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Abstract. We consider the simultaneous reconstruction of the absorption
coefficient and the source term in a linear transport equation from available

boundary measurements. This problem finds applications in SPECT, a med-

ical imaging modality. When the absorption coefficient is known, recently
derived inversion formulas for the attenuated Radon transform can be used

to reconstruct the source term. Moreover, the measurements needs to satisfy

some compatibility conditions, which fully characterize the range of the atten-
uated Radon transform. In this paper, we explore this compatibility condition

to obtain information about the absorption coefficient. We consider a lin-

earization of the compatibility condition and show that the absorption term is
uniquely determined, partially determined, or fully undetermined, depending

on the structure of the source term.

1. Introduction

Single Photon Emission Computerized Tomography (SPECT) is an important
medical imaging modality. Radioactive markers that specifically attach to certain
molecules we are interested in imaging are injected into tissues. They emit γ parti-
cles by radioactive decay, which may be partially absorbed by the underlying tissues
or escape the domain through its boundary where they are measured by γ-cameras.
The phase-space (position and direction) density of γ particles is modeled by the
solution u(x, θ) of the following linear transport equation with absorption:

(1.1) θ · ∇xu+ a(x)u = f(x), x ∈ X ⊂ R2, θ ∈ S1,

where f is the source of γ particles and a is absorption. The measurements are then
given by u(x, θ) for x at the boundary ∂X of the domain X ⊂ R2 and all θ ∈ S1.

The available data are therefore given by the attenuated Radon transform
(AtRT) of f . When a is known, an explicit reconstruction formula for f was
recently derived in [9, 10] and can also be deduced from the work in [2, 4]. This
formula is accompanied by a compatibility condition that the AtRT needs to satisfy.
This paper aims to exploit this compatibility condition and the explicit expression
for f when a is known to obtain two independent equations coupling a and f . In
[10], it is shown that the latter compatibility condition is a necessary and suffi-
cient condition in an appropriate functional setting. The latter two equations are
therefore all that can be learned from the available boundary measurements.
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Several results exist on the combined reconstruction of the absorption and
source terms in SPECT. In [8], range conditions for the attenuated Radon trans-
form are also used to obtain constraints that the absorption term needs to satisfy.
Reconstructions are then presented assuming that f is a finite sum of Dirac mea-
sures. Accurate numerical reconstructions of both coefficients are also presented in
[12]. Several results consider the case of constant attenuation and obtain unique-
ness and non-uniqueness results for the Exponential Radon transform (ERT) which
is a slightly different problem than that of the AtRT [5, 6, 13] (results in [5] are
based on the range characterization of the ERT [1, 7]). To the best of our knowl-
edge, the use of the natural compatibility condition obtained in [10] (see also [3]
for compatibility conditions of more general sources) to obtain information about
the source term has not been considered before.

The rest of the paper is structured as follows. Section 2 presents the compat-
ibility condition for the AtRT. This provides a nonlinear integral equation for the
absorption coefficient that is difficult to analyze. We thus linearize the nonlinear
functional for the absorption coefficient in the vicinity of a vanishing absorption.
The resulting operator is bilinear in the source term f and the absorption term
a. This equation should be coupled with the reconstruction formula providing f
when a is known. We thus obtain a system of two equations for two unknown. It
turns out that the equation for a coming from the linearization of the compatibility
condition does not always uniquely characterize a. In some cases, we show that
all of a may be reconstructed. In other cases, we show that only part of a can be
reconstructed. For certain sources f , we show that arbitrary compactly supported
a makes the whole bilinear functional (a linear operator in a for a fixed f) vanish
so that it provides no information about a whatsoever. The non-uniqueness results
are presented in section 3 while the uniqueness results are given in section 4. These
results provide a partial answer to the combined reconstruction of the coefficients
(a, f). They have the advantage that they fully use the redundancy in the AtRT
data to obtain information about the absorption term a. Unfortunately, the lack of
unique reconstructions of a for given values of f shows that complete reconstruc-
tions can only be expected in favorable situations, although a complete description
of such favorable situations remains to be done. Some conclusions and perspectives
are offered in section 5.

2. Consistency condition and linearization

2.1. Nonlinear consistency condition. Let us consider (1.1) and bound-
ary measurements at the boundary ∂X of the domain X given by the following
Attenuated Radon Transform (AtRT)

(2.1) Pa,θf(x · θ⊥) =
∫ +∞

−∞
e−

R +∞
0 a(x+(t+s)θ)dsf(x+ tθ)dt,

where a and f are extended by 0 outside of X or X is simply considered as the
whole of R2. The reconstruction of f from (2.1) for a known absorption coefficient
a is treated in, e.g., [2, 3, 4, 9, 10]. Moreover, the data Pa,θf(s) satisfy some
compatibility conditions [3, 10] that may be seen as a generalization of the condition
Pθf(s) = P−θf(−s) when a ≡ 0, which essentially states that the integral of a
function along a line does not depend on the choice of orientation for the line. In
the presence of absorption, the weight depends on the direction along which f is
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integrated along the line and so the compatibility condition is significantly more
complicated and was first obtained in [9]. The reconstruction formula and the
compatibility condition take the form

f(x) =
1

4π

∫
S1
θ⊥ · ∇x(Ta,θ(Ca,θ + Sa,θ)e

Pθa

2 Pa,θf)(x · θ⊥)dθ(2.2)

0 =
∫

S1
(Ta,θ(Ca,θ + Sa,θ)e

Pθa

2 Pa,θf)(x · θ⊥)dθ,(2.3)

respectively, where y⊥ = (−y2, y1) for y = (y1, y2) ∈ R2, and where we have defined
the following operators

Ta,θg(x) = e−Dθa(x)g(x),(2.4)

Ca,θg(x) = cos
(HPθa(x · θ⊥)

2
)
H
(

cos
(HPθa

2
)
g
)

(x · θ⊥),(2.5)

Sa,θg(x) = sin
(HPθa(x · θ⊥)

2
)
H
(

sin
(HPθa

2
)
g
)

(x · θ⊥),(2.6)

Dθa(x) =
1
2
( ∫ +∞

0

a(x− tθ)dt−
∫ +∞

0

a(x+ tθ)dt
)
,(2.7)

Pθf(s) =
∫ +∞

−∞
f(tθ + sθ⊥)dt,(2.8)

Hf(s) =
1
π

p.v.
∫

R

f(t)
s− t

dt,(2.9)

for (x, θ, s) ∈ R2 × S1 ×R. Above, we recognize Pf as the two-dimensional Radon
transform of f , Dθa(x) as the symmetrized beam transform of f and Hf(s) as
the Hilbert transform of f where p.v. means that the integral is considered as a
principal value.

Note that (2.2) provides a reconstruction formula for f(x) when a(x) is known.
The compatibility condition (2.3) provides a constraint for all x ∈ R2 that a needs
to satisfy for the data Pa,θf(s) to be in the range of the AtRT. Such a compatibility
condition is actually a necessary and sufficient condition for Pa,θf(s) to be in the
range of the AtRT in an appropriate functional setting described in [10]. In other
words, (2.2) and (2.3) provide a complete description of the information that can
be obtained from Pa,θf(s).

2.2. Linearization of the consistency condition. The above system is a
two-by-two system of equations for the two unknown coefficients (f, a). Since f is
directly written as a functional of a and the data in (2.2), information about a has
to be obtained from (2.3). This nonlinear functional for a is rather complicated
and we therefore simplify it by linearizing it in the variable a in the vicinity of
a = 0. We justify the linearization for (a, f) ∈ C∞0 (R2)2 (where C∞0 (R2) denotes
the space of infinitely smooth and compactly supported functions on R2). Using
that | sin t− t| ≤ |t|

3

6 and 1− cos t ≤ t2

2 for t ∈ R, we have that

cos
(HPθa(s)

2
)

= 1 +O(‖a‖2Cα), in L∞(Rs),(2.10)

sin
(HPθa(s)

2
)

=
HPθa(s)

2
+O(‖a‖2Cα), in L∞(Rs),(2.11)

Ta,θ(x) = 1−Dθa(x) +O(‖a‖2∞), in L∞(R2
x),(2.12)
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where ‖a‖∞ := supx∈R2 |a(x)| and ‖a‖Cα := ‖a‖∞+ sup (x,y)∈R2
x 6=y

|a(y)−a(x)|
|y−x|α for some

α > 0. Therefore linearizing (2.3) with respect to a small attenuation a we obtain
(2.13)∫

S1
H
(
e
Pθa(x·θ

⊥)
2 Pa,θf

)
(x·θ⊥)dθ−

∫
S1
Dθa(x)H

(
e
Pθa(x·θ

⊥)
2 Pa,θf

)
(x·θ⊥)dθ = O(‖a‖2Cα),

in L2
loc(R2

x) (we recall that the Hilbert transform defines a bounded operator from
Lp(R) to Lp(R) for 1 < p <∞ ). Again using the equality

(2.14) Pa,θf(s) = Pθf(s) +O(‖a‖∞), in L2(Rs × S1
θ),

we obtain

(2.15)

∫
S1
HPa,θf(x · θ⊥)dθ + 2−1

∫
S1
H(PθaPθf)(x · θ⊥)dθ

−
∫

S1
Dθa(x)HPθf(x · θ⊥)dθ +O(‖a‖2Cα) = 0,

in L2
loc(R2

x). As the function (PθaPθf)(s) = (P−θaP−θf)(−s), we obtain by sym-
metry that

∫
S1 H(PθaPθf)(x · θ⊥)dθ = 0, which yields

(2.16)
∫

S1
Dθa(x)HPθf(x·θ⊥)dθ =

∫
S1
HPa,θf(x·θ⊥)dθ+O(‖a‖2Cα), in L2

loc(R2
x).

Note that
∫

S1 HPa,θf(x · θ⊥)dθ is known from the data. The linearization of the
compatibility condition (2.3) thus provides an equation for a of the form:

(2.17) Rfa(x) :=
∫

S1
Dθa(x)HPθf(x · θ⊥)dθ, known for x ∈ R2.

This is a linear integral equation for a whose kernel depends linearly on f .

2.3. Some equivalent formulas. The kernel of Rf strongly depends on the
structure of f . Before we consider our non-uniqueness and uniqueness results for
(2.17), we recast the equation using several equivalent formulations (assuming that
f ∈ S(R2) and a ∈ L∞comp(R2), where S(R2) denotes the Schwartz space of infinitely
smooth functions f from R2 to C such that supx∈R2 |x|N | ∂αf

∂x
α1
1 ∂x

α2
2

(x)| <∞ for any

N ∈ N and α = (α1, α2) ∈ N2, and where L∞comp(R2) denotes the space of bounded
measurable functions on R2 that are compactly supported). First, we obtain that

(2.18) Rfa(x) =
1
π

p.v.
∫

R4

a(y)f(z)dydz
(x− y)⊥ · (x− z)

.

This shows that
Rfa(x) +Raf(x) = 0.

Upon taking Fourier transforms in x→ ξ above, we obtain that

(2.19) R̂fa(ξ) = 2p.v.
∫

R2

â(ζ)f̂(ξ − ζ)
ξ⊥ · ζ

dζ,

where ĝ is the Fourier transform of g, ĝ(ξ) =
∫

R2 e
−iξ·xg(x)dx, ξ ∈ R2.

Some symmetries in the above expressions can be obtained with a little work.
For a vector x ∈ R2, we define x̃ = x

|x| its orientation. For x, y ∈ R2, x 6= 0, we
define the vector sym(y, x̃) by

(2.20) sym(y, x̃) = (y · x̃)x̃− (y · x̃⊥)x̃⊥.
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Then we verify that:

(2.21) Rfa(x) =
1

2π
p.v.

∫
R4

a(x− y)f(z)− a(x− sym(y, x̃))f(sym(z, x̃))
(x− z) · y⊥

dydz,

Note that when f = f(|z|) is a radial source term, then

(2.22) Rfa(x) =
1

2π
p.v.

∫
R4

(
a(x− y)− a(x− sym(y, x̃))

) f(|z|)
(x− z) · y⊥

dydz.

Therefore we obtain that when f = f(|z|) and a = a(|z|), then Rfa ≡ 0. This is a
first non-uniqueness result that will be generalized in section 3.

In the Fourier domain, the above symmetry condition takes the form

(2.23) R̂fa(ξ) =
∫

R2

â(ξ − ζ)f̂(ζ)− â(ξ − sym(ζ, ξ̃))f̂(sym(ζ, ξ̃))
ξ · ζ⊥

dζ.

When f = f(|z|) is radial, then we obtain that:

(2.24) |ξ|R̂fa(ξ) =
∫

R2

â(tξ̃ + sξ̃⊥)− â(tξ̃ − sξ̃⊥)
s

f̂
(√

(|ξ| − t)2 + s2
)
dsdt.

The first term in â depends on ξ̃ but not on |ξ| while the term in f̂ depends on
|ξ| but not on ξ̃. We exploit the above formulas to state some uniqueness and
non-uniqueness results in the next two sections.

3. Non-uniqueness results

3.1. Non-uniqueness results for the linearized problem for a. We al-
ready know that Rfa as a bilinear map of (a, f) has a nontrivial kernel which
contains all pairs (a, f) such that both a and f are radial functions. This uses the
radial symmetry of Rfa (see (2.22)). We provide new pairs (a, f), where neither a
nor f are a priori radial functions, for which Rfa identically vanishes.

For X a subset of Rm, m ∈ N, we denote by χX the indicatrix function of X,
i.e. the function from Rm to R defined by χX(y) = 1 if y ∈ X and χX(y) = 0
otherwise. For x ∈ R2 and (r1, r2) ∈ (0,+∞)2, we denote by D(x, r1) the closed
Euclidean disc of R2 centered at x with radius r1, and we denote by C(x, r1, r2)
(resp. ∂D(x, r1)) the Euclidean annulus {y ∈ R2 | r1 ≤ |y − x| < r2} (resp. the
Euclidean circle {y ∈ R2 | |y − x1| = r1}). We have the following non-uniqueness
result.

Theorem 3.1. The following statements are valid.

i. Let f1 ∈ L2((0,+∞)r, rdr), and assume that there exists r0 > 0 such that
f1(r) = 0 for a.e. r ∈ (0, r0). Set f(x) = f1(|x|) for x ∈ R2. Then for
any a ∈ L∞(R2) such that suppa ⊆ D(0, r0) we have Rfa ≡ 0.

ii. Let f = δ∂D(0,r) for some r > 0. Then Rfa ≡ 0 for any a ∈ L∞(R2) such
that suppa ⊆ D(0, r).

Proof of Theorem 3.1. We recall that

(3.1) I(α) := p.v.
∫ 2π

0

1
α− cos(θ)

dθ =


sgn(α)2π√
α2 − 1

, for |α| > 1,

0, for |α| < 1.
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We prove item i. Let a ∈ L∞(R2), suppa ⊆ D(0, r0). Note that

HPθf(s) =
1
π

p.v.
∫

R2

f1(|z|)
s− z · θ⊥

dz

=
1
π

∫ +∞

0

f(r)I(sr−1)dr = 2sgn(s)
∫ |s|

0

rf1(r)√
s2 − r2

dr.(3.2)

Thus HPθf(x · θ⊥) = 0 for (x, θ) ∈ R2 × S1 such that |x · θ⊥| < r0. In addition
Dθa(x) = 0 for (x, θ) ∈ R2 × S1 such that |x · θ⊥| > r0 since suppa ⊆ D(0, r0).
Therefore from (2.17) it follows that Rfa ≡ 0. Item i is proved.

Now let f = δ∂D(0,r0) for some r0 > 0. We have

HPθδ∂D(0,r0)(s) = − 2r0√
s2 − r20

sgn(s)χ(r0,+∞)(|s|), (θ, s) ∈ S1 × R.

Thus HPθδ∂D(0,r0)(s) = 0 for s ∈ (−r0, r0), which proves item ii. �

Theorem 3.1 applies to source functions of the form f = χC(0,r1,r2) for 0 < r1 <
r2. In that case we have the explicit formula

PθχD(0,r)(s) = 2
√
r2 − s2χ(−r,r)(s),(3.3)

HPθχD(0,r)(s) = 2
(
s− sgn(s)χ(r,+∞)(|s|)

√
s2 − r2

)
,(3.4)

for s ∈ R and r > 0.
Note that from (2.18) one can deduce the following translation invariance prop-

erty:

(3.5) Rfa(x− x0) = R(τx0f)(τx0a)(x), for x ∈ R2,

for some x0 ∈ R2 and where τx0a(x) := a(x− x0) and τx0f(x) = f(x− x0) for any
x ∈ R2.

Thus using, in particular, this property and the linearity of the operator Rfa
with respect to f , we can construct more involved non-uniqueness examples for the
reconstruction of a from Rfa.

Corollary 3.2. Let N ∈ N and (α1, . . . , αN ) ∈ RN , (x1, . . . , xN ) ∈ (R2)N ,
and let (r1,j , . . . , rN,j) ∈ (0,+∞)N , j = 1, 2 such that 0 < ri,1 < ri,2 for i = 1 . . . N .
The following statements are valid.

i. When f =
∑N
i=1 αiχC(xi,ri,1,ri,2) we have Rfa ≡ 0 for any a ∈ L∞(R2)

such that suppa ⊂ ∩i=1...ND(xi, ri,1).
ii. Similarly when f =

∑N
i=1 αiδ∂D(xi,ri,1) we have Rfa ≡ 0 for any a ∈

L∞(R2) such that suppa ⊂ ∩i=1...ND(xi, ri,1).

Note that in the above result, we obtain that Rfa uniformly vanishes for func-
tions f and a that are not necessarily radial.

3.2. Non-Uniqueness for global problem. Non-uniqueness for the nonlin-
ear problem of the reconstruction of the absorption a from SPECT data Pa,θf(s)
given for all (θ, s) ∈ S1 × R also holds, even when f is assumed to be known so
that all of the data in Pa,θf(s) may be used toward the reconstruction of a. For
instance if f is a delta function, we can change a so that a subset of its line integrals
remains the same and thus get the same data. More precisely, let f = cδ0, for some
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c ∈ (0,+∞) and where
∫

R2 δ0(x)φ(x)dx = φ(0) for any φ ∈ C(R2,R). Then it
follows that ∫

S1×R
Pa,θf(s)φ(θ, s)dθds = c

∫
S1
e−

R +∞
0 a(σθ)dσφ(θ, 0)dθ,

for φ ∈ C(S1 × R). Therefore we can recover only ce−
R +∞
0 a(σθ)dσ, θ ∈ S1 from the

data. Therefore the integrals of a over any half-line originated from the origin are
known up to the constant ln(c) (which is unknown a priori). This is not sufficient
to recover a. This was already noticed in [8] where the source f has the form of a
finite sum of Dirac measures. In that case, approximation results are given using
additional consistency conditions of Helgason-Ludwig type in [8].

Note that when f is not assumed to be known and is expected to be recon-
structed from (2.2), then the remaining information for a has to be found in the
compatibility condition (2.3), which contains less information than the full Pa,θf(s).
There are therefore clear obstructions to the reconstruction of (f, a) even in the
non-linear setting.

4. Uniqueness results

4.1. Reconstructions with nonlocal sources. We give examples of source
functions f such that Rfa uniquely determines the absorption a ∈ L∞comp(R2). In
these examples, the source function f is not compactly supported and in that sense
f is not local. We will denote by e1 (resp. e2) the unit vector (1, 0) (resp. (0, 1))
and by S(R) the Schwartz space of infinitely smooth functions f from R to C such
that supx∈R |x|k

∣∣djf
dxj (x)

∣∣ < ∞ for any (j, k) ∈ N2. We will also denote by ˆ the
one-dimensional Fourier transform. We have the following result:

Proposition 4.1. Let f1 ∈ S(R) and let f(x) = f1(x1) for x = (x1, x2) ∈ R2.
Then the following formulas are valid

Rfa(x) = −8π2De2a(x)De1f(x),(4.1)

e2 · ∇xRfa(x) = −8π2a(x)De1f(x),(4.2)

where De1 and De2 are defined by (2.7). Moreover Rf is one-to-one when the
support of De1f is R2.

Proof of Proposition 4.1. First we have f̂(ζ) = 2πf̂1(ζ1)δ(ζ2), and using
(2.19) , it follows that Rfa is given by

(4.3) R̂fa(ξ) = 4πp.v.
(∫

R

â(ξ1 − ζ1, ξ2)f̂1(ζ1)
ξ2ζ1

dζ1

)
.

We recall that the inverse one-dimensional Fourier transform of the principal value
distribution is given − sgn(s)

2i . Hence

(4.4) ĝ(s)p.v.
1
s

= − 1
2i
ĝ ∗ sgn,

for g ∈ L∞comp(R) ∪ S(R), where ∗ denotes the convolution product. Therefore
applying an inverse Fourier transform in the ξ2 variable (denoted by F−1

ξ2→x2
) in
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both sides of (4.3), we obtain

Fx1→ξ1Rfa(ξ1, x2) = −2π
i
Fx1→ξ1

(∫
R
a(., x2 − s)sgn(s)ds

)
∗ξ1
(
f̂1(ζ1)p.v.

1
ζ1

)
= −4π

i
Fx1→ξ1De2a(., x2) ∗ξ1

(
f̂1(ζ1)p.v.

1
ζ1

)
(4.5)

where Fx1→ξ1 denotes the one-dimensional Fourier transform in the ξ1 variable,
and where ∗ξ1 denotes the convolution product with respect to ξ1. Then by an
inverse Fourier transform in ξ1 and using (4.4) we obtain

Rfa(x) = −4π2De2a(x)
∫

R
f1(x1 − s)sgn(s)ds,(4.6)

which proves (4.1) (we use the following property of the one-dimensional Fourier
transform “ĝ1 ∗ ĝ2 = 2πĝ1g2”). Then using (4.1) and using the equality

(4.7) θ · ∇xDθa(x) = a(x),

we obtain (4.2) (we also used the equality e2 · ∇xDe1f(x) = 0). �

When f(x1, x2) = δ(x1), we obtain

(4.8) Rfa(x) = −4π2sgn(x1)De2a(x), x ∈ R2,

and

(4.9) e2 · ∇xRfa(x) = −4π2sgn(x1)a(x), x ∈ R2,

which proves the injectivity of Rf for f(x1, x2) = δ(x1).
We can generalize formula (4.1) as follows. Let f(x) = f1(x1) + f2(x2), where

(f1, f2) ∈ S(R)2. Then

(4.10) Rfa(x) = −8π2De2a(x)De1 f̃1(x) + 8π2De1a(x)De2 f̃2(x),

where f̃1(x) = f1(x1) and f̃2(x) = f2(x2). This provides new examples of sources
f such that Rf is one-to-one.

4.2. Constant source on the support of a. We now give examples where
Rfa uniquely determines a up to the radial part of a. In these examples, f is equal
to a non-vanishing constant on the support of a. The notation χD(0,r) is introduced
in section 3.1.

Theorem 4.2. When f = χD(0,r) for some r > 0, and when a ∈ L∞(R2),
suppa ⊆ D(0, r), then Rfa uniquely determines a up to its radial part and we have
the following formula

(4.11) ∆Rfa(x) = −4πx⊥ · ∇xa(x),

where the equality holds in the distributional sense.

Proof of Theorem 4.2. From (3.4), it follows that

(4.12) HPf(θ, x · θ⊥) = 2x · θ⊥, for x ∈ D(0, r)

and

(4.13) Rfa(x) = 2
∫ 2π

0

Dθa(x)(x · θ⊥)dθ, when suppa ⊆ D(0, r).



COMBINED SOURCE AND ATTENUATION RECONSTRUCTIONS IN SPECT 9

Therefore we obtain

(4.14) Rfa(x) = −2
∫

R2

x− y
|x− y|2

· y⊥a(y)dy = 4π
∫

R2
∇yG(x− y) · y⊥a(y)dy,

where G(y) = (2π)−1 ln(|y|) is the Green function for the Laplacian in R2, ∆G = δ0.
Hence for φ ∈ C∞0 (R2), we obtain∫

R2
Rfa(x)∆φ(x)dx = 4π

∫
R2
a(y)y⊥ · ∇y

(∫
R2
G(x)∆φ(x+ y)dx

)
dy

= 4π
∫

R2
a(y)y⊥ · ∇yφ(y)dy,

which concludes the proof. �

Combining Theorems 3.1 and 4.2 we obtain examples of sources f of the form
of the sum of the indicatrix function of an Euclidean Disc D0 centered at 0 and
a superposition of indicatrix functions of Euclidean annuli or a superposition of
delta functions of circles such that any absorption a ∈ L∞(R2) supported inside
D0 (with the additional constraints on the support of a with respect to Theorem
3.1) is reconstructed from Rfa up to its radial part by the formula (4.11).

For such a source and absorption (f, a), a can be completely reconstructed
from Rfa provided that Pθ0a(s) is also known for some θ0 ∈ S1 and for any s ∈ R.
In X-ray tomography, these integrals Pθ0a(s) are known for all s ∈ R when a full
transversal scan in the fixed direction θ0 is performed on the object of interest.
Such results show that combined with very limited tomographic projections of a,
unique reconstructions of both a and f may be feasible.

4.3. Formulas for radial sources f . Using (2.18) (resp. (2.19)), we first give
a general formula that relates the Fourier decomposition of Rfa (resp. R̂fa) to the
Fourier decomposition of a (resp. â) when f is a radial function. Then we provide
an example of a smooth (and Gaussian) radial source f such that Rfa uniquely
determines a up to its radial part. However, the stability of the reconstruction is
very poor as we shall see.

Let f(x) = f1(|x|) ∈ L2(R2). Performing the changes of variables y = sx̃+ tx̃⊥

and z = r(cos(ω), sin(ω)) (dy = ds dt, dz = r dr dω), in equation (2.22) and using
(3.1), it follows that

Rfa(x) =
1

2π

∫
R2

(
a(x− sx̃− tx̃⊥)− a(x− sx̃+ tx̃⊥)

√
s2 + t2

×
∫ +∞

0

f1(r)I(r−1x · ỹ⊥)dωdr

= −2
∫

(s,t)∈R×(0,+∞)

a(sx̃− tx̃⊥)− a(sx̃+ tx̃⊥)√
(|x| − s)2 + t2

×g
( t|x|√

(|x| − s)2 + t2

)
dsdt,(4.15)

where

(4.16) g(r) =
∫ r

0

f1(s)s√
r2 − s2

ds, for r > 0.
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Let us introduce the Fourier decomposition of Rfa and a given by Rfa(rω) =∑
m∈Z(Rfa)m(r)eimθ and a(rω) =

∑
m∈Z am(r)eimθ, where ω = (cos(θ), sin(θ)).

Set x = rω in (4.15) for (r, θ) ∈ (0,+∞)× (0, 2π). Then performing the change of
variables (s, t) = σ(cos(φ), sin(φ)) in (4.15) (where (σ, φ) ∈ (0,+∞) × (0, π)), we
have

(4.17) (Rfa)m(r) = 4i
∫ +∞

0

σam(σ)
∫ π

0

sin(mφ)g
(

rσ sin(φ)√
r2+σ2−2rσ cos(φ)

)
√
r2 + σ2 − 2rσ cos(φ)

dφdσ.

A formula similar to (4.17) holds for the Fourier transform of Rfa and a: from
(2.24), it follows that
(4.18)

rR̂fam(rω) = 4i
∫ +∞

0

âm(σ)
(∫ π

0

g1
(√

σ2 + r2 − 2σr cos(φ)
) sin(mφ)

sin(φ)
dφ
)
dσ,

for (r, θ) ∈ (0,+∞)×(0, 2π). Here, we have defined ω = (cos(θ), sin(θ)), R̂fa(rω) =∑
m∈Z R̂fam(r)eimθ and â(rω) =

∑
m∈Z âm(r)eimθ, as well as g1(σ) := f̂((σ, 0)) for

σ ∈ (0,+∞).
We have seen in section 3 examples of sources f such that no reconstruction

of am is possible for any m ∈ Z from knowledge of (Rfa)m. We also have seen in
section 4.2 examples of sources f such that am can be reconstructed from (Rfa)m
for m 6= 0 provided that a is compactly supported inside the support of f . In
this latter example, f was also constant on the support of a. We now provide a
example of a source f such that Rfa determines a up to its radial part and such
that f restricted to any nonempty open subset of R2 is not constant.

Proposition 4.3. Let f(x) = e−|x|
2

for x ∈ R2 and let a ∈ L∞comp(R2). Then
Rfa uniquely determines a up to its radial part.

Proof of Proposition 4.3. Let a ∈ L∞comp(R2). First we have f̂(ξ) = πe−
|ξ|2
4 .

Therefore using (4.18) (“g1(s) = πe−
s2
4 ”, for s ∈ (0,+∞)) we obtain

Fm(r) := − ire
r2
4

4π
R̂fam(rω)(4.19)

=
∫ +∞

0

âm(σ)e−
σ2
4

(∫ π

0

e
σr cos(φ)

2
sin(mφ)
sin(φ)

dφ
)
dσ,(4.20)

for r ∈ (0,+∞) and for m ∈ Z. The functions Fm are entire functions on C and
thus they are determined by their derivatives at r = 0,

(4.21) 2n
dnFm
drn

(0) =
∫ +∞

0

âm(σ)e−
σ2
4 σndσIn,m,

where

(4.22) In,m =
∫ π

0

(cos(φ))n
sin(mφ)
sin(φ)

dφ.

We use the following Lemma.

Lemma 4.4. Let n ∈ N and m ∈ Z, m 6= 0. Then when n+m is odd, ±m > 0,
we have ±In,m > 0.
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The proof of Lemma 4.4 is given at the end of section 4.3.
Let m 6= 0. Then, using (4.21) and Lemma 4.4, we obtain

(4.23)
∫ +∞

0

hm(σ)σndσ =


22n

I2n,m

d2nFm
dr2n

(0), when m is odd,

22n+1

I2n+1,m

d2n+1Fm
dr2n+1

(0), when m is even,

where

(4.24) hm(σ) =


âm(
√
σ)

2
√
σ

e−
σ
4 , when m is odd,

âm(
√
σ)e−

σ
4

2
, when m is even.

Here, we performed the change of variables “σ”= σ2 on the integral on the right-
hand side of (4.21). Then the Laplace transform Lhm(λ) :=

∫ +∞
0

e−λσhm(σ)dσ for
m 6= 0 is analytic on the strip {λ ∈ C | <λ > −1} and is given by the formulas

(4.25) Lhm(λ) =


+∞∑
n=0

(−1)n22n

n!I2n,m
d2nFm
dr2n

(0)λn, when m is odd,

+∞∑
n=0

(−1)n22n+1

n!I2n+1,m

d2n+1Fm
dr2n+1

(0)λn, when m is even,

in a neighborhood of 0. Inverting a Laplace transform, we recover hm and thus âm
from R̂fam for m 6= 0. This proves that Rfa uniquely determine â up to its radial
part. Hence Rfa uniquely determines a up to its radial part. �

The reconstruction procedure we just presented seems to be highly ill-posed
as it involves the inversion of a Laplace transform. Such a result should not be
surprising. The above reconstruction works for arbitrary Gaussian sources of the
form e−|

x
η |

2
for all η > 0. When η → 0 and after proper rescaling, this corresponds

to a source term that approximates the delta distribution with support at x = 0.
We have seen that reconstructions of a were not possible in this limit and thus
cannot expect reconstructions from peaked Gaussian source terms to be stable.

In the Appendix, we give an alternative proof of Proposition 4.3 using a different
reconstruction procedure that also involves inverting a Laplace transform.

Proof of Lemma 4.4. We prove by induction that In,m > 0 when n + m
is odd, (n,m) ∈ N2, m > 0. First when m = 1 and n is even we have In,1 =∫ π
0

cos(φ)ndφ > 0 (since cos(φ)n > 0 for φ ∈ (0, π), φ 6= π
2 ). When n = 0 and m is

odd, m > 0, then

I0,m = <
(∫ 2π

0

(eiφ)m − (e−iφ)m

eiφ − e−iφ
dφ
)

=
m−1∑
j=0

<
( ∫ π

0

ei(2j−(m−1))φdφ
)

=
m−1∑
j=0

∫ π

0

cos((2j − (m− 1))φ)dφ = π > 0,(4.26)

where <z denotes the real part of a complex number z. Then the proof of the
statement for m > 0 follows by induction from the identity

(4.27) 2In,m = In−1,m−1 + In−1,m+1,
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and from I0,m > 0 for odd m > 0, In,1 > 0 for even n ≥ 0, and In,0 = 0 for n ∈ N.
(Identity (4.27) follows from the identity 2 sin(mφ) cos(φ) = sin((m+1)φ)+sin((m−
1)φ) for φ ∈ (0, π).) Then, we note that In,−m = −In,m for (n,m) ∈ N × Z and
thus the statement is also proved for m < 0. �

4.4. Formulas for arbitrary sources f . We conclude this section by provid-
ing a general formula that relates the Fourier series decomposition of Rfa with the
Fourier series decomposition of arbitrary smooth and sufficiently decaying source
term f and of arbitrary absorption function a ∈ L∞comp.

Let us introduce the Fourier decomposition of Rfa, a and f , Rfa(rω) =∑
m∈Z(Rfa)m(r)eimθ, a(rω) =

∑
m∈Z am(r)eimθ and f(rω) =

∑
m∈Z fm(r)eimθ

where ω = (cos(θ), sin(θ)) and r ∈ (0,+∞).
Then using (2.18), we can prove that

(4.28)

(Rfa)m(r) = − i
π

∑
j∈Z

∫
(0,+∞)2×(0,2π)2

sσaj(s)fm−j(σ) sin(jω + (m− j)ϕ)dsdσdϕdω
r(−σ sin(ϕ) + s sin(ω)) + sσ sin(ϕ− ω)

.

The analysis of this decomposition is left open.

5. Conclusions and perspectives

The above uniqueness and non-uniqueness results offer a partial answer to the
use of the compatibility condition to solve for a for a given f . Ideally, (2.3) or its
linearization (2.17) should be coupled with (2.2) to obtain a system of equations for
(f, a). Unfortunately, the non-uniqueness results prevent us from stating a positive
reconstruction result for the vector (f, a). It is in fact clear that (2.2)-(2.3) is
not uniquely solvable in general. For which class of sources f do (2.2)-(2.3) or its
linearization (2.2)-(2.17) admit unique solutions is, however, not clear at present.
The above study provides partial answers. The main conclusion is that the class of
(f, a) for which some non-uniqueness arises is quite large.

From the practical viewpoint, a is typically reconstructed first using a standard
CT-scan and then f is reconstructed by using, e.g., (2.2). Note, however, that
each CT-scan results in a small does of radiation being absorbed by the patient.
The reconstruction of (f, a) from knowledge of Paf(θ, s) with minimal additional
information about the line integrals of a would therefore have practical value.

We repeat that the coupled system (2.2)-(2.3) provides a full description of the
range of the AtRT operator and as such is a mathematically sound starting point
for studies of simultaneous reconstructions of f and a. The above linearization
about a = 0 can be generalized to linearizations about other values of a. The
resulting expressions are, however, considerably more complicated than the simple
expression obtained in (2.16) leading to the definition of (2.17). These expressions
do not seem to be as simple to analyze as the operator in (2.17) and are left open
for future studies.

We conclude this paper by the following remark on the nonlinear problem with
constant attenuation µ in the disc D(0, 1). When the source f is a radial smooth
function that is compactly supported inside D(0, 1), we cannot reconstruct (µ, f)
from the data Pa,θf(s), (s, θ) ∈ R × S1, where a = µχD(0,1). Indeed, when f ∈
C∞0 (R2) is radial and compactly supported inside the disc D(0, 1), then g(θ, s) :=
Pa,θf(s) = e−µ

√
1−s2 ∫ +∞

−∞ eµtf(tθ+sθ⊥)dt belongs to C∞0 (S1×R) and is radial and
compactly supported inside S1×(−1, 1). Therefore, using the range characterization
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of the ERT [1, 7] (and a support theorem for the ERT, see [11]), one obtains that
for any µ′ ∈ R there exists a function fµ′ ∈ C∞0 (R2) which is radial and compactly
supported inside D(0, 1) such that eµ

′√1−s2g(θ, s) =
∫ +∞
−∞ eµ

′tfµ′(tθ + sθ⊥)dt, i.e.
Pa,θf = Pa′,θfµ′ , θ ∈ S1 where a′ = µ′χD(0,1). Hence the obstruction for the
identification problem for the ERT [5, 13] still holds for the similar problem for
the AtRT in the disc D(0, 1).
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Appendix A. Alternative proof of Proposition 4.3

First we have f̂(ξ) = πe−
|ξ|2
4 and from (2.19) it follows that

(A.1) R̂fa(ξ) = 2πe−
|ξ|2
4 p.v.

∫
R2

â(sξ̃ + tξ̃⊥)e−
s2+t2

4 e
|ξ|s
2

t
dtds,

for ξ ∈ R2, ξ 6= 0. Thus at fixed ω ∈ S1, eλ
2
R̂fa(2λω) = Bhω(−λ) where hω(s) =

2πp.v.
∫ +∞
−∞

â(sω+tω⊥)e−
s2+t2

4

t dt, and where B denotes the two-sided Laplace trans-

form, Bh1(λ) :=
∫ +∞
−∞ e−λsh1(s)ds for λ ∈ (−δ, δ) and h1 ∈ L1(R, eδ|s|ds) for some

δ > 0. Thus inverting the Laplace transform, we obtain

(2π)−1B−1
[
eλ

2
R̂fa(2λω)

]
(s) = p.v.

∫ +∞

−∞

b̂(sω + tω⊥)
t

dt.

where b is the smooth function defined by b̂(ξ) = â(ξ)e−
|ξ|2
4 , ξ ∈ R2, or equivalently

by b = π−1a∗f where ∗ denotes the convolution product. Then using that p̂.v.( 1
t ) =

−iπsgn(t), we obtain

(A.2) p.v.
∫ +∞

−∞

b̂(sω + tω⊥)
t

dt = −πi
∫ +∞

−∞
sgn(σ)

∫
R
e−isrb(rω + σω⊥)drdσ,

for any s ∈ R. Then applying an inverse Fourier transform in the s variable (denoted
by F−1

s→k) to the left and right hand sides of (A.2) we obtain

F−1
s→k

{
(2π)−1B−1

[
eλ

2
R̂fa(2λω)

]
(.)
}

(k) = −πi
∫ +∞

−∞
sgn(σ)b(kω + σω⊥)dσ

= 2πiDω⊥b(kω),(A.3)

for k ∈ R, where Dω⊥ is defined by (2.7). The question is therefore now whether
we can reconstruct b(x) from knowledge of the transform Dω⊥b(kω), which is an
interesting integral geometry problem in itself that does not seem to have been
addressed in the literature.

We decompose b(x) in Fourier series: b(rω) =
∑
m∈Z bm(r)eimθ, (r, θ) ∈

(0,+∞)× (0, 2π), ω = (cos(θ), sin(θ)). We will prove that bm for m 6= 0 is uniquely
determined by Rfa through (A.3) and through Dω⊥b(kω) given for any ω ∈ S1 and
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k ∈ R. First using a change of variables similar to the one used for the derivation
of (4.15) we obtain

(A.4) Dω⊥b(tω) = −i
∑
m

sgn(m)eimθ
∫ +∞

t

bm(r)U|m−1|
( t
r

)
dr,

for t > 0, ω = (cos(θ), sin(θ)), θ ∈ (0, 2π), where Um denotes the m-th Tchebyschev
polynomial function of the second kind: Um(t) = sin((m+1) arccos(t))√

1−t2 , t ∈ [−1, 1],
m ∈ N. In addition at fixed m ∈ N, m ≥ 1, for δ > 0 and for any function
h ∈ L1((0,+∞)r, eδr

2
dr) we have

(A.5)
∫ +∞

t

h(r)Um−1

( t
r

)
dr given for all t > 0 uniquely determines h.

Therefore from (A.4) and (A.3) it follows that Rfa uniquely determines bm for
m 6= 0. Hence Rfa uniquely determines b up to its radial part. Using the equality

b̂(ξ) = â(ξ)e−
|ξ|2
4 , we obtain that Rfa uniquely determines a up to its radial part.

It remains to prove (A.5). Let m ∈ N, m ≥ 1 and let h ∈ L1((0,+∞)r, eδr
2
dr)

for some δ > 0. Let hm(λ) :=
∫ +∞
0

eλt
∫ +∞
t

h(r)Um−1( tr )drdt. We have hm(λ) =∫ +∞
0

rh(r)
∫ 1

0
eλrtUm−1(t)dtdr. The function hm is an analytic function for λ in C.

Then hm is uniquely determined by all its derivative at λ = 0, and we have

(A.6)
dnhm
dλn

(0) =
∫ +∞

0

rn+1h(r)dr
∫ 1

0

tnUm−1(t)dt, for n ∈ N.

We prove at the end of this section that

(A.7) In,m =
∫ 1

0

tnUm−1(t)dt > 0,

for each n,m, m > 0 and n+m odd. Thus we have

(A.8)
∫ +∞

0

e−λr
h(
√
r)

2
dr =

∫ +∞

0

e−λr
2
rh(r)dr =

+∞∑
n=0

(−1)n

n!I2n,m
d2nhm
dλ2n

(0)λn,

in a neighborhood of 0 when m is odd, and
(A.9)∫ +∞

0

e−λr
√
rh(
√
r)

2
dr =

∫ +∞

0

e−λr
2
r2h(r)dr =

+∞∑
n=0

(−1)n

n!I2n+1,m

d2n+1hm
dλ2n

(0)λn,

in a neighborhood of 0 when m is even, m 6= 0. Inverting again a Laplace transform,
we recover h from

∫ +∞
t

h(r)Um−1

(
t
r

)
dr given for all t > 0.

We prove (A.7). Note that In,m =
∫ π

2
0

cos(θ)n sin(mθ)dθ. For m = 0 we have
In,m = 0 for n ∈ N. Then we prove (A.7) by induction in n. For n = 0 and
m > 0, m odd, we have I0,m = 1

m > 0, and for m = 1, n ∈ N and n even we have
In,1 = (n+ 1)−1 > 0. Now assume that we prove that In,m > 0 for some n ≥ 0 and
for any m > 0, n + m odd. Then for m > 0 such that n + m + 1 is odd, we have
2In+1,m = In,m−1 + In,m+1. By assumption In,m+1 > 0 and we have In,m−1 ≥ 0.
Therefore In+1,m > 0. This proves (A.7). �
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