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Abstract. We consider the validity and accuracy of kinetic equations to model the
propagation of high frequency waves in highly heterogeneous media. The kinetic models
are used to infer the macroscopic properties of the heterogeneous media from wave energy
measurements or field-field correlation measurements. We illustrate the theory by considering
the imaging of buried inclusions and present reconstructions based on numerical simulations
and experimental data.

1. Introduction
This paper summarizes recent work by the author on the propagation of high frequency waves
in highly heterogeneous media and related inverse problems. Although the theories presented
here apply to other types of equations such as the Maxwell equations of electromagnetism,
the equations of elasticity, the Schrödinger and Dirac equations of quantum mechanics, we
concentrate on the simpler equations of acoustics. In its simplest form, the propagation of
acoustic waves in a heterogeneous medium may be modeled by the following wave equation:

∂2pε

∂t2
− c2ε(x)∆pε = 0, t > 0, x ∈ Rd,

pε(0,x) = pε0(x), ε
∂pε

∂t
(0,x) = jε0(x), x ∈ Rd,

(1)

where pε(t,x) is the pressure potential and cε(x) is the sound speed.
The parameter ε is defined as the ratio of the typical wavelength λ in the system with

the overall distance L of the system over which propagation is observed. This is modeled by
assuming that e.g. pε0(x) = φp(x)ψp(x

ε ) and jε0(x) = φj(x)ψj(x
ε ) for some smooth functions

φp,j(x) and ψp,j(x). We are interested in the regime where ε� 1.
In the so-called weak coupling regime, one of the main regimes of wave propagation we

consider in this paper, we assume that the sound speed cε(x) takes the form

c2ε(x) = c20(x)−
√
εV

(
x,

x
ε

)
, (2)

where c20(x) is the deterministic background speed and V (x, x
ε ) denotes the rapid oscillations.

This shows that the typical wavelength of the propagating waves is comparable to the
correlation length lc of the random medium (the scale at which the heterogeneous medium



fluctuates) so that ε = λ
L ∼ lc

L . The low density regime, where the correlation length is much
larger than the wavelength will be considered in section 2.

To account for the possible presence of a buried inclusion, we may assume that the wave
equation in (1) holds on Rd\D, where D is an open, bounded, subset in Rd, and that boundary
conditions are prescribed for pε on ∂D, for instance pε = 0 for sound-soft inclusions and ∂pε

∂n = 0
for unpenetrable inclusions. We may also model the presence of the inclusion as a rapid and
local fluctuation in the background sound speed c0(x).

Several inverse problems may then be considered, where one tries to reconstruct the
constitutive parameter of the wave equation cε(x) and the buried inclusions from redundant
information such as measurements of the wave fields at the domain’s boundary. Many
theoretical results exist on the uniqueness of the reconstruction of constitutive parameters in
the wave equation from redundant measurements. We refer the reader to the monograph [36]
for reconstructions when ε = O(1). Such results become intractable when ε� 1 as it becomes
increasingly difficult to reconstruct V (x, x

ε ) at the fine scale ε. Some approximations are
necessary. When the fluctuations are very small, namely V � 1, then classical reconstructions
based on the wave equation in a homogeneous medium may be used with good accuracy. When
the initial conditions in (1) are slowly varying, i.e., when p0ε and ε−1j0ε are independent of
ε, then homogenization techniques may be used to show that pε is well-approximated by
the solution to the unperturbed wave equation; see e.g. [7, 38, 40, 47] for the theory of
homogenization in random media.

As soon as V becomes large and the initial conditions p0ε and j0ε oscillate at the scale ε,
then pε no longer solves a wave equation in a homogeneous medium, even approximately. The
scattering resulting from the high frequency waves interacting with the high frequency random
medium becomes dominant. Initial data with high frequencies of order ε−1 are the waves we
consider in this paper. Lower frequencies provide additional information and should certainly
be used in the reconstructions whenever available. We focus here on the information that may
be retrieved from measurements of waves with frequencies comparable to ε−1.

Recent theories have been developed in the regime of high frequency initial conditions, which
are used to obtain good spatial resolution in the reconstructions when the random fluctuations
are sufficiently small so that wave propagation in a homogeneous medium can be used as a
forward model but sufficiently large so that classical imaging techniques of wave propagation,
such as Kirchhoff migration, fail to provide accurate results. We refer the reader to e.g. [22, 23]
for the method of interferometric imaging. The method is based on using functionals of the
measured wave fields that are as independent of the realization of the random medium as
possible while preserving good resolution capabilities.

When the transport mean free path, the mean distance between successive interactions of
the waves with the underlying structure, becomes sufficiently small, then the model of wave
propagation in a homogeneous medium breaks down and the accuracy of reconstructions based
on such forward models degrades. In such environments, another model of wave propagation
becomes necessary, and we claim that the simplest and most natural such model is that of the
kinetic equations, which we considered in the following sections.

In this setting, the fine scale oscillations of the speed fluctuations V (x, x
ε ) are no longer

accessible. We are able to observe only the macroscopic features of such fluctuations. It is
often reasonable to assume that V (x,y) is a random field V (x,y;ω), where ω ∈ Ω, the state
space of possible realizations of the heterogeneous medium constructed so that (Ω,F ,P) is a
probability space. We assume here that for each fixed x, V (x,y;ω) is a stationary, mean-zero,
random field, with a correlation function defined by

R(x,y) = E{V (x, z)V (x, z + y)}, (3)

where E is mathematical expectation with respect to P and where R is independent of z



by stationarity of V . The correlation function R(x,y) is the only macroscopic, fluctuation-
dependent parameter that will appear in the macroscopic models we consider below.

When the fine scale structure cannot be retrieved, the most general inverse problem we
can consider thus corresponds to the reconstruction of the macroscopic parameters c0(x),
R(x,y), and the parameters modeling possible buried inclusions, from knowledge of various
measurement operators. Before performing any inversion, we need to find measurable quantities
and a macroscopic model that relates the above constitutive parameters to the measurable
quantities. In this paper, we consider two types of measurable quantities: wave energy densities
and field-field correlation functions. Section 2 recalls the macroscopic kinetic models that
these quantities satisfy in the limit of vanishing wavelength ε → 0. We describe the kinetic
equations in time-dependent and steady-state frameworks for the weak-coupling regime of
random fluctuations in (2) and the low-density regime of random fluctuations in (21) below.

In order to be observable in practical experiments, these measurable quantities need to
be statistically stable. Statistical stability quantifies how stable the measurements are with
respect to changes in the realization of the random medium ω. We show in section 3 that
wave energy densities and field-field correlations are indeed statistically stable in the sense
that their standard deviation is small as the small parameter ε tends to 0. Unfortunately, the
available mathematical proofs of statistical stability require that we consider simplified models
of wave propagation compared to (1). More importantly, the statistical stability increases when
the observables are integrated over larger angular and spatial domains. This has important
consequences on the resolution one can expect in reconstructions. We present recent results
quantifying these instabilities in the Itô-Schrödinger regime of wave propagation.

The macroscopic description of statistically stable observable quantities allows us to use the
macroscopic kinetic models to infer the statistical properties of the constitutive parameters
in the wave equation (1). Several relevant results in inverse transport theory are recalled in
section 4. We insist on two features of inverse transport theory: (i) Observables are more
stable statistically after angular averaging. Yet the stability of the reconstruction of kinetic
parameters from angular measurements is a severely ill-posed problem. There is therefore an
important trade-off in the inversion: lowering the noise level in the measurements requires
that sufficient spatial and angular averaging take place, while such averaging degrades the
theoretical stability estimates available in inverse transport theory; and (ii) Energy density
and field-field correlations behave differently in different scattering regimes. In the imaging
of buried inclusions in highly scattering environments, we show that field-field correlations
provide higher signal to noise ratios than energy measurements.

These theoretical results allow us to propose in section 5 several reconstruction scenarios
based on available measurement data. Because statistical stability requires enough averaging
and averaging results in severely ill-posed problems, devising strategies that can increase the
signal to noise ratio (SNR) becomes primordial. We consider two ways of increasing the SNR
compared to plain wave energy measurements: (i) use differential measurements, and (ii) use
field-field correlation measurements.

We illustrate the theoretical predictions by performing numerical simulations of waves in
random media and presenting reconstructions of inclusions from experimental data obtained in
the micro-wave regime. We assume here that the background speed c0 is constant and known
and that the power spectrum R̂ (the Fourier transform of R in the second variable) is also
constant but unknown. We then assume that a single spherical inclusion with unknown volume
and location is buried in the random medium. We present several numerical simulations and
reconstructions from experimental data in this simplified setting.

2. Kinetic models
Kinetic models for the wave energy density. Let us consider the solution pε(t,x) to (1) when
the initial conditions oscillate at frequencies of order ε−1. The local energy density of the



waves is given by

Eε(t,x) =
1
2

( 1
c2ε(x)

(
ε
∂pε

∂t

)2
(t,x) + |uε|2(t,x)

)
, (4)

where ε∂pε

∂t is the pressure field and uε = −ε∇xpε is the acoustic velocity field. Up to
multiplication by a constant density ρ0, the first term above is the potential energy and the
second term the kinetic energy. The total energy is an invariant of the dynamics so that

E(t) =
∫

Rd

Eε(t,x)dx = E(0) =
∫

Rd

1
2

( 1
c2ε(x)

|j0ε|2(x) +
∣∣ε∇xp0ε

∣∣2(x)
)
. (5)

All quantities are rescaled so that E(t) is of order O(1) independent of ε.
As frequency increases and ε → 0, the local oscillations of pε(t,x) become less relevant.

Rather, one would like to obtain a macroscopic description for the observable energy density
Eε(t,x). As in the description of localized quantum waves by classical particles, the energy
density does not possess any simple characterization in the physical domain. As particles are
classically represented by their position and velocity, then so does the energy density admit a
representation in the phase space of positions and momenta:

lim
ε→0

Eε(t,x) =
∫

Rd

a(t,x, dk), (6)

where a(t, dx, dk) is a measure on R2d for each time t ≥ 0. In the absence of random
fluctuations, V ≡ 0, the measure a satisfies the following Liouville equation:

∂a

∂t
+∇kω · ∇xa−∇xω · ∇ka = 0, (7)

where ω(x,k) = c0(x)|k| is the Hamiltonian of the dynamics. The Liouville equation (7) is
augmented with initial conditions at t = 0 that follow (6); see e.g. [35] for the derivation of
(7). The high frequency wave packets are approximated by particles whose dynamics are now
given by the Hamiltonian system of equations:

Ẋ(t) = ∇kω(X(t),K(t)), K̇(t) = −∇xω(X(t),K(t)). (8)

In the presence of random fluctuations, V 6= 0, the wave packets interact with the underlying
structure so that scattering is generated. The Liouville equation (7) no longer holds and
propagation in a homogeneous medium is no longer an accurate model. Note that the
dispersion relation ω(x,k) = c0(x)|k|, which is an invariant of the Liouville equation, relