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Abstract

Photoacoustic tomography (PAT) is a novel hybrid medical imaging technique that
aims to combine the large contrast of optical coefficients with the high resolution capa-
bilities of ultrasounds. We assume that the first step of PAT, namely the reconstruction
of a map of absorbed radiation from boundary ultrasound measurement, is done. We
focus on quantitative photoacoustic tomography (QPAT), which aims at quantitatively
reconstructing optical coefficients from knowledge of the absorbed radiation map.

We present a non-iterative procedure to reconstruct optical coefficients -namely
the diffusion and absorption coefficients- and the Griineisen coefficient in photoacous-
tic tomography (PAT) when the propagation of radiation is modeled by a second-order
elliptic equation. We show that PAT measurements at one given light frequency al-
low us to unique reconstruct only two out of the above three coefficients even for an
arbitrary number of radiation illuminations. We present uniqueness and stability re-
sults and demonstrate the accuracy of the reconstruction algorithm on two-dimensional
synthetic data.

Key words. Quantitative photoacoustic tomography, inverse problems, interior data, diffusion
equation, non-iterative reconstruction, Bregman iteration.

1 Introduction

Photoacoustic tomography (PAT) is a recent hybrid medical imaging modality that combines
the large contrast of optical parameters with the high resolution capabilities of ultrasonic
waves. Optical tomography displays the same large optical contrast but has limited reso-
lution because of multiple scattering [5, 6]. Ultrasounds have much lower contrast because
sound speeds display little variations between healthy and unhealthy tissues. However, they
theoretically display high resolution capabilities. PAT is based on the photo-acoustic effect,
which couples optical and ultrasonic waves. The effect may be described as follows. As
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optical radiation propagates, a fraction of its energy is absorbed and generates thermal ex-
pansion of the underlying medium. This mechanical expansion is the source of propagating
acoustic signals. Ultrasonic transducers located at the boundary of the domain of interest
then record the emitted pressure waves as a function of time.

A first inverse problem in PAT consists of reconstructing the amount of absorbed radi-
ation H(x) from the pressure measurements. For reference to this inverse problem in the
physical and engineering literatures, we refer the reader to, e.g., [15, 21, 38, 39] and their
references. When the sound speed is constant, explicit formulas have been obtained for a
large class of geometries of interest; see [19, 20, 27, 28, 33] and their references. When the
sound speed is not constant but known, time reversal algorithms perform well under stan-
dard non-trapping conditions as demonstrated in [4, 25, 36]. Note that acoustic absorption
is typically neglected in such reconstructions. Accounting for absorption is in fact a difficult
and not entirely understood problem [26].

In this paper, we assume that the above first step is done and that H(z) is known. The
amount of absorbed radiation H(z) is proportional to the absorption coefficient, o(x), the
amount of radiation that reaches a given point u(z), and the Griineisen coefficient I'(z),
which measures how the absorbed radiation is transferred into ultrasounds. The second
step of PAT, called quantitative photoacoustics (QPAT), aims to reconstruct the unknown
optical parameters and the Griineisen coefficient from knowledge of H(x) = I'(z)o(x)u(x).
For QPAT in the setting of transport equations, we refer the reader to [7]. We consider
here the case where radiation propagation is modeled by a second-order elliptic (diffusion)
equation. The unknown coefficients are (D, o,T"), the diffusion, absorption, and Griineisen
coefficients, respectively.

QPAT may be done in several ways. One methodology is to probe the domain of interest
at multiple optical wavelengths (colors) and to reconstruct optical coefficients based on prior
information regarding their frequency dependence; see [15, 16|, as well as [17] for a differ-
ent QPAT in the presence of chromophores with intensity-dependent absorption properties.
Alternatively, we may use multiple radiation illuminations and acquire as many radiation
maps H(x). This is the setting consider in e.g., [10, 35, 40] and in this paper.

In [10], the Griineisen coefficient is supposed to be known. It is then shown that two well
chosen illuminations are sufficient to uniquely and stably reconstruct (D, o). Moreover, [10]
provides an explicit method to solve (D, o) that relies on solving a transport equation and
a second-order elliptic equation. The well-posedness of the transport equation requires that
a vector field constructed from available data satisfy appropriate assumptions. The set of
well-chosen illuminations that guaranty such assumptions is not very explicit and is based
on the construction of complex geometric optics solutions that depend on the unknown
coefficients. The first objectives of this paper is to implement (a modified version of) the
reconstruction and show that the reconstruction of (D, o) is robust for a very large class of
illuminations.

The second objective of the paper is to generalize the method in [10] to the reconstruction
of (D,o,T). There, we show a somewhat negative result: no matter how many illuminations
are used and how many corresponding H(x) are constructed (solving the first inverse wave
problem mentioned above), the available data allow us to reconstruct only two functionals of
(D, 0,T"). We show that the two functionals uniquely determine all possible measurements



of the form H(z) = I'(x)o(x)u(z). Finally, we prove that these two functionals uniquely
characterize any pair of coefficients in (D, o, I") provided that the third one is known. These
results are summarized in Theorem 2.2 and Corollary 2.3 below. Section 2 devoted to the
presentation of the theoretical results also provides a new stability estimate for the solution to
the transport equation. Under the assumption that the vector field in the transport equation
does not vanish, we obtain Holder estimates for the solution to the transport equation in
different LP norms in terms of errors in the measurement H(z) also in L? norms. These
results are summarized in Theorem 2.4 and are based on a direct analysis of the transport
equation, as in e.g. [1], rather than on the method of characteristics as in [10].

The practical difficulties inherent to the numerical simulation of the transport and elliptic
equations that appear in QPAT are described in section 3. Several numerical experiments
presented in section 4 show the robustness of solving the transport and elliptic equations
to reconstruct two possibly highly oscillatory coefficients in (D, o,T") from measurements of
the form H(z) = I'(z)o(z)u(x). We also show that increasing the number of illuminations
allows us to obtain more stable reconstructions of two coefficients when the third one is
known. This is consistent with the better stability estimates obtained in [10] in the presence
of multiple illuminations.

Let us finally mention that QPAT is one example in the large family of hybrid inverse
problems where one aims at reconstructing coefficient from knowledge of internal data. For
similar inverse problems with internal data that have been addressed in the mathematical
literature, we refer the reader to, e.g., [3, 8, 9, 12, 29, 30, 31, 37].

2 Reconstruction formulas and stability results

In Quantitative photoacoustic tomography (QPAT) in the diffusive regime, photon propa-
gation is modeled by the following second-order elliptic equation

—V - -D@)Vu+o(z)u = 0 in X (1)
u = g on 0X,
with prescribed Dirichlet conditions at the domain’s boundary. Throughout, we will assume
that X is a bounded open domain in R? with smooth boundary 0.X.

The optical coefficients (D(z), o(z)) with D(z) the diffusion coefficient and o(x) the ab-
sorption coefficient are assumed to be bounded from above and below by positive constants.
In the theoretical analyses below, we also assume that they are Lipschitz continuous, i.e., of
class Wheo(X).

The information about the coefficients in QPAT takes the following form

H(z) =~(z)u(x) ae x€X, where vy(x) := I'(x)o(x). (2)

The coefficient I'(z) is the Griineisen coefficient. In many applications in QPAT, it is assumed
to be constant. We assume here that it is Lipschitz continuous and bounded above and below
by positive constants.

The objective of QPAT is to reconstruct (D, o, ") from knowledge of H(z) in (2) obtained
for a given number of illuminations ¢ in (1). The main results of this paper are that:



e Two well chosen illuminations provide two independent relations p(D,o,I") = p and
q = q(D,o,I") among the three coefficients (D, o, ") that allow us to uniquely recon-
struct two of them provided the third one is known.

e These two independent relations uniquely determine the measurements H(x) for all
possible illuminations. In other words, it is impossible to reconstruct the three coeffi-
cients (D, o, I") from QPAT data without additional prior information.

e For two well-chosen illuminations, the reconstruction of (u,q) is Holder-stable.

Our main assumptions are that:

(i) All coefficients are of class W*°(X) and bounded above and below by positive con-
stants. We assume throughout that the traces of the coefficients (D, o,T") on 90X are
known.

There exist two positive illuminations g; and g, on 9.X that are the traces of functions
of class C3(X) and such that the following holds:

(ii) the solutions to (1) are of class W?P(X) for all 1 < p < oo by regularity theory and
are bounded from below by positive constants by the maximu principle;

(iii) the vector field

H. H
8= H\VH, — HyVH, = HIV 2 = HIV=" = —H}V L (3)
1 Uy 2

is a vector field in W1H°(X) (by regularity theory and regularity assumption on =)
and such that
18)(z) > ap > 0, a.e. v € X. (4)

The only real assumption is (4) as the other assumptions are obtained from regularity
theory of elliptic equations [23]. The existence of vector fields such that the latter constraint
holds is proved in [10]. There, illuminations that are close to traces of specific complex
geometric optics (CGO) solutions are shown to be sufficient. For each set of coefficients
(D, o) satistying (i) above, there is therefore an open set of illuminations for which (4) is
guaranteed. However, many vector fields not based on the CGO solutions still satisfy (4).

