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Abstract

In many inverse problems, the measurement operator, which maps objects of
interest to available measurements, is a smoothing (regularizing) operator. Its
inverse is therefore unbounded and as a consequence, only the low frequency com-
ponent of the object of interest is accessible from inevitably noisy measurements.
In many inverse problems however, the neglected high frequency component may
significantly affect the measured data. Using simple scaling arguments, we charac-
terize the influence of the high frequency component. We then consider situations
where the correlation function of such an influence may be estimated by asymp-
totic expansions, for instance as a random corrector in homogenization theory.
This allows us to consistently eliminate the high frequency component and derive
a closed-form, more accurate, inverse problem for the low frequency component
of the object of interest. We present the asymptotic expression of the correlation
matrix of the eigenvalues in a Sturm-Liouville problem with unknown potential.
We propose an iterative algorithm for the reconstruction of the potential from
knowledge of the eigenvalues and show that using the approximate correlation
matrix significantly improves the reconstructions.

keywords: inverse problem, measurement correlations, Sturm-Liouville, random fluc-
tuations, central limit correction to homogenization.

1 Introduction

Consider a general inverse problem of the form

y = M(x) + n, (1)

where x is the unknown quantity, M the measurement operator, n some noise term,
and y the available noisy measurements. We assume that the linearization of M is a
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compact, hence smoothing, operator. We also assume that x and y are represented
in given bases, which may be chosen because the linear approximation of M is sparse
for these bases (for instance as the bases in the singular value decomposition of the
linearization of M) or because objects of interest are sparsely represented with such a
choice.

The effect of the noise then typically implies that the low-frequency component of
x may be reconstructed relatively accurately while the high-frequency component of x
is not accessible. Such a high-frequency component is then usually eliminated from the
reconstruction by choosing an appropriate regularization Rc of the inverse map M−1,
even though its effects on the measured data may not be negligible.

We propose a framework that allows us to account for errors in the measurements
generated by the high frequency component of x. More specifically, let us define x0 as
the low frequency part of x and xn = x−x0 its high frequency part. Here, low frequency
refers to the first coordinates of x in the chosen basis that we believe we can reconstruct,
whereas high frequency refers to the rest of x. Upon linearizing (1) in the vicinity of x0,
we obtain the new (possibly) non-linear inverse problem for x0:

y0 = M(x0) + M′(x0)xn + n. (2)

Here, y0 stands for the low frequency part of y. We may set y0 = y if all the data are
retained or y0 as a low-frequency projection of y if we believe that some components
of the measurements are too noisy to be of any use in the reconstruction. The matrix
M′ = M′(x0) models the coupling between the high frequency part of x and the low
frequency part of y. It may vanish in certain situations, for instance when M is linear
and x and y are decomposed in the bases used in the singular decomposition of M.
When M′ does not vanish, the non-recoverable component of x implicitly increases the
noise component in y0.

Since xn is not known, M′xn is difficult to compute or even estimate. It may how-
ever be modeled statistically, i.e., as the realization of a random distribution, in which
case M′xn may at least be estimated statistically. Unfortunately, in many practical
situations, xn is a high-dimensional object. Its modeling and the estimation of the
parameters involved in the modeling are therefore rather delicate and often outright
impractical. Fortunately, such a complex modeling and estimation problem may not be
necessary in practical situations where sufficient statistical averaging takes place.

This leads us to the main regime of interest in this paper. We assume that xn is a
spatially highly oscillatory object and that y0 is a set of measurements of a differential
equation involving the object xn. Moreover, we assume the existence of a macroscopic
theory that provides a simple expression (hence, easily parameterizable) for the law of
the vector y0 in terms of that of xn. The macroscopic model we have in mind here comes
from homogenization theory, and more precisely as an analysis of the random corrector
to homogenization. Explicit asymptotic expressions then allow us to approximately
characterize the law of y0 as a function of the law of xn.

Under such (admittedly restrictive) assumptions, a strategy for the inverse problem
may be formulated as follows. From an initial guess for x0, we obtain the approximate
law for M′(x0)xn. This allows us to obtain an updated reconstruction of x0, for instance
by minimizing its variance using the appropriate approximation for y0. The two-step
procedure is applied iteratively until convergence.
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What we gain from this is a relatively inexpensive, physics-based, asymptotically op-
timal mitigation of the measurement noise induced by fluctuations of the un-recoverable
high frequency components of a parameter of interest. The resulting correlation matrix
for such measurements is typically far from being diagonal and thus may provide far
superior reconstructions for x0 than when the influence of xn on the measurements is
ignored.

In section 3 below, we apply the methodology to the reconstruction of the poten-
tial in a one dimensional Schrödinger (Sturm-Liouville) equation from the measurement
of two sets of eigenvalues corresponding to different boundary conditions. Because of
inaccuracies in the measurements of large eigenvalues, the small scale structure of the
potential is not accessible. It is then replaced by a highly oscillatory random process.
Recent results on central limit corrections to homogenization [1] then allow us to ap-
proximately characterize the influence of the randomness on the measured eigenvalues,
which form a highly correlated vector. The resulting correlation matrix for the measured
eigenvalues depends on one unknown scaling parameter, which measures the strength
of the oscillatory random process. We will see that in some situations, the proposed
method significantly reduces the variance of the reconstructed potential at the cost of
estimating one unknown parameter modeling the influence of the unrecoverable high
frequency parameters.

The rest of the paper is structured as follows. Section 2 analyzes the scaling prop-
erties of a simplified version of (2). We then describe the physical setting and proposed
reconstruction method for the one dimensional inverse spectral problem in section 3. Nu-
merical simulations that allow us to quantify the interest of the method are presented
in section 4.

2 Scaling and regularization

We now consider the influence of the various noise contributions in the following ex-
tremely simplified yet plausible scenario. We refer the reader to e.g. [3] for extensions
to other regularization methods.

Linearization and high frequency cut-off. We consider a linearization of the non-
linear problem (1) of the form

y = Ax + n. (3)

Let us assume that x and y are functions of a spatial variable t in Rd and that A is
diagonal in the Fourier domain and has for symbol (Fourier multiplier)

Â(ξ) = 〈ξ〉−α, 〈ξ〉 =
√

1 + |ξ|2, α > 0. (4)

This means that Ax = F−1(Â(ξ)x̂(ξ)), where x̂(ξ) is the Fourier transform of x(t) and
F−1 is the inverse Fourier transform. Let us assume moreover that x ∈ Hβ for some
β > 0, where Hβ with norm ‖ · ‖β is the Hilbert space of functions with β square
integrable derivatives, or equivalently such that

∫
Rd〈ξ〉2β|x̂(ξ)|2dξ < ∞.

Then the linear inverse problem (3) may be inverted as follows. Denote by δ = ‖n‖
the norm of the noise term, where ‖ · ‖ is the L2 norm. We can define Rc with symbol
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R̂c(ξ) as

R̂c(ξ) =

{
〈ξ〉α, |ξ| < ξc

0 |ξ| > ξc,
, (5)

as an approximate inverse for A and x0 := Rcy as an approximate solution to (3). Then,
classically [3], we obtain the following error estimate

‖x− x0‖ ≤ ‖Rc‖δ + ‖(RcA− I)x‖ ≤ 〈ξc〉αδ + 〈ξc〉−β‖x‖β,

where we also denote by ‖ · ‖ the norm of linear bounded operators in L(L2). It remains

to choose 〈ξc〉 = (δ−1‖x‖β)
1

α+β to obtain that the error is bounded by

‖x− x0‖ = ‖xn‖ ≤ ‖x‖
α

α+β

β δ
β

α+β . (6)

The above result provides us with a spatial resolution ε = 〈ξc〉−1 ∼ δ
1

α+β .
This extremely simplified example displays the main features of the inverse problem

of interest in this paper. The oscillations of x at a larger scale than ε are reconstructed
in x0 while the oscillations of x at a smaller scale than ε are not reconstructed because
of the presence of noise n in (3).

