) =
ε(d−δ)(1−α)−1+2(α−β)

2d−δ

∫
S(kε1−α)

|k|δ

×

∣∣∣∣∣
∫ tεβ−α

0

e−iε−βsq0·kF(f ε
sεα−βa)(k, sk, ε1−αk) ds

∣∣∣∣∣
2

dk.

(18)
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Applying lemma 5.1 to f ε
sεα−β with y = tq0, α1 = α2 = β, y1 = tq + xεα−β, β1 = β2 =

1− α, y2 = (t− sεα−β)k/2, p = q0, p1 = q, p2 = k/2, we find:

f ε
sεα−β(x, q, k) = ε1−αfsεα−β(k) + ε1−α+β∧(1−α)rε

s(x, q, k),

fsεα−β(k) = k · ((t− sεα−β)∇xϕ(tq0, q0) +∇qϕ(tq0, q0)),

rε
s(x, q, k) = (ε0∨(1−α−β)rε

1 + (ε0∨(α+β−1)(rε
2 + rε

3))

(tq0, tq + xεα−β, (t− sεα−β)k/2, q0, q, k/2),

where, for any multi-index λ,

|fsεα−β(k)| . |k| ; |∂|λ|x,qr
ε
s(x, q, k)| . |k|(|k|+ |x|+ |q|). (19)

Note that we used above the facts that sεα−β ≤ t and 0 ≤ t ≤ T . We now decompose
k on an orthonormal basis of Rd such that k = k‖q̂0 + k⊥, k‖ ∈ R, k⊥ ∈ Rd, with
q0·k⊥ = 0 and denote by k = (k‖, k

2
⊥, · · · , kd

⊥) its corresponding components. Performing
the change of variable k‖ 7→ εβk‖ and defining kε := (εβk‖, k

2
⊥, · · · , kd

⊥), (18) becomes

wε(t) =
ε(d−δ)(1−α)−1+2(α−β)+β

2d−δ

×
∫

S(kεε
1−α)

|kε|δ

∣∣∣∣∣
∫ tεβ−α

0

e−is|q0|k‖F(f ε
sεα−βa)(kε, skε, ε

1−αkε) ds

∣∣∣∣∣
2

dk,

=
ε(d−δ)(1−α)+1−β

2d−δ

∫
S(kεε

1−α)

|kε|δ
(
|Lε(t, kε)|2 + εβ∧(1−α)Rε(t, kε)

)
dk,

Lε(t, kε) =

∫ tεβ−α

0

e−is|q0|k‖F(fsεα−βa)(kε, skε, ε
1−αkε) ds,

=
1

|kε|

∫ tεβ−α|kε|

0

e−is|q0|k‖|kε|−1F(fsεα−βa)(kε, sk̂ε, ε
1−αkε) ds,

Rε(t, kε) = εβ∧(1−α)

∣∣∣∣∣
∫ tεβ−α

0

e−is|q0|k‖F(rε
sa)(kε, skε, ε

1−αkε) ds

∣∣∣∣∣
2

+2Re

∫ tεβ−α

0

e−is|q0|k‖F(fsεα−βa)(kε, skε, ε
1−αkε) ds

×
∫ tεβ−α

0

eiu|q0|k‖F(rε
ua)(kε, ukε, ε

1−αkε) du.

Using (19) and lemma 5.2 with f(x, q, k) = fsεα−β(k), rε
s(x, q, k) and g = a gives the

estimates, for λ = 0, 1:

|∂λ
sF(fsεα−βa)(kε, sk̂ε, ε

1−αkε)| .
|kε|

(1 + |kε|d+2)(1 + sd+2)
, (20)

|∂λ
sF(rε

sa)(kε, sk̂ε, ε
1−αkε)| .

|kε|
(1 + |kε|d+2)(1 + sd+2)

.
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Using the latter relations and the fact that, for any f ∈ C1(R),

k‖
|kε|

∫ tεβ−α/|kε|

0

e−is|q0|k‖/|kε|f(s)ds

=
i

|q0|

(
f(tεβ−α|kε|)e−itεβ−α|q0|k‖/|kε| − f(0)−

∫ tεβ−α/|kε|

0

e−is|q0|k‖/|kε|f ′(s)ds

)
,

we find the uniform estimate, after the change of variable s 7→ s|kε|−1 in Rε:

|Lε(t, kε)|2 + |Rε(t, kε)| .
1

(1 + |k‖|2)(1 + |k⊥|2d)
.

The end of the proof is now identical to that of section 4.3: using dominated con-
vergence and the estimates above, we pass first to the limit in Lε and then in wε

and obtain the convergence of ε−(d−δ)(1−α)−1+βwε pointwise on (0, T ] and uniformly on
[t0, T ]. Using the Fourier Plancherel equality and denoting by k0 := (0, k2

⊥, · · · , kd
⊥) and

dk⊥ := dk2
⊥ · · · dkn

⊥:

1

2d−δ

∫
S(k0)

|k0|δ

∣∣∣∣∫ ∞

0

e−is|q0|·k‖F(f0a)(k0, sk0, 0) ds

∣∣∣∣2 dk

=
2π

2d−δ|q0|

∫
Rd−1

∫ ∞

0

S(k0)

|k0|δ
|F(f0a)(k0, sk0, 0)|2 ds dk⊥,

=
2π

2d−δ|q0|

∫
{q0·k=0}

∫ ∞

0

S(k)

|k|δ
|F(f0a)(k, sk, 0)|2 ds dk.

4.6 The case 0 < α ≤ β < 1.

That configuration is very close to the previous one, so that we leave some details to the
reader. We start from expression (9) and apply lemma 5.1 to f ε

s with y = tq0, α1 = α,
α2 = β, y1 = tqεβ−α + x, β1 = β2 = 1−α, y2 = (t− s)k/2, p = q0, p1 = q, p2 = k/2 and
find:

f ε
s (x, q, k) = ε1−αfs(k) + ε1−α+α∧(1−α)rε

s(x, q, k),

fs(k) = k · ((t− s)∇xϕ(tq0, q0) +∇qϕ(tq0, q0)),

rε
s(x, q, k) = (ε0∨(1−2α)rε

1 + ε0∨(2α−1)rε
2 + εβ−α∧(1−α)rε

3)

(tq0, tqε
β−α + x, (t− s)k/2, q0, q, k/2),

where, for any multi-index λ,

|fs(k)| . |k| ; |∂|λ|x,qr
ε
s(x, q, k)| . |k|(|k|+ |x|+ |q|).
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We introduce as well k = k‖q̂0 + k⊥, k‖ ∈ R, k⊥ ∈ Rd, with q0 · k⊥ = 0. Performing the
change of variable k‖ 7→ εαk‖ and denoting by kε = (εαk‖, k

2
⊥, · · · , kd

⊥), (9) becomes

wε(t) =
ε(d−δ)(1−α)−1+α

2d−δ

×
∫

S(kεε
1−α)

|kε|δ

∣∣∣∣∫ t

0

e−is|q0|k‖F(f ε
s a)(kε, ε

β−αskε, ε
1−αkε) ds

∣∣∣∣2 dk,

=
ε(d−δ)(1−α)+1−α

2d−δ

∫
S(kεε

1−α)

|kε|δ
(
|Lε(t, kε)|2 + ε(1−α)∧αRε(t, kε)

)
dk,

Lε(t, kε) =

∫ t

0

e−is|q0|k‖F(fsa)(kε, ε
β−αskε, ε

1−αkε) ds,

Rε(t, kε) = ε(1−α)∧α

∣∣∣∣∫ t

0

e−is|q0|k‖F(rε
sa)(kε, ε

β−αskε, ε
1−αkε) ds

∣∣∣∣2
+2Re

∫ t

0

e−is|q0|k‖F(fsa)(kε, ε
β−αskε, ε

1−αkε) ds

×
∫ t

0

eiu|q0|k‖F(rε
ua)(kε, ε

β−αukε, ε
1−αkε) du.

Passing to the limit, then gives, uniformly for t ∈ [0, T ], if β > α, with k0 := (0, k2
⊥, · · · , kd

⊥)
and dk⊥ := dk2

⊥ · · · dkn
⊥:

ε−(d−δ)(1−α)−1+αwε → 1

2d−δ

∫
S(k0)

|k0|δ

∣∣∣∣∫ t

0

e−is|q0|k‖F(fsa)(k, 0, 0) ds

∣∣∣∣2 dk

=
2π

2d−δ|q0|

∫
Rd−1

∫ t

0

S(k0)

|k0|δ
|F(fsa)(k0, 0, 0)|2 ds dk⊥,

=
2π

2d−δ|q0|

∫
{q0·k=0}

∫ t

0

S(k)

|k|δ
|F(fsa)(k, 0, 0)|2 ds dk,

and, if α = β,

ε−(d−δ)(1−α)−1+αwε → 2π

2d−δ|q0|

∫
{q0·k=0}

∫ t

0

S(k)

|k|δ
|F(fsa)(k, sk, 0)|2 ds dk.

4.7 The case α = β = 1.

The proof is identical to the previous case with α = β, only the expansion of f ε
s changes.

We obtain

wε → 2π

2d−δ|q0|

∫
{q0·k=0}

∫ t

0

S(k)

|k|δ
|F(fsa)(k, sk, k)|2 ds dk,

where fs(k) =
∑

±±ϕ(tq0 ± (t− s)k, q0 ± k).

4.8 Proof of proposition 3.2.

When α = β = 0 in (6), and considering test functions of the form

1

εd(γ1+γ2)
ϕ

(
x

εγ1
,
q − q0

εγ2

)
,
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it follows from (8) that

wε(t) =
ε(d−δ)(1−γ1)−1

2d−δ

∫
dk

S(kε1−γ1)

|k|δ

×
∣∣∣∣∫ t

0

e−iε−γ1sq0·kF(f̃ ε
s ϕ)(−k, εγ2−γ1sk, ε1−γ1k) ds

∣∣∣∣2 ,

f̃ ε
s (x, q, k) =

∑
±

±a(xεγ1 − tqεγ2 − tq0 ∓ (t− s)k/2, qεγ2 + q0 ± k/2).

By identification, we get the same expression as (9)-(10) with α replaced by γ1, β by γ2

and f ε
s a by f̃ ε

s ϕ. It then suffices to follow the same analysis as that of the theorem to
obtain the order of the scintillation. When α = γ2 = 0, we find:

wε(t) =
ε(d−δ)(1−γ1)−1

2d−δ

∫
dk

S(kε1−γ1)

|k|δ

×
∣∣∣∣∫ t

0

e−iε−γ1sq0·kF(gε
s)(−k, εβ−γ1sk, ε1−γ1k) ds

∣∣∣∣2 ,

gε
s(x, q, k) =

∑
±

±a(xεγ1 − tqεβ − tq0 ∓ (t− s)k/2, q)ϕ(x, qεβ + q0 ∓ k/2),

and here again we proceed by identification.

5 Some technical lemmas

The following two lemmas are extensively used in the proof. The first one stems from a
simple application of the Taylor formula and the second one from standard properties
of the Fourier transform of functions in S(R2d).

Lemma 5.1 Let ϕ ∈ S(R2d), z = (y, y1, y2, p, p1, p2) ∈ R6d and (α1, α2, β1, β2) ∈ R4.
Then, we have:

ϕ(y + εα1y1 + εβ1y2, p + εα2p1 + εβ2p2)− ϕ(y + εα1y1 − εβ1y2, p + εα2p1 − εβ2p2)

= 2εβ1y2 · ∇yϕ(y, p) + 2εβ2p2 · ∇pϕ(y, p) + ε2β1∧β2rε
1 + εα1+β1∧β2rε

2 + εα2+β1∧β2rε
3,

where rε
i := rε

i (z) ∈ C∞(R6d), i = 1, 2, 3, and satisfies, for any multi-index λ and any
z ∈ R6d,

|∂|λ|z rε
1(z)| . |y2|2 + |p2|2,

|∂|λ|z rε
2(z)| . |y1|(|y2|+ |p2|),

|∂|λ|z rε
3(z)| . |p1|(|y2|+ |p2|).

Below we use fη . g to denote inequality up to a constant independent of the parameter
η. Our application will see η as some combination of ε and all other variables not
explicitly written into the right hand side of the inequality.
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Lemma 5.2 Suppose fη(x, q, z) ∈ C∞(R(2+n)d), with z ∈ Rnd, satisfies, for any (x, q, z) ∈
R(2+n)d and any multi-indexes λ and µ, |∂|λ|x ∂

|µ|
q fη(x, q, z)| . |z|γ(1 + |x|σ1 + |q|σ2), for

some σ1, σ2 and γ positive. Let g(x, q) ∈ S(R2d). Then with F(fηg)(ξ, ν, z) denoting
the Fourier transform of the product with respect to x and q, for any multi-indexes i and
j and any k > 0,

|∂|i|ξ ∂|j|ν F(fηg)(ξ, ν, z)| . |z|γ〈ξ〉−k 〈ν〉−k.
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