In dimension d = 2, a simple condition guarantees that (4) holds. We have the following
result [1, 30]:

Lemma 2.1. Assume that h = g—f on 0X s an almost two-to-one function in the sense of

[30], i.e., a function that is a two-to-one map except at its minimum and at its mazimum
(which means that h is strictly monotonic on the two maximal arcs joining the location of
its extrema). Then (4) is satisfied.

Proof. Upon multiplying the equation for uy by us, the equation for us by uq, and subtracting
both relations, we obtain

~V-(Du})V—= = 0, inX
wo g (5)
— = == on0X.
Uy [



u2

This implies that v := o
bounded from above and below by positive constants. Note that § = HZVov. Results in,
e.g., [1, Theorem 1.2] show that Vv cannot vanish inside X. By the maximum principle
and the assumption on h, no critical point of v can occur on dX either. This implies that
|[Vu| > 0 and that we can find a constant such that (4) holds since H? is bounded from
below by a positive constant and by continuity |Vv| attains its (strictly positive) minimum
in X. O

satisfies an elliptic equation with a diffusion coefficient D = Du?

In dimension d > 3, the above result on the critical points of elliptic solutions no longer
holds. However, by continuity, we may verify that (4) is satisfied for a large class of illumi-
nations when D is close to a constant and o is sufficiently small. For arbitrary coefficients
(D, o) in dimension d > 3, the only proof that (4) is satisfied for an open set of illuminations
is that obtained in [10].

Note also that (4) is a sufficient condition for us to solve the inverse problems of QPAT.

In [1], a similar problem is addressed in dimension d = 2 without assuming a constraint of
the form (4).

Uniqueness result. We first prove a result that provides uniqueness up to a specified
transformation.

Theorem 2.2. Assume that hypotheses (i)-(iii) hold. Then

(a) Hy(z) and Hy(z) uniquely determine the whole measurement operator H : H2(0X) —
HY(X), which to g defined on X associates H(g) = H in X defined by (2).

(b) The measurement operator H wuniquely determines the two following functionals of

(D,o,T):
() = F—“?m, a(w) = —(

Here A is the Laplace operator.

AVD Z)(I)‘

5t D (6)

(¢c) Knowledge of the two functionals p and q uniquely determines Hy(x) and Hy(x). In
other words, the reconstruction of (D,o,T") is unique up to transformations that leave
(i, q) invariant.

Proof. Let us start with (a). As in the derivation of (5), we obtain

_ . 2 J— — 1
\% (D“1>VH1 0, in X 7)

Dui = Dxg;, on 0X.

This is a transport equation in conservative form for Du?. More precisely, this is a transport
equation V- pf = 0 for p with plax = 1 and B=p2B= (Du%)V% Since § € Wh>*(X) and
is divergence free, the above equation for p admits the unique solution p = 1 owing to the
fact that (4) holds. Indeed, we find that V - (p — 1)23 = 0 by application of the chain rule



with popx —1 = 0 on 0X. Upon multiplying the equation by Z—f and integrating by parts,

we find o2
/(p—l)Q,uQHf)V—Q‘ dx = 0.
X H,

Using (4), we deduce that p = 1. This proves that Du? is uniquely determined. Dividing
by H? = (I'o)?ui, this means that p > 0 is uniquely determined. Note that we do not
need the full W1 (X) regularity of 3. All we need is that 3 be sufficiently regular so that
the renormalization property holds in order to obtain the above integral; see [2, 11, 14, 18].
However, we still need a condition of the form (4) to conclude for the uniqueness to the
transport equation. See in particular the treatment of two-dimensional vector fields in
(13, 24].

Let now g be an arbitrary boundary condition and let u be the solution to (1) and
H = Hg defined by (2). Replacing Hy above by H yields

H
—V - 1PHV — = 0, in X
% 1 Hl (8)
H = Tjgx0jpxg, on 0X.

This is a well-defined elliptic equation with a unique solution H € H'(X) for g € H2(0X).
This proves that H is uniquely determined by (Hi, Hs).

Let us next prove (b). We have already seen that u was determined by (Hi, Hy), which
is clearly determined by . Moreover, define v = v/ Duy, which is also uniquely determined
based on the results in (a). Define

 —Av A(vVDuy)

q_ = —_——

v \/EM '

Since u; is bounded from below, is sufficiently smooth, and solves (1), a routine calculation
shows that ¢ is given by (6).
Finally, we prove (c). Since ¢ is known, we can solve

(A + q)vj = 07 X, V; = \/D\@ng 8X, j = 1,2

Because ¢ is of the specific form (6) as a prescribed functional of (D,o,T), it is known
that (A + ¢) does not admit 0 as a (Dirichlet) eigenvalue, for otherwise, 0 would also be a
(Dirichlet) eigenvalue of the elliptic operator

(=V-DV +0)- = (—VD(A+q)VD) - . (9)

The latter calculation is the standard Liouville transformation allowing us to replace an
elliptic operator by a Schrodinger operator. Thus v; is uniquely determined for j = 1, 2.
Now,

I'o Vs
H':FUU':_U':_J, j:1727
J IS UD T
and is therefore uniquely determined by (y, q). 0



On the reconstruction of two coefficients. The above result shows that the unique
reconstruction of (D,o,I") is not possible even from knowledge of the full measurement
operator H. We therefore face this peculiar situation that two well-chosen illuminations
uniquely determine the functionals (i, q) but that acquiring additional measurements does
not provide any new useful information, at least in the absence of any noise in the data.
However, if one coefficient in (D, 0,T") is known, then the other two are uniquely determined:

Corollary 2.3. Under the hypotheses of the previous theorem, let (u,q) in (6) be known.
Then

(a) If T is known, then (D, o) are uniquely determined.
(b) If D is known, then (o,1") are uniquely determined.
(c) If o is known, then (D,T') are uniquely determined.

Proof. (a) is probably the most practical case as I' is often assumed to be constant. Since
' is known, then so is I'u = v D /o so that we have the elliptic equation

1
(A+q)VD + =0 X VDjox = /Dax, 0X. (10)

Again, because of the specific form of ¢, (A + ¢) is invertible and the above equation admits
a unique solution. Once D is known, then so is o.

If D is known in (b), then o is known from ¢ and I' is known from pu.

Finally in (c), we obtain that from the expression for ¢ that

VDA+¢VD+o=0 X, VDyx =+/Dpx, 0X. (11)

We need to prove a uniqueness results for the above nonlinear equation for v/D. Let us
assume that v/D and 7v/D for 0 < 7 satisfy the above equation for o fixed. We have

—VD(A + ¢)VDr — g =0 X
Thanks to (9), this implies the following equation for 7:
1
-V -DVt+o(r—-)=0, X, =1, 0X.
T

Upon multiplying by 7 — 1 and integrating by parts, we find that

1
/D|V(T—1)|2dx+/a|7—1|27+ dx = 0.
X X T

Since 7 > 0, we deduce from the above that 7 = 1 so that D is uniquely determined by gq.
We then retrieve I' from knowledge of . m

Note that the uniqueness results are constructive. All that is required is that we solve
a transport equation for p and then solve an elliptic equation if D is to be reconstructed.
These are the steps that will be implemented in the sections on numerical simulations below.

7



Stability of the solution of the transport equation. Before presenting our numerical
framework, we derive a stability result for the reconstruction of p. A similar result was
obtained in [10] by using the stability of the method of characteristics to solve ordinary
differential equations. Here, we present a stability result that is directly obtained from
the PDE (7) and is quite similar in spirit to estimates obtained in [1] and the notion of
renormalization property in transport equation [18].

Theorem 2.4. We assume that the hypotheses of Theorem 2.2 hold. Let H = (Hy, Hs) be
the measurements corresponding to the coefficients (D, o,T") for which hypothesis (iii) holds.
Let H = (Hy, H,) be the measurements corresponding to the same illuminations (gy, g2) with
another set of coefficients (D, &,T) such that (i) and (i) still hold. Then we find that

1
e = il e x) SCHH—HH(QW for all 2 < p < occ. (12)

5 (x)?

Let us assume, moreover, that y(x) is of class C*(X). Then we have the estimate

e — fllr(x) < C||H — HH?L . for all 2 < p < oc. (13)

By interpolation, the latter result implies that

= fil| oy < C||H — H||3(d+P> for all 2 <p < 0. (14)

X))?’

We may for instance choose p = 4 above to measure the noise level in the measurement H
in the square integrable norm when noise is described by its power spectrum in the Fourier
domain.

Proof. Define v = ;i and # = ji® with p defined in (6) and § and § as in (3). Then we find

that -
v—v

V- g+ in(s - By =o.

Note that v = /ﬂHfV% is a divergence-free field. Let ¢ be a twice differentiable, non-
negative, function from R to R with ¢(0) = ¢/(0) = 0. Then we find that

Vo) wp) + o (D) o - By =0

Let us multiply this equation by a test function ¢ € H'(X) and integrate by parts. Since
v =1"on 0X, we find

/}(@(u;ﬂ>yﬁ.vgdaz+/xg(ﬁ_ﬁ~)v_ [

Upon choosing ¢ = 2 we find

Hq
[ v [ o8- vieans [ wp-5)- LS =0,
X

) |de =0,

Hy 2
Vi




v—U v—U

Above, ¢ stands for p(*>*) in all integrals. By assumption on the coefficients, V*=* is
bounded a.e.. This is one of our main motivation for assuming that the coefficients are
Lipschitz. The middle term is seen to be smaller than the third term and thus we focus on
the latter one. Upon taking ¢(x) = |z|’ for p > 2 and using assumption (iii), we find that

I =7l < C [ 18—l = 7
By an application of the Holder inequality, we deduce that

p
2

o~ oI

V=7 <C|8 -8 :
I = Py < €8 = Ay
We next write 8 — 3 = (H, — ﬁl)VHQ + ]:Il(V(HQ — ]:]2) — ... and use the fact that the
solutions to (1) and the coefficients are in W1°°(X) to conclude that (12) holds.

The other results are obtained by regularity theory and interpolation. Indeed from
regularity results in [23] with coefficients in W'>°(X), we find that the solutions to (1) are
of class W34(X) for all 1 < g < co. Since the coefficient v is of class C3(X), then the
measurements H; are of class W34(X) for all 1 < ¢ < co. Standard Sobolev estimates [23]
show that 3 o, o

1Hj = Hjllwracx) < CllHj = Hjl| 2o ox) [ Hj = Hjlliyps.agx)-

The last term is bounded by a constant, which gives (13) for ¢ = £. Another interpolation

result states that J

o < IVelllel, ™ 0=-—.
lellee < IVellscliell,™, it

This provides the stability in the uniform norm (14). ]

On the reconstruction of one coefficient. We conclude our theoretical section by
the reconstruction of one coefficient when the other two coefficients are known. This is
significantly simpler than the reconstruction of two coefficients. In none of the cases do we
need to solve a transport equation involving the vector field 5. The latter was obtained by
eliminating o from the elliptic equation, which is no longer necessary when two coefficients
are already known.

When only I' is unknown, then we solve (1) for u and then construct I' = —.

ou
When only o is unknown, then we solve
H :
u(x) = g(x), ondX T'u
When only D is unknown, we obtain u = % and then the above elliptic equation in (15)

with Djpx known is a transport equation for D. As soon as Vu is a sufficiently smooth,
non-vanishing vector field, then D is uniquely determined by the above linear equation. This
problem is analyzed in e.g., [1, 34].



3 Numerical implementation of the reconstruction

In this section and the next, we present a numerical implementation of the reconstruction
procedure given in the above theorem and its corollary. We recall that we have to solve a
transport equation to reconstruct p and ¢ and an elliptic equation to reconstruct D when
the latter is not known.

All the theoretical results require a certain degree of smoothness of the coefficients we
are interested in. The numerical experiments below show that the reconstructions are quite
robust even when the coefficients display multiple jump singularities. When this occurs, the
numerical implementation has to be done carefully in order to avoid spurious oscillations.

Numerical simulation of the transport equations. The reconstruction procedure we
presented above is non-iterative in the sense that we solve the nonlinear inverse problem
in one step. There is no iteration on updating the unknowns such as the nonlinear re-
construction schemes in optical tomography [5]. In principle, we only need to solve the
transport equation (7) numerically to find y?> = Du?. In practice, we have to be careful in

H
the numerical computation because the value the vector field g = H IQVFZ usually varies

1
significantly over the domain. We found it numerically useful to normalize the vector field
in the transport equation (7). We rewrite the transport equation as

~V- (12185 = 0 in X
D (16)
5 Vv Djax
= —— on0X,
[aale] Floxoox
so that the new vector field 3 = % is a unit vector everywhere.

Regularization in the presence of noise. When the illuminations are chosen so that
the vector field § is regular enough, we can solve (16) directly to reconstruct p (since |3

H.
is known). When the data are noisy, the vector field § computed by differentiating FQ

1
may become extremely irregular. Solving the transport equation (16) with such an irregular

vector field can be problematic in practice. So we need to regularize the problem. Two ways
to regularize it have been considered.

The first way of regularizing the problem is to add a small (controlled by the parameter
¢) diffusion term to the transport equation to obtain

—eA(21Bl) = V- (1[B)B = 0, in X

D
w218l = = on X
0X 010X

(17)

We then solve this regularized equation to reconstruct pu.
The second way to regularize the problem is to work on the discretized system. We
discretize the equation using a first order upwind discontinuous Galerkin method. Let us

10



denote by f the discretized version of 12, A the corresponding discretized transport operator
and d the right hand side that come from the boundary condition. We then obtain a system
of equations Af = d. We solve the transport equation in the least-square sense minimizing
the following functional

O(f) = F(f) + R(f) = S [|Af — d|lz + plf]:. (18)

N | —

Here we have chosen the regularization term to be the {! norm to deal with discontinuous
coefficients. To recover smooth coefficients, we should replace the {! norm with the {2 norm,
in which case the least-square problem admits the explicit solution f = (A*A + pI)"'A*d.

To minimize the objective functional (18) with the I' regularization term, we use the
Bregman iteration scheme proposed in [32]. The Bregman iteration is characterized by the
following iteration, k > 0, starting with the projection operator Py:

fp1 = arg min F(£) + R(f) = (Pr, £)

(19)
Prir = Pr— VieF(fii1)

where V¢ F(f;11) means the evaluation of V¢ F at f1;1. It is proved in [32] that the iteration

is well-defined and converges if there are only non-smooth functions in the kernel of A, or

at the continuous level, in the kernel of the transport operator with vector field B . For the

application of the Bregman method to photoacoustic tomography, we refer to [22].

Setting with multiple illuminations and construction of vector fields. It is shown
in [10] that acquiring 2n measurements for well-chosen illuminations may improve the sta-
bility of the reconstructions. The main idea is that two measurements allow us to obtain
V- u?B = 0so that 3-Vu?+ >V -3 = 0 while 2n measurements (or sometimes possibly less)
allow us to get an equation for the full gradient Vu? provided that n linearly independent
vector fields can be constructed at each x € X. Instabilities that may appear when solving
B-Vpu?+p?V -5 = 0 in the vicinity of X when 3 is almost tangent to X no longer appear
when we solve a system of the form Vu? + Ap? = 0 with A an appropriate known vector.

We have not tried to implement a reconstruction based on solving the above vectorial
equation. However, we have demonstrated that acquiring more measurements was unsur-
prisingly beneficial when noise was present in the data.

In the presence of I > 2 data sets, we can write down I — 1 transport equations of
the form (7) for the same unknown p but different vector field f;, i = 2,...,I. We may
then solve the over-determined system of I — 1 transport equations to reconstruct p. We
can either solve the system in least square sense or solve (16) for different indices and then
take the average of the results. We can also use multiple data sets as follows. We divide
the data into two groups, H;, 1 = 1,...,k and H;, j = k+1,...,1. We then construct the
data H, = Zle H; and Hy = Z]I‘:k+1 H;. This is equivalent to saying that H; and H, are
generated by the illuminations g, = Zle gi and gy = Zfzk 11 95> respectively. Numerically,
we have observed that both ways of utilizing multiple data sets yielded almost identical
reconstruction results.

11



Elliptic equation with non-smooth diffusion coefficient. The inversion procedure
presented in the theoretical section can be applied to the reconstruction of discontinuous
diffusion coefficients. Instead of solving (10) for VD, we reconstruct non-smooth coeffi-
cients D is as follows. We rewrite the diffusion equation, again using the fact that we can
reconstruct v; = \/Eul, and H; =IT'ouq, as

1 H
—V-2V— = =L inX,
(751 T
1 1 (20)
— = —(x), onJdX.
Uy g1

1
This is an elliptic equation for —. In the case when g; > 0 everywhere on 90X, (20) provides
Uy

stable reconstructions of u; and thus v/ D, provided that v, has been reconstructed faithfully.

4 Simulation results

In all the simulations below, we take the domain of interest to be the square X = (0,2)2.
To simplify notation, we use the notation x = (x,y) and we will use 0X, 0Xg, 0Xr and
0Xp to denote the left, right, top and bottom parts of the boundary, respectively.

We discretize the diffusion equations, such as (1), (11) and (20), and the transport
equations, such as (16) with a first-order discontinuous Galerkin method. The domains
are covered with triangular finite element meshes with about 15000 nodes. All the plots are
displayed on a structured grid interpolating the quantities defined on the finite element mesh
with a MATLAB interpolation algorithm. The semilinear elliptic equation (11) is solved
with the standard Newton method. We observed that the Newton iteration converged very
rapidly and was very robust with respect to changes in the initial guess.

In all the numerical simulations, we construct the interior data H(z) by solving the diffu-
sion equation with the true coefficients on an extremely fine finite element mesh, evaluating
['ocu on the fine mesh, and interpolating it onto the coarser mesh used in the reconstructions.
The data constructed this way thus contain some “noise” due to the mesh difference and
interpolation, Nonetheless, we will refer to these data as the “noise-free” data. We estimated
that the “noise” level was less than 0.2%.

A simple noise model. We will also perform reconstructions using noisy data. For want
of a more physically realistic noise model, here we simply add a discrete (on the coarse mesh)
i.i.d. noise to the data set H(x) in the following sense

H(x) = H(x) * (1 + arandom(x)), (21)

where random(x) is an uncorrelated random field taking values in [—1,1] and « controls
the noise level. Such a noise is sufficient to generate highly oscillatory vector fields that
complicate the simulation of the transport equation. When sufficiently noisy data are ac-
quired, we need to run a de-noising process on the vector field, which we chose as a low-pass
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filter constructed by a 5-point sliding averaging process. Although this may not be the best
denoising process available, it worked quite well numerically to remove the high-frequency
noise generated in (21). A more systematic study of noise in QPAT, including low-frequency
noise that is much harder to handle, still needs to be done.

We will measure the quality of the reconstruction using the relative L? error between
reconstructed and true coefficients. We will use £ and £V to denote the relative L? error
in the reconstruction of o using “clean” and ”"noisy” data respectively. All noisy data are
with 8% random noise constructed as in (21).

Vector fields with different illumination patterns. We show here that many pairs
of illuminations can generate a vector field that can connect every point inside the domain
with a point on the boundary of the domain.

Experiment 1. In the first numerical experiment, we plot the vector fields generated from
different pair of illuminations for a problem with the following discontinuous absorption and
diffusion coefficients:

(X) - 0.3, xe X, D(X) . 0.04, xe XoU X3
TE TV 01, xexX\x; T 002, xexeX\(X3UXs).

where the inclusions are X; = [0.3 0.7] x [0.3 0.7], Xy = [0.8 1.2] x [1.3 1.7] and X3 =
[1.3 1.7] x[0.3 1.1]. The Griineisen coefficient is taken to be constant and equals 0.5 although
it does not play a role in the plot of the vector field. We consider four different pairs of
illuminations (g1, g2), (93, 94), (g5, g6) and (g7, gs) that are defined respectively as follows.

. 10, X € 8XTU8XL, o 05, X € 8XTU8XL,
=3 05, x€dXpUIXp 9279 1.0, x€0XpUdXg

. 1.0, x€ 0XrUoXy, o 0.0, x € 0XrUIXy,
B=300, xeoXpuoXy T 10, x€aXpUdXy

. 1.0, x€ 90Xy, . 0.0, x€ 90Xy,

9579 0.0, x€0Xn 967\ 1.0, x€0Xg
r, x€0Xrp, 0.0, x€ 0XrUdXy,

g7 = Yy, XE@XL, gs — x, XGaXB,

0.0, x € 0XpUIXg Y, x € 0Xg

The results of the numerical experiment is shown in Fig. 1. Even though slight errors
occur near boundaries in a couple of cases, in general the constructed vector fields are quite
accurate. Note that for better visualization purpose, we have plotted the vector field on a

mesh that is 8 times coarser than the mesh used in the numerical reconstructions shown
below.
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Figure 1: Normalized vector fields constructed in Experiment 1. The illumination pairs used
are (g1, 92), (93, 94), (g5, g¢) and (g7, gs) from left to right.

Numerical simulations with smooth coefficients. We now present some reconstruc-
tions of smooth coefficients. We present in Experiments 2, 3 and 4 the reconstructions of
(T, o), (I', D), and (o, D) respectively.

Experiment 2. In this experiment, we intend to reconstruct the Griineisen and absorption
coefficient:

I'(x) =08+ 04tanh(4z —4)) and o(x) = 0.1+ 0.2 @D ~=-D"

The diffusion coefficient is a known constant D(x) = 0.02. The measurements are con-
structed with the two sources g; and ¢go. The results of the numerical experiment are
shown in Fig. 2. The relative L? errors in the reconstructions are £& = 0.2%, &Y = 1.1%,

EC =0.2% and &N = 1.6%.

Experiment 3. In this experiment, we intend to reconstruct the Griineisen and diffusion
coefficients:

['(x) =0.6 +0.3sin(rz) and D(x)=0.03+ 0.01sin(7y).

The absorption coefficient is the known constant ¢ = 0.1. The measurements are again
constructed with the two sources g; and ¢go. The results of the numerical experiment are
shown in Fig. 3. The relative L? errors in the reconstructions are £& = 0.2%, &Y = 1.1%,
ES =0.2% and &Y = 1.4%.

Experiment 4. In this experiment, the absorption and diffusion coefficients are given by
o(x) = 0.1+ 02 @ D=0 and  D(x) = 0.03 + 0.02sin(rz) sin(7y),

respectively. The Griineisen coefficient I' = 0.5. The measurements are constructed with the

two sources ¢g; and go described above. The results of the numerical experiment are shown
in Fig. 4. The relative L? errors are £¢ = 0.2%, EY = 0.8%, £S5 = 0.1% and EX = 3.1%.
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Figure 2: Experiment 2. From top left to bottom right are: true I' and o, reconstructed
I' and o with noise-free data, reconstructed I' and ¢ with noisy data, cross-section of true
(solid) and reconstructed (red dashed and blue dot-dashed) I" and o along y = 1 with noisy
data.