High frequency low frequency coupling. Let us now come back to (1), which we
replace by (2) assuming that xn is small as was shown above. We further linearize (2)
about a guessed value x0 and obtain the following equation for δx0

δy0 := y0 −M(x0) = A0δx0 + M′(x0)xn + n. (7)

Here, we have replaced M(x0 + δx0) by its linearization M(x0) + A0δx0.
Now (7) has the form (3) with a noise term given by M′(x0)xn + n. A worst-case

scenario estimate for the new noise contribution is

‖M′(x0)xn‖ ≤ ‖M′(x0)‖‖xn‖ = ‖M′(x0)‖‖x‖
α

α+β

β δ
β

α+β . (8)

This estimate shows a new contribution potentially significantly larger than δ = ‖n‖.
Such an estimate is quite pessimistic in two ways. First of all, it is really RcM

′(x0)xn

that should be estimated, where Rc is an approximation to the unbounded operator A−1
0

assuming that A0 is of the same form as A in (4) above, i.e., is a smoothing operator of
order −α (it smoothes by α > 0 anti-derivatives). We know that the error term Rcn is of

order δ
β

α+β as was shown in (6). Assuming that ‖RcM
′(x0)‖ is of order ‖Rc‖‖M′(x0)‖,

the worst-case-scenario bound for RcM
′(x0)xn corresponding to (8) is

‖RcM
′(x0)xn‖ ≤ ‖Rc‖‖M′(x0)‖‖xn‖ ≤ ‖M′(x0)‖‖x‖

α
α+β

β δ
β−α
β+α

This may be pessimistic because ‖RcM
′(x0)‖ might in some applications be significantly

smaller than ‖Rc‖‖M′(x0)‖, for instance when M′(x0) is also a smoothing operator.
The above bound assumes that M′(x0)xn is more or less constant on the whole domain
0 ≤ |ξ| < ξc of definition of Rc. This is a realistic assumption in the inverse spectral
application in light of (16) below, where we observe that the norm of the corrector is
independent of the spectral parameter (the parameter ξ in this section and m in (16)).
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Of more fundamental interest in this paper, the estimate in (8) is also quite pes-
simistic in many practical settings because xn is highly oscillatory as it oscillates at the

scale ε ∼ δ
1

α+β . Because xn is unknown and will remain unknown to us assuming that
ε has been chosen correctly, it makes sense to model xn as the realization of a random
field. Let t ∈ Rd denote the spatial variable. Since xn oscillates at the scale ε, it is then
reasonable to model xn as

xn(t) = x(
t

ε
), (9)

where x(t) is a random field. As an element in a relatively general class of random
processes, we assume for concreteness that x(t) is a bounded, mean-zero, stationary
process with integrable correlation function:

∞ > σ2 = R̂(0) =

∫
Rd

R(t)dt, R(t) = E{x(t + u)x(u)}. (10)

To be consistent with our regularity assumptions on xn, we may assume that σ =

‖x‖
α

α+β

β δ
β

α+β . A simple calculation then shows that

E‖xn‖2 =

∫
Rd

R
( t

ε

)
dt = εdσ2. (11)

In other words, the root mean square norm of xn, i.e., the square root of the ensemble
average of ‖xn‖2, is ε

d
2 times smaller than its maximal value so that under plausible

assumptions, we find, using formal scaling arguments, the more realistic expression

(
E{‖M′(x0)xn‖2}

) 1
2 ≤ ‖M′(x0)‖σε

d
2 δ

β
β+α ∼ δg, g =

β + d
2

β + α
. (12)

Such a formal estimate has to be justified for each specific application of interest. The
error on δx0 obtained by solving (7) is now of the form

(
E{‖Rc(M

′(x0)xn + n)‖2}
) 1

2 ≤
(
‖M′(x0)‖σδ

β+ d
2−α

β+α + ‖x‖
α

α+β

β δ
β

β+α
)
. (13)

When d > 2α, then the new noise contribution is smaller than the original noise n and
the proposed correction is asymptotically negligible. This is the case when the linear
operator A0 does not damp high frequencies too strongly when mapping the unknown
vector x to the measurement data y so that α is small. When α is large so that d < 2α,
then we are in a situation where the noise generated by the unaccessible high frequency
component xn of x dominates the measurement error. In such situations, it is important
to have access to a good model for the correlation function of the measurements y if one
wants to accurately reconstruct the low frequency component x0 of x.

3 Inverse spectral problem

We now consider the reconstruction of the potential in a one-dimensional Schrödinger
equation from knowledge of two sets of eigenvalues. For the practical, theoretical, and
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numerical aspects of the inverse spectral problem, we refer the reader to e.g. [2, 4, 5, 6,
8, 9, 10, 11, 12]. Let the potential q(t) be decomposed as

q(t) = q0(t) + qε(t),

where we assume that x0 ≡ q0(t) is the identifiable low frequency component and xn ≡
qε(t) the non-identifiable high frequency part of the potential. We assume that qε(t) =
Q( t

ε
), where Q is a mean-zero, stationary, bounded random process with integrable

correlation function as in (10). The Schrödinger (Sturm Liouville) equation on the
interval (0, 1) is given by

−d2uε
m

dt2
+

(
q0(t) + qε(t)

)
uε

m = λε
muε

m

uε
m(0) = 0,

duε
m

dt
(1) + Huε

m(1) = 0.

(14)

We impose Dirichlet conditions at t = 0 to simplify and denote by (λε
m, uε

m) and (µε
m, vε

m)
the eigenvalues and eigenvectors obtained by setting H = H1 and H = H2, respectively,
with H1 6= H2.

To conform with the notation of the preceding section, we note that

y = (λε
m, µε

m) = M(q0(t) + qε(t)) + n. (15)

Asymptotic law of physical random fluctuations. We denote by um and λm the
solutions of the unperturbed spectral equation (14) where qε is set to zero. With the
above decomposition into slowly and rapidly oscillatory components of the potential, we
can use the results obtained in [1] to show that under reasonably general assumptions
on the random process Q(t), we have

(λε
m)−1 = (λm)−1 + ε

1
2 σ

∫ 1

0

u2
m(t)dWt, (16)

plus lower-order contributions (in the sense of distributions), where dWt is standard
Wiener measure (spatial white noise). In other words, the above central limit result
shows that the measured eigenvalues are approximately deterministic plus a normal
contribution with a variance of order ε. We have a similar expression for µε

m, and con-
sequently an explicit expression for the correlation matrix of the random measurements
y. The latter expression, however, depends on the unknown eigenvectors um, which are
nonlinear functionals of the low-frequency component q0.

Up to lower-order contributions, the expansion (16) may be used to find that

λε
m = λm − λ2

mε
1
2 σ

∫ 1

0

u2
m(t)dWt. (17)

Note that the Wiener measure dWt is the same for all values of m and for both spectral
λm and µm. The above formula thus allows us to calculate the approximate covariance
matrix of the eigenvalues and obtain that

Σ̃mn(q0) := E{(λε
m − λm)(λε

n − λn)} = εσ2λ2
mλ2

n

∫ 1

0

u2
m(t)u2

n(t)dt, (18)
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and similar expressions for the covariances involving the eigenvalues µε
m. To relate

the above expansion with the asymptotic expansion (2), we may define M(q0) :=
(λm, µm)m≥1 the unperturbed measurements for the low frequency component of the
potential and identify the fluctuations as

M′(q0)qε(t) :=
(
− λ2

mε
1
2 σ

∫ 1

0

u2
m(t)dWt , −µ2

mε
1
2 σ

∫ 1

0

v2
m(t)dWt

)
m≥1

,

where the high frequency component of the potential qε(t) now asymptotically appears
only in the stochastic integral and the constant σ. Note that M′(q0) does indeed depend
on q0 via λm and um. This allows us to recast the inverse problem as

Λ = M(q0) +Nε(q0) + n, (19)

where Nε +n = Nε(q0)+n is a discrete Gaussian process with explicit covariance matrix
Σ = Σ(q0) provided that n is Gaussian. When n is independent of the high frequency
component qε(t), then Σ(q0) = Σ̃(q0) + Σn, where Σ̃(q0) is the covariance matrix in (18)
and Σn that of the process n.

Scaling and noise terms. Consider the Dirichlet problem with H = ∞. We know
that for bounded potentials, (see e.g. [8] and references therein)

λm = m2π2 +

∫ 1

0

q(t)dt−
(
1 + O(

1

m
)
) ∫ 1

0

q(t) cos(2πmt)dt.

Let us assume that noise n = n(m) grows like δmα for a fixed constant δ, which is
rather optimistic for α < 2 as noise may be considered as proportional to λm, i.e.,
proportional to m2. Then we see that the mth even Fourier coefficient q̂m of q(t) may
be reconstructed provided that its influence is larger than the noise level. Assuming that
q̂m decays like m−β, the cut-off frequency is thus m−β

c = δmα
c , i.e., as in the preceding

section, mc = δ−
1

α+β = 1
ε
. As in the preceding section, α quantifies how high frequencies

of the object of interest are damped in the measurements and β quantifies a priori
regularity on the object of interest.

We thus define q0 as the sum over all Fourier modes with indices below the critical
value mc and qε(t) as the rest of the potential, which may indeed be written as a function
of t

ε
. Based on the asymptotic expansion available in (17), we thus obtain that the high

frequency component of the potential generates a noise of order ε
1
2 = δ

1
2(α+β) . Such a

noise contribution will dominate the standard noise n with norm ‖n‖ = δ as soon as
2(α + β) > 1 and so certainly as soon as 2α > 1 independently of the value of β.

Inverse problem and MAP estimator. It remains to devise an algorithm that
solves the inverse problem (19) for q0. Since we have constructed a probabilistic frame-
work for the rapidly oscillating component qε, we might as well assume that q0 is drawn
from a prior distribution, which here we assume follows a Gaussian distribution with
diagonal covariance matrix γI with γ a small (non-negative) constant [7]. The typical
role of γ is to construct biased estimators of q0 that overall reduce the average error on
the reconstruction of q0.
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Now that we have constructed a prior model for q0 and that we have our likelihood
function in (19), we may use Bayes’ theorem to infer that the posterior distribution
Π(q0) based on the available data is given by

Π(q0) ∝ exp
(
− 1

2
(Λ−M(q0)) · Σ−1(q0)(Λ−M(q0))

)
exp

(
− γ

2
|q0|2

)
. (20)

In what follows, we present the potential q0 that maximizes the above functional (the
maximal a posteriori, or MAP, solution) and so do not need to calculate the normalizing
constant that makes the right-hand side in (20) a probability density.

To simplify the presentation, we assume here and below that Σn = 0 so that the
noise contribution in the measured eigenvalues is generated by the random part qε(t)
of the potential. Because the asymptotic correlation matrix Σ = Σ(q0) defined in (18)
depends on the unknown parameter q0, the reconstruction is necessarily iterative. Let
N (resp. N + 1) be the number of available measurements for the µ (resp. λ) spectrum
so that the total vector of measurements y is represented by a M = 2N + 1 vector.
Asymptotic expansions show that for large values of m, we have

λm ≈ (mπ)2 +

∫ 1

0

q0(t)dt. (21)

Assuming a constant initial guess q0
0, we estimate it as q0

0 = λN − (Nπ)2. Assuming
that qk

0 has been constructed, we estimate the variance Σ(qk
0) by using the explicit

formula (17), which requires solving an eigenvalue problem. We then calculate qk+1
0 by

maximizing

exp
(
− 1

2
(Λ−M(qk+1

0 )) · Σ−1(qk
0)(Λ−M(qk+1

0 ))
)

exp
(
− γ

2
|qk+1

0 |2
)
. (22)

The solution to this classical minimization problem is obtained by using a Newton
method [13]. The iterative method converged quite rapidly and robustly in the numerical
simulations that were considered.

Note that the approximate correlation matrix Σ of the eigenvalues defined in (18)
depends on the eigenvectors um, which are estimated iteratively in the above algorithm,
and on the strength parameter ε2σ. We observe that, asymptotically, Σ is proportional
to εσ2. We also observe that the maximization in (20) is not modified when both Σ−1(q0)
and γ are multiplied by a constant. In other words, maximizing (20) is equivalent to
maximizing

exp
(
− 1

2
(Λ−M(q0)) · (ε2σΣ−1(q0))(Λ−M(q0))

)
exp

(
− ε2σγ

2
|q0|2

)
.

It is therefore ε2σγ that should be estimated rather than ε2σ and γ independently. When
that parameter is unknown, a discrepancy principle, such as the Morozov principle, may
then be used to figure out which parameter best fits available data [3]. In this paper, we
assume that ε2σγ is known a priori and in our numerical experiments, we choose that
parameter so that Tr(ε2σΣ−1(q0)) = Tr(ε2σγI), i.e., the influences from the noise ε2σ
and from the regularization γ are comparable.

The solution to the above algorithm very much depends on the structure of the extra-
diagonal terms in ε2σΣ−1(q0). The asymptotic formula (17) is useful precisely in that
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it provides an approximate model for the extra-diagonal components of the correlation
matrix, which are difficult to estimate in practice and are often neglected, at the price
of possibly severe inaccuracies in the reconstruction as the next section demonstrates.

4 Numerical simulations

In what follows, we assume that the Gaussian noise n is set to 0. This may be justi-
fied by assuming that noise is overwhelming for large eigenvalues, so that N need be
finite, and that noise is relatively mild for the eigenvalues that are measured. This
simplifying assumption allows us to concentrate on the effects of the spatial random
fluctuations, which is the main object of interest in this paper. We also assume that the
regularization parameter γ and the strength of the “nonlinear” noise ε2σ are such that
Tr(ε2σΣ−1(q0)) = Tr(ε2σγI) as was indicated in the preceding section. We consider six
different reconstructions, all based on maximizing the posterior distribution (20), but
with different choices of the correlation matrix Σ.

In each simulation, q0 is deterministic and chosen of the form

q0(t) =
K∑

k=−K

cke
−i2πkt, (23)

with K = 2 and K = 10 depending on the simulation so that 2K + 1 parameters
need be reconstructed. Since q0 is real-valued, we have c−k = ck. The two spectra
λ and µ are obtained by setting H1 = ∞ and H2 = 0. The number of measured
eigenvalues M is equal to 5, 21, or 41 in the simulations below. One more eigenvalue
comes from the λ spectrum than from the µ spectrum. The practically relevant cases are
M = 2K + 1 = 5 and M = 2K + 1 = 21 where the number of measurements equals the
number of coefficients we believe we can reconstruct. We also consider over-determined
reconstructions with M > 2K + 1.

The accuracy of the reconstruction q̃0 is measured in the relative L2 norm

ε0 =

E
( ∑

|k|<K

|ck − c̃k|2
) 1

2

( ∑
|k|<K

|ck|2
) 1

2

, (24)

In our simulations, ε0 is estimated by averaging over 200 realizations of the noise qε(t);
their standard deviation was found to be extremely small (less than 5% of the mean),
which implies that the relative L2 norm is very stable statistically.

The random coefficient qε(t) is modeled as a superposition of coefficients as in (23),
where |k| now runs from 11 to 50 and where the coefficients ck are chosen at random (so
that qε is real-valued) with a flat power spectrum (i.e., the variance of ck is independent
of k). The tail of the power spectrum is in fact not very important since the influence

of each mode ck is roughly of order ε
1
2
k ≈ k−

1
2 by application of the central limit result

in (16). When K = 10, there is no “spectral gap” between the last mode of q0, which is
considered deterministic, and the first mode of qε, which is considered random. This is
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the realistic situation physically. When K = 2, we then have a spectral gap between the
deterministic and random parts, which may only happen under quite restrictive physical
assumptions.

In what follows, we call “Σ” the iterative solution obtained by applying the iterative
algorithm described in (22). We compare this solution to five solutions obtained with
different correlation matrices. The first three correlation matrices are not observable
a priori: they are given by the exact correlation matrix Σa obtained by solving the
eigenvalue problems a large number of times (five hundred times in our simulations)
with the (known in synthetic experiments but unknown in practice) exact statistics for
qε and exact low frequency component q0. The correlation matrix Σb is obtained by
applying the asymptotic formula (16) with the exact low frequency component q0. The
correlation matrix Σd is given by the diagonal of Σa. Such a matrix thus completely
misses the cross-correlations between the measured eigenvalues.

The last two correlation matrices are accessible experimentally. The first matrix Σc

is given by the asymptotic formula (16) by using the first constant guess q0
0, for which

the eigenvectors are given by explicit sin and cos functions by the method of separation
of variables. This intermediate matrix does not require us to iterate in (22) although it
still requires an asymptotic model of the form (16). Finally, the last correlation matrix
Σe is simply given by identity.

ε0 M = 5 M = 21 M = 41

Covariance 2K + 1 = 5 2K + 1 = 5 2K + 1 = 21 2K + 1 = 5 2K + 1 = 21

Σ 9.3 % 7.6% 8.5 % 6.2 % 6.7%

Σa 4.7 % 4.0 % 4.4 % 3.3 % 4.0%

Σb 11.9 % 10.0 % 12.3 % 7.9 % 11.0%

Σc 19.5 % 13.8 % 16.7 % 8.9 % 15.8%

Σd 28.5 % 22.6 % 19.8 % 17.4 % 21.9%

Σe 36.7 % 26.6 % 29.4 % 19.5 % 26.9%

Table 1: Relative L2 error ε0 (in percentages) on the reconstruction of the potential q0

using the different correlation matrices. In bold are the L2 norms of the errors in the
columns corresponding to M = 2K + 1. Underlined are the results obtained from the
accessible (observable) correlations Σ, Σc, and Σe.

The errors we obtained on the reconstruction of q0 in the scenarios described above
are collected in Tab.1. Typical realizations of the reconstructed potentials using the
correlations Σ, Σa, and Σe, are presented in Fig. 1, Fig. 2, and Fig. 3 for M = 5,
M = 21, and M = 41, respectively. We observe that the asymptotic correlation Σ
provides reconstructions that are visually of similar quality to those obtained using the
unaccessible exact correlation Σa. The use of the diagonal correlation Σe, which is
the best one can do in the absence of any prior knowledge for the correlations or any
asymptotic expansion such as (16), generates significantly worse reconstructions.

As expected, the minimum variance in the reconstruction is obtained when the exact
statistics Σa are used to model the measurement noise. The error made is less than 5%
for all such reconstructions. This is the minimal error that can be made as it assumes
full knowledge of the statistics of the measured eigenvalues (λm, µm).
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Figure 1: Reconstructions of the potential q0(x) (solid) with covariance matrices Σa

(dot-dashed), Σe (dashed) and Σ (dotted). The potential q0 consists of 2K + 1 = 5
Fourier modes and M = 5 eigenvalues are used in each reconstruction.

The iterative reconstruction based on the asymptotic correlation Σ provides solutions
of similar quality with errors on the order of 8 − 9%. Whereas the construction of Σa

requires full knowledge of the statistics of the measurements, no information other than
the measurements of the M eigenvalues is necessary in the construction of Σ. We
have therefore a parameter-free reconstruction method that performs almost as well
(it roughly doubles the error) as a method requiring knowledge of the full statistical
description of the measurements.

A significantly larger error, of order 15−20% is obtained by using the correlation Σc,
which is constructed by using the asymptotic expression (16) with a constant potential
q0
0. This shows that the asymptotic correlations generated by q0 are significantly different

from those obtained by the constant potential q0
0. It is therefore necessary to iterate as

specified in (22) to obtain a decent approximation of the correlation matrix Σa.
The reconstructions based on Σb are somewhat less accurate than those based on

Σ. By insisting that the correlation be based on the asymptotic expansion of the true
(unknown) q0, we obtain a larger variance than by letting the correlation adapt itera-
tively to the optimal potential q0. That Σb performs significantly less accurately than
Σa shows that the asymptotic expansion (16) is not extraordinarily accurate. This is to
be expected since ε in our simulations is rather large as only the modes corresponding
to |k| ≥ 11 (as opposed to |k| ≥ 101, say) are supposed random. We expect recon-
structions based on Σ to perform between the optimal reconstructions based on Σa and
those based on Σb and the asymptotic formula (16). This has been verified in all of our
numerical experiments.

These errors should be contrasted with the solutions obtained by assuming that the
correlation is proportional to identity or is diagonal, which in the absence of any physical
model, may be the best available option. For both models based on (quite different)
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Figure 2: Reconstructions of the potential q0(x) (solid) with covariance matrices Σa

(dot-dashed), Σe (dashed) and Σ (dotted). Top: q0 consists of 2K + 1 = 5 Fourier
modes; Bottom: q0 consists of 2K + 1 = 21 Fourier modes. M = 21 eigenvalues are
used in each reconstruction.

diagonal assumptions, namely Σd and Σe, the errors in the reconstructions, on the order
of 30%, are significantly larger. This shows the importance of modeling the off-diagonal
component of the correlation matrix in a reasonably accurate manner.

Finally, we observe that over-determined measurements (e.g., M = 41) only some-
what marginally improve the reconstructions. This is to be expected since we assume
that the eigenvalues for all values of M are fairly accurately measured. Our noise contri-
bution is exclusively coming from the randomness in the potential qε. The reconstruc-
tions corresponding to 2K +1 = 5 and based on a spectral gap (since the coefficients ck

for |k| between 3 and 10 are set to 0) also perform marginally better than the more phys-
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Figure 3: Reconstructions of the potential q0(x) (solid) with covariance matrices Σa

(dot-dashed), Σe (dashed) and Σ (dotted). Top: q0 consists of 2K + 1 = 5 Fourier
modes; Bottom: q0 consists of 2K + 1 = 21 Fourier modes. M = 41 eigenvalues are
used in each reconstruction.

ical reconstructions based on 2K + 1 = 21 for over-determined measurements M = 21
and M = 41.

5 Summary

Inverse problems are characterized by the degree of smoothness of the measurement
operator mapping the object x = x0 + xn we are interested in reconstructing to what
we may measure. When that operator is significantly smoothing (α above is positive),
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then the (properly defined) high frequency component xn of the object of interest is
invisible to the inevitably noisy available data. We are concerned with situations in
which the measurement operator efficiently couples the high frequency component xn

to the available data so that neglecting to account for the presence of xn may generate
sizeable errors in the reconstruction. This is for instance the case in the Sturm Liouville
problem considered in this paper.

Since xn is not accessible, it has to be modeled a priori. Statistical descriptions are
then quite satisfactory in the generic setting where the detailed structure of xn may
not be guessed. It remains to infer the parameters used in the statistical description
either from prior knowledge or from the available data. Fortunately, such a description
is not necessary when self-averaging mechanisms (e.g. of central limit type) simplify the
influence of the random field xn on the available data. In the Sturm Liouville problem
and in other problems with a physical origin, it turns out that the influence of xn on
the measured data may be approximated by an explicit Gaussian law. Moreover, that
Gaussian law is essentially modeled by one unknown scaling parameter σ.

Theoretical estimates for the cut-off frequency ξc separating x0 from xn have been
presented in section 2 based on the smoothing properties of the measurement operator
and the prior regularity in Hβ imposed on x. Once the cut-off frequency has been
chosen or estimated (a difficult and problem-dependent question that was addressed in
an ad hoc manner in our numerical inversion of the Sturm Liouville problem), two terms
contribute to errors in the reconstruction of x0. The first term in (6) is simply the error
made by neglecting xn in the reconstruction (this term was omitted in our numerical
simulations) while the second term in (13) quantifies the influence of xn on the available
measurement. The formal estimates in (12) and (13) are the main theoretical result of
the paper. Although they have to be justified for each problem of interest, they provide
a reasonable estimate for the influence of the invisible part xn on the reconstruction of
x0. That the statistical description of xn asymptotically reduces to one parameter as an
application of the central limit theorem is exemplified by the inverse spectral problem
considered in section 3 and more concretely by the expression (17) describing available
measurements.

The frequency cut-off in our numerical simulations of the inverse spectral problem,
for instance with M = 21 measured eigenvalues, is rather arbitrary and reflects our
belief that only those M = 21 first eigenvalues may be measured accurately. Once this
cut-off is chosen, we apply the classical MAP algorithm and the iterative scheme (22) to
solve the inverse spectral problem. A common feature of this and many other inversion
algorithms (such as e.g. least square algorithms), is the importance of the correlation
matrix Σ, which weighs the measured data according to the confidence we have in them.
The main advantage of modeling the influence of xn on the measured data is precisely
that it allows one to obtain a more accurate description of the correlation matrix Σ than
when xn is simply treated as uncorrelated noise.

In the absence of any model for xn, the only choice for Σ is to assume that it is
proportional to identity. This lack of understanding of the correlations in the available
measurements generated a reconstruction of x0 with an average of 29.4% error in the
L2 sense according to Tab.1. Prior knowledge of the exact correlation Σa provides a
much more accurate reconstructions, with an average error dropping to 4.4%. Such
prior knowledge is unrealistic in many settings. Reconstructions performed using the
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central limit-based asymptotic formula (17) provide quite accurate reconstructions, with
an average error equal to 8.5% and do not require the estimation (or prior knowledge) of
any additional parameters. In the configuration considered in this paper, the parameter-
free asymptotic modeling of xn allows us to obtain much more accurate reconstructions
of the low frequency component of the potential than methods that do not model xn or
treat it as uncorrelated “white” noise.
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