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Abstract

This paper reviews established mathematical techniques to model the energy
density of high frequency waves in random media by radiative transfer equations
and to model the small mean free path limit of radiative transfer solutions by
diffusion equations. It then applies these techniques to the derivation of radiative
transfer and diffusion equations for the radiance, also known as specific intensity,
of electromagnetic waves in situations where the refractive index of the underlying
structure varies smoothly in space.

1 Introduction

Radiative transfer equations have long been used to model the energy density of high
frequency waves propagating in highly heterogeneous media. Although they were first
derived phenomenologically [6, 11], they can also be obtained as the high frequency
limit (as the wavelength tends to zero) of solutions to quantum [8, 20] and classical
[1, 11, 18] wave equations; see also the bibliography in the above references. In the
references [1, 18], which we closely follow here, the radiative transfer equations model
a phase space energy density for the propagating waves. Radiative transfer equations,
which are posed in the phase space, are expensive to solve numerically and are thus
often replaced by their diffusion approximation. There is a very large literature on this
problem; see e.g. [5, 7, 11, 14]. The reference [5] includes the derivation of diffusion
equations for radiative transfer equations with spatially varying refractive indices.

Quite a few works have recently concerned the extension of radiative transfer models
for the specific intensity (also known as the radiance) of electromagnetic waves to the
case of spatially varying refractive indices; see for instance [9, 12, 16, 17, 21]. The
specific intensity, rather than the phase space density, is often used in the literature
because it is more directly related to what can be measured experimentally. The above
references obtain competing radiative transfer equations to model the radiance, and
different corresponding diffusion approximations. It is not the objective of this paper
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to compare these different models and exhibit their relative strengths and weaknesses.
Among these models however, there is only one that corresponds to the mathematically
rigorous limit as the typical wavelength in the system tends to zero. Similarly, only one
diffusive model is the mathematically rigorous limit of the radiative transfer equation
as the mean free path tends to zero.

The references cited in the preceding paragraph all base their derivation of radiative
transfer models with spatially varying refractive indices on geometric optics techniques
[13]. Although geometric optics does address the propagation of high frequency waves in
heterogeneous media, it does so one (WKB-) mode at a time, and only up to apparition
of caustics unless special care is taken; see e.g. [22]. Since multiple scattering of waves
quickly creates a superposition of an infinite number of fronts propagating in essentially
every direction, geometric optics methods are not very well-adapted to analyzes of wave
propagation in highly heterogeneous media. Rather, phase space based methods, such
as those developed in [18] and also in [10, 15] are often preferable. The objective of
this paper is to consider the radiative transfer models in [18] for the phase space energy
density of electromagnetic waves, and to show that the radiance and the phase space
energy density are related by a multiplicative factor that depends on the refractive index.
This allows us to obtain the radiative transfer equation that the radiance satisfies in the
limit of high frequencies. We then use the asymptotic methods developed e.g. in [5, 7]
to derive the diffusion approximation for the radiance.

In this paper, we consider evolution equations with prescribed initial conditions.
Volume source terms are neglected, although they can easily be incorporated. We also
assume that the refractive index is isotropic, i.e., is a scalar quantity (isotropic tensor).
Anisotropic tensors would require one to extend to this case the work done in [18].
This will not be considered in this paper. We also assume that the refractive index
varies sufficiently smoothly so that its spatial gradient is defined. In the case of very
abrupt changes in the refractive index (meaning changes over a fraction of a wavelength),
radiative transfer equations need be augmented by interface conditions satisfying Snell’s
law along each surface where the refractive index jumps. This may be done as in e.g.
[2], see also [13], and will not be considered in this paper.

The rest of the paper is structured as follows. Section 2 recalls the radiative transfer
equation for the phase space energy density of electromagnetic waves propagating in
random media. This equation is used in section 3 to obtain a radiative transfer model
for the radiance. The diffusion approximation for both the phase space energy density
and the radiance are presented in section 4. Some conclusions are offered in section 5.

2 High frequency limit and radiative transfer

In linearly magnetic and polarizable (dielectric) media and in the absence of volume
source term, the Maxwell equations read

εε
∂Eε

∂t
= ∇×Hε, ∇ · εεEε = 0,

µε
∂Hε

∂t
= −∇× Eε, ∇ · µεHε = 0,

(1)
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where (Eε,Hε) is the electromagnetic field, εε(x) is the dielectric constant and µε(x)
is the permeability. This evolution equation need be augmented by initial conditions
(Eε,Hε)(0,x) = (E0ε,H0ε)(x), where the functions E0ε and H0ε oscillate at frequencies
of order ε−1, where for λ the typical wavelength in the system and L the characteristic
spatial size at which propagation is observed, ε = λ/L � 1. This is the high frequency
regime, in which both the geometric optics and the radiative transfer models are accurate
[11, 13, 18].

Conservation of the electromagnetic energy takes the form:

Eε(t) =
1

2

∫
R3

(
εε(x)|Eε|2(t,x) + µε(x)|Hε|2(t,x)

)
dx = Eε(0). (2)

The role of kinetic models, such as radiative transfer equations, is to predict the spatial
distribution of the energy density

Eε(t,x) =
1

2

(
εε(x)|Eε|2(t,x) + µε(x)|Hε|2(t,x)

)
. (3)

For certain models of random underlying media (characterized by εε(x) and µε(x)),
this can be done in the high frequency (semiclassical) limit, i.e., as ε → 0 in the above
model, provided that the wave energy density is given a phase space interpretation. More
specifically, and following the presentation in [18] and [1], let us assume to simplify that

εε(x) = ε0, µε(x) = µ0(x) +
√

εµ1

(x

ε

)
. (4)

Here µ0(x) is the average permeability and µ1(x/ε) is a homogeneous random field with
a correlation length comparable to the typical wavelength in the system. The average
light speed and average refractive index given by

c(x) =
1√

ε0µ0(x)
, and n(x) =

c

c(x)
, (5)

respectively, are thus spatially varying, where c is light speed in vacuum.
In the above so-called weak coupling regime, it is shown in [18] that in the limit of

high frequencies, there exists a two-by-two matrix-valued function

α(t,x,k) =
1

2

(
I + Q U + iV

U − iV I −Q

)
(t,x,k), (6)

where (I, Q, U, V ) are the Stokes parameters commonly used in the description of light
polarization [6, 11], such that

lim
ε→0

Eε(t,x) =

∫
R3

Tr α(t,x,k)dk =

∫
R3

I(t,x,k)dk. (7)

Here Tr stands for Trace of the matrix. As a consequence, I(t,x,k) may be considered
as a phase-space electromagnetic energy density. Furthermore, α satisfies the following
radiative transfer equation:

∂α

∂t
+ {ω, α}+ Nα− αN +

πω2(x,k)

2(2π)3

×
∫

R3

R̂(k− q)T (k,q)
(
α(k)− α(q)

)
T (q,k)δ

(
ω(x,k)− ω(x,q)

)
dq = 0,

(8)
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with appropriate initial conditions (initial radiation source). The parameters appearing
in the above equation are defined as follows. The dispersion relation is characterized by
the following Hamiltonian

ω(x,k) = c(x)|k|. (9)

The propagation of the energy along the bicharacteristics associated to the above Hamil-
tonian [10, 13] is modeled by the following Poisson bracket

{ω, α}(x,k) = ∇kω(x,k) · ∇xα(x,k)−∇xω(x,k) · ∇kα(x,k)

= c(x)k̂ · ∇xα(x,k)− |k|∇c(x) · ∇kα(x,k), k̂ =
k

|k|
.

(10)

The effects of rotation of the polarization components as energy propagates along the
bicharacteristics are characterized by the 2×2 skew-symmetric matrix N = −N t, whose
expression can be found in [1, 6, 18]. Finally, scattering caused by interaction of the
propagating waves with the underlying heterogeneities in the permeability µ1 is modeled
by the last term on the left-hand side in (8). In this scattering operator, R̂(p) is the
power spectrum of the fluctuations µ1, and T is a 2×2 symmetric matrix that accounts
for polarization rotation through scattering; see [1, 18]. Note that scattering is elastic
thanks to the term δ

(
ω(x,k)− ω(x,q)

)
. When energy scatters, it is allowed to change

direction but cannot change frequency ω(x,k) = ω. Since the other operators in (8)
preserve the Hamiltonian ω(x,k), we verify that the solutions α(t,x,k) at different
values of ω = ω(x,k) satisfy uncoupled equations.

The radiative transfer equation (8) fully characterizes energy propagation in the
high frequency limit. It may be generalized to fluctuations in the dielectric constant
εε(x) [18] and to point scatterers [11] with a different expression for the scattering
operator. If polarization effects are neglected by setting U = V = Q ≡ 0 in (6), a scalar
radiative transfer equation can be derived for the phase-space energy density I(t,x,k).
If absorption effects, which were neglected in the derivation of (8), are included in the
model, the scalar radiative transfer equation takes the following form:

∂I

∂t
+ {ω, I}+ Σ(x,k)I =

∫
R3

σ(x,k,q)I(t,x,q)δ
(
ω(x,k)− ω(x,q)

)
dq, (11)

where σ(x,k,q) is the scattering function and Σ(x,k) = Σa(x) + Σs(x,k) is the total
extinction coefficient. The intrinsic attenuation is modeled by the coefficient Σa(x),
whereas the scattering coefficient Σs(x,k) is defined by

Σs(x,k) =

∫
R3

σ(x,k,q)δ
(
ω(x,k)− ω(x,q)

)
dq. (12)

Provided that the initial conditions I(0,x,k) are prescribed, the evolution equation (11)
uniquely characterizes the phase-space intensity I(t,x,k) [7]. Any additional volume
source term may be added to the right-hand side in (11). Note that the radiative transfer
equation accounts for changes in the refractive index, or equivalently in the light speed,
so long as the latter is sufficiently smooth so that its gradient is defined.
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3 Radiance versus phase space energy density

The above equation (11) fully characterizes photon propagation in random media such
as e.g. human tissues, as it is used in optical tomography. Yet, the radiative transfer
equations mostly encountered in the literature to model photon propagation do not
involve the phase space energy density introduced above but rather the specific intensity,
also known as radiance L(t,x,Ω, ω), where Ω ∈ S2 is a unit vector and ω is a frequency.

In the SI system of units, the energy density Eε has units of J m−3, or Joules per
cubic meter. Upon using the change of variables dk = |k|2d|k|dk̂ in polar coordinates,
we obtain that Idk is an energy density so that I(t,x,k) has units of J sr−1, or Joules
per steradian, the unit solid angle. On the other hand, the specific intensity has units
of J m−2 sr−1, or equivalently W m−2 sr−1 Hz−1, where W is the units of Watts and Hz
the unit of Hertz (frequency) [11]. It is defined so that the following conservation holds∫

S2

∫ ∞

0

1

c(x)
L(t,x,Ω, ω)dωdΩ = lim

ε→0
Eε(t,x) =

∫
R3

I(t,x,k)dk. (13)

Now the equation for I(t,x,k) can be solved at ω = ω(x,k) = c0(x)|k| fixed as we
observed earlier. We can thus perform the following change of variables:∫

R3

I(t,x,k)dk =

∫
R3

I(t,x,k)|k|2d|k|dk̂ =

∫
S2

∫ ∞

0

I(t,x,
ω

c(x)
Ω)

ω2

c3(x)
dωdΩ. (14)

Since both I and L have to represent the same physics in the presence of a geometric
optics front for instance, we deduce that

ω2

c2(x)
I(t,x,

ω

c(x)
Ω) = L(t,x,Ω, ω). (15)

This holds for all x ∈ R3, Ω ∈ S2, and ω ∈ R+, i.e., in the whole phase space. This
identification now allows us to derive an equation for the specific intensity L from (11).
In the absence of spatial variations in the local light speed, both terms I and L are
separated by a multiplicative constant and thus solve the same equation. However
when c(x) is not constant, the Poisson bracket (10) applied to L will differ from that
applied to I.

Let us first introduce the quantity

I(t,x,Ω, ω) = I(t,x,
ω

c(x)
Ω). (16)

This corresponds to the change of variables (x,k) → (x, ω = c(x)|k|,Ω = k/|k|). We
thus find that

∇x → ∇x +
∇c

c
ω

∂

∂ω
, ∇k → c(x)Ω

∂

∂ω
+

c(x)

ω
(I3 −Ω⊗Ω)∇Ω.

Here, I3 is the 3× 3 identity matrix and
(
I3 −Ω⊗Ω

)
∇Ω is the projection of the usual

gradient ∇Ω defined in R3 onto the unit sphere S2. We have thus found that

{ω, I}(t,x,k) →
(
c(x)Ω · ∇xI −∇c(x)

(
I3 −Ω⊗Ω

)
∇ΩI

)
(t,x,Ω, ω).
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Because ω(x,k) is invariant in the transport equation (11), the modified phase-space
intensity I(t,x,Ω, ω) satisfies uncoupled equations for different values of ω. The change
of variables in the scattering kernel in (11) is then straightforward and we obtain the
equation

∂I
∂t

+
(
c(x)Ω · ∇xI −∇c(x) ·

(
I3 −Ω⊗Ω

)
∇ΩI

)
+ Σ̃(x,Ω, ω)I

=

∫
S2

σ̃(x,Ω,Ω′, ω)I(t,x,Ω′, ω)dΩ′.
(17)

Here, we have defined the coefficients

Σ̃(x,Ω, ω) = Σ(x,
ωΩ

c(x)
), σ̃(x,Ω,Ω′, ω) = σ(x,

ω

c(x)
Ω,

ω

c(x)
Ω′). (18)

The equation for I still preserves the same structure as (11): it follows the bicharac-
teristics of the Hamiltonian ω(x,k), where now Ω = k̂, between interactions with the
underlying structure, which are either absorption or scattering events modeled by the
extinction and scattering coefficient Σ̃ and σ̃.

It is now straightforward to obtain an equation for the specific intensity

L(t,x,Ω, ω) =
ω2

c2(x)
I(t,x,Ω, ω). (19)

Since ω2/(c2(x)) is preserved by the scattering kernel, only the propagation along the
bicharacteristics is affected. Upon performing the calculation

1

c3(x)
c(x)Ω · ∇c2(x) = 2

Ω · ∇c(x)

c(x)
,

we deduce that the radiance solves the following equation

1

c(x)

∂L

∂t
+

(
Ω · ∇xL−

∇c(x)

c(x)
·
(
I3 −Ω⊗Ω

)
∇ΩL

)
+ 2

Ω · ∇c(x)

c(x)
L

= −Σ̃(x, ω)

c(x)
L +

∫
S2

σ̃(x,Ω,Ω′, ω)

c(x)
L(t,x,Ω′, ω)dΩ′.

(20)

In optical tomography, it is customary to use the notation

µa(x) =
Σa(x)

c(x)
, µs(x, ω)θ(x,Ω ·Ω′) =

σ̃(x,Ω,Ω′, ω)

c(x)
, (21)

where θ is a normalized scattering function (averaging to 1 over S2), and to write
the radiative transfer in terms of the refractive index introduced in (5). Noting that
n(x)−1∇n(x) = −c(x)−1∇c(x), we deduce that the specific intensity takes with the
above notation the following form

n(x)

c

∂L

∂t
+ Ω · ∇xL +

∇n(x)

n(x)
·
(
I3 −Ω⊗Ω

)
∇ΩL− 2

Ω · ∇n(x)

n(x)
L

= −(µs(x, ω) + µa(x))L + µs(x, ω)

∫
S2

θ(x,Ω ·Ω′)L(t,x,Ω′, ω)dΩ′.
(22)
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Note that the radiance L(t,x,Ω, ω) is not conserved along the bicharacteristics of the
Hamiltonian ω(x,k), although of course we have the global conservation in (13).

Let us conclude this section by a few remarks. Equation (22), with the above defi-
nition of the radiance, is the only model compatible with the semiclassical limit of high
frequency waves, which is the regime of geometric optics and of radiative transfer. In
the absence of randomness (i.e., σ ≡ Σ ≡ 0 or µa ≡ µs ≡ 0), techniques developed in
e.g. [10, 15, 18] allow one to rigorously derive the Liouville equations (11) and (22).
The Liouville equation may also be derived from geometric optics expansions, as was
done for instance in [21]. However, the use of Wigner transforms as in [1, 10, 15, 18]
significantly simplifies the derivation as it dispenses us from following geometric fronts.
Moreover, since the radiative transfer solution involves an infinite number of fronts (en-
ergy radiates in every direction), the geometric optics formalism is not well-adapted to
the derivation of radiative transfer models.

Because radiance is not conserved along the bicharacteristics of the Hamiltonian, it
is more difficult to solve (22) than (17). It thus seems logical to propose that solving
(17) numerically, for instance by a Monte Carlo method [4, 19], and using the change
of variables (19) will yield better algorithms than methods based directly on (22). Note
that the change of variables (15) could also be used for the matrix α(t,x,k) that accounts
for polarization effects. Thus using for instance the method developed in [3, 4], Monte
Carlo methods can be used to solve radiative transfer equations for the vector-valued
specific intensities (with components the appropriately normalized Stokes parameters);
see [11, 18].

4 Diffusion limit

The diffusion approximation of transport equations has also long been analyzed in the
mathematical and physical literatures. The diffusion approximation is typically derived
in two ways; either as the P1 method, a truncation of the radiative transfer solution
over the first d + 1 spherical harmonics (in d space dimensions) in the angular variable,
see e.g. [11]; or as an asymptotic expansion in the limit of vanishing mean free path,
see [7, 14]. Although most derivations deal with the case of a constant refractive index,
spatially varying indices have also been considered, see for instance [5] using asymptotic
expansions, and more recently [12, 21] with the P1 method.

One advantage of the asymptotic method is that it provides an error estimate for
the difference between the transport and diffusion solutions, at least in the idealized
case of infinite media with no boundary. The treatment of boundaries in the diffusion
approximation has also been extensively studied; see for instance [5, 7]. The analysis
presented in these references is not modified by the spatial variations of the refractive
index so we do not consider the difficulty further here.

The diffusion approximation holds when the scattering coefficient is large, the ab-
sorption coefficient is small, and the time scale is sufficiently large so that the diffusive
regime sets in. This corresponds to replacing, in (22), µs by µs/η, µa by ηµa, and t by
t/η, where η � 1. The (elastic) mean free path satisfies then:

l(x, |k|) =
η

µt(x, ω)
� L, µt(x, ω) = µs(x, ω) + η2µa(x), (23)
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where µt(x, ω) is the extinction coefficient and L a typical distance over which the
specific intensity propagates. The limit as η → 0, or equivalently l/L → 0, is analyzed
as follows. The phase space density Iη(t,x,Ω, ω) satisfies the following rescaled equation

η

c0(x)

∂Iη

∂t
+

(
Ω · ∇xIη − ∇c(x)

c(x)
·
(
I3 −Ω⊗Ω

)
∇ΩIη

)
+ ηµa(x)Iη

=
µs(x, ω)

η

∫
S2

θ(x,Ω ·Ω′)
(
Iη(t,x,Ω′, ω)− Iη(t,x,Ω, ω)

)
dΩ′,

(24)

with initial conditions Iη(0,x,Ω, ω) = Iin(x, ω) independent of Ω to simplify (otherwise
initial layers need be accounted for [7]).

Then plugging the asymptotic expansion Iη = I0 +ηI1 +η2I2 into (24) and equating
like powers of η yields at the order η−1 that I0(t,x, ω) is independent of Ω. The next
order equation provides that

Ω · ∇xI0 = µs(x, ω)

∫
S2

θ(x,Ω ·Ω′)
(
I1(t,x,Ω′, ω)− I1(t,x,Ω, ω)

)
dΩ′, (25)

because
(
I3−Ω⊗Ω

)
∇ΩI0 = 0. Let us define the anisotropy factor λ1(x) as the second

eigenvalue of the scattering operator [7, 11, 18]:

λ1(x)Ω =

∫
S2

θ(x,Ω ·Ω′)Ω′dΩ′. (26)

Then the unique solution to (25) orthogonal to Ω−independent functions is given by [7]

I1(t,x,Ω, ω) =
−1

µs(x, ω)(1− λ1(x))
Ω · ∇I0(t,x, ω). (27)

Up to a negligible term of order O(η2), we thus observe that I1(t,x,Ω, ω) = −l∗(x, ω)Ω·
∇I0(t,x, ω), where the transport mean free path is defined by

l∗(x, ω) =
1

µt(x, ω)(1− λ1(x))
=

l(x, ω)

1− λ1(x)
. (28)

Finally, the average over S2 of the equation of order η1 yields:

1

c(x)

∂I0

∂t
+

∫
S2

(
Ω · ∇xI1 − ∇c(x)

c(x)
·
(
I3 −Ω⊗Ω

)
∇ΩI1

)dΩ

4π
+ µa(x)I0 = 0. (29)

We then calculate that∫
S2

Ω · ∇l∗(x, ω)Ω · ∇dΩ

4π
= ∇ · l∗(x, ω)

3
∇ = ∇ ·D(x, ω)∇,

where we have defined the diffusion coefficient

D(x, ω) =
l∗(x, ω)

3
=

1

3µt(x, ω)(1− λ1(x))
. (30)

Some algebra shows that∫
S2

(
I3 −Ω⊗Ω

)
∇ΩΩ

dΩ

4π
=

∫
S2

(
I3 −Ω⊗Ω

)dΩ

4π
= I3 −

1

3
I3 =

2

3
I3. (31)
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Finally, this yields the diffusion equation for I0:

1

c(x)

∂I0

∂t
−∇ ·D(x, ω)∇I0 − 2D(x)

∇c(x)

c(x)
· ∇I0 + µa(x)I0 = 0, (32)

with initial conditions I0(0,x, ω) = Iin(x, ω). The equation may be recast in divergence
form as

1

c3(x)

∂I0

∂t
−∇ ·

(D(x)

c2(x)
∇I0

)
+

µa(x)

c2(x)
I0 = 0. (33)

This shows that I0c
−3(x) is conserved when µa = 0, which is consistent with the con-

servation law (13) and (14). As in e.g. [7], we can show that

Iη = I0 − ηl∗(x, ω)Ω · ∇I0 + O(η2), (34)

which provides the degree of accuracy of the approximation when the mean free path is
small. Here, O(η2) holds in any Lp(R3×S2) norm, 1 ≤ p ≤ ∞, with proper assumptions.

As in the derivation of the radiative transfer equation, we can now use the relation
(19) to obtain the approximation

Lη = L0 − η
l∗(x, ω)

c2(x)
Ω · ∇[c2(x)L0] + O(η2), (35)

where L0 satisfies the following diffusion equation in conservative form:

1

c0(x)

∂L0

∂t
−∇ ·

(D(x, ω)

c2(x)
∇[c2(x)L0]

)
+ µa(x)L0 = 0, (36)

with appropriate initial conditions. We find that L0/c0(x) is a conserved quantity when
µa = 0, which is consistent with the conservation relation (13). The above diffusion
equation is consistent with that derived in [21].

5 Conclusions

We have recalled some results available in the literature on the derivation of radiative
transfer equation for the phase space energy density of electromagnetic waves propagat-
ing in random media. Such radiative transfer equations account for spatial variations
in the macroscopic light speed, or equivalently the macroscopic refractive index. We
have then shown how these results may be readily adapted to the derivation of radiative
transfer equations for the radiance by using the relationship (15) between the latter and
the phase space energy density. Because the phase space energy density is conserved
along the bicharacteristics of the Hamiltonian that describes high frequency waves prop-
agation, it is easier to solve the radiative transfer equation for the phase space energy
density (11) than that for the radiance (22).

A classical asymptotic expansion was used to derive the diffusion approximation of
the radiative transfer equation for the phase space energy density. The same relationship
(15) as above then allowed us to obtain a diffusion equation for the radiance in (36).
Note that at the diffusion level, the diffusion equations for the energy density (33) and
for the radiance (36) seem to be of equivalent computational complexity.

The models derived here may not be the most appropriate in specific physical set-
tings. However they are the only models providing the correct limits as first the wave-
length, and second the mean free path, converge to zero.
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