Numerical simulations with discontinuous coefficients. We now consider the recon-
struction of discontinuous Griineisen, absorption and diffusion coefficients. The reconstruc-
tions are done with the Bregman iteration method that was described above. As we have
seen, the discontinuities in I'(x) and o(x) cause no problem in the reconstructions, while
the discontinuities in the diffusion coefficient require special treatment.

Experiment 5. In this experiment, we intend to reconstruct the Griineisen coefficient
that contains three inclusions at X; = [0.3 0.7] x [0.3 0.7], X; = [0.8 1.2] x [1.3 1.7] and
X3 =[1.3 1.7] x [0.3 1.1] and a smooth absorption coefficient:

o 08, X € Xl U X2 _ 03, X € X3
F(x) = { 04, xeX\(X,UX,) M o= { 0.1, x € X\X;.

The diffusion coefficient is a known constant D(x) = 0.02. The measurements are con-
structed with the same sources as in Experiment 1. The results of the numerical experiment
are shown in Fig. 5. The relative L? errors in the reconstructions are 5 = 0.2%, &Y = 5.0%,

EC =0.2% and EN =10.7%.

Experiment 6. In this experiment, we intend to reconstruct the discontinuous Griineisen
and diffusion coefficients:

o 03, X € X1 - 004, X € X2 U X3
L(x) = { 01 xex\x, 2 D)= { 0.02, xexeX\(X,UXj)

The absorption coefficient is a known constant o(x) = 0.1. The measurements are con-
structed with the same two sources ¢g; and g, as in the previous cases. The results of the
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Figure 3: Experiment 3. From top left to bottom right are: true I' and D, reconstructed
I' and D with noise-free data, reconstructed I' and D with noisy data, cross-section of true
(solid) and reconstructed (red dashed and blue dot-dashed) I' and D along y = 1 with noisy
data.

numerical experiment are shown in Fig. 6. The relative L? errors in the reconstructions are

EC =02%, EN =6.2%, £§ = 0.2% and EF = 7.1%.

Experiment 7. In this experiment, we intend to reconstruct the absorption coefficient

(x) = 0.1 4 0.1 * (sign(random) + 1), x € X;;, 1 <4,5 <10
’ N O]-v X E€EXE X\(UXZJ)

where random is a random number in [—1 1] and Xj; is the box X;; = [0.3+0.1(i—1) 0.3+
0.14] x [0.3+0.1(j — 1) 0.3+ 0.15], and the discontinuous diffusion coefficient

D(x) = 0.02 + 0.02 * (sign(random) + 1), x € X;;, 1 <4i,5 <10
~ 0.02, x €x € X\(UX;;)

where X;; is the box X;; =[0.7+0.1(¢ —1) 0.7+ 0.1¢] x [0.74+0.1(j — 1) 0.740.1j]. The
Griineisen coefficient is a known constant I'(x) = 0.5. The measurements are constructed
with the two sources g; and g;. One realization of the coefficients and the results of the
numerical experiment are shown in Fig. 7. The relative L? error in the reconstructions are

EC =0.2%, EN =13.0%, £5 = 0.2% and E5 = 16.2%.

g

Numerical simulations with multiple illuminations. We have seen that multiple
illuminations would not provide extra information that would allow us to reconstruct all
three coefficients. However, more acquiring more data indeed improves the reconstruction
by averaging out noise in the data.
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Figure 4: Experiment 4. From top left to bottom right are: true ¢ and D, reconstructed
o and D with noise-free data, reconstructed o and D with noisy data, cross-section of true
(solid) and reconstructed (red dashed and blue dot-dashed) o and D along y = 0.5 with
noisy data.

Experiment 8. We present here a reconstruction of the absorption and diffusion coef-
ficients in Experiment 6 with multiple data sets. We have a total of 10 measurements
constructed using the sources gi-g19, with g; - gs given above and gg, ¢;0 given as

(y—1)° (y—1)?
, e 2012 "0 . ¢ 2012 0
9 = —, XE , 10 = —F—, XE ,
V27012 t V27012 f
0.0, X € 89\8QL 0.0, X € 8(2\3(23

The data are polluted with again 8% of random noise. The transport equations are solved in
the least square sense with L sparsity regularization using the Bregman iteration method.
The reconstruction results are presented in Fig. 8. The relative L? error in the reconstruc-
tions are E¢ = 0.1%, EY = 9.3%, ES = 0.1% and EY = 9.6%. The reconstruction in the

g
case of noisy data is indeed improved.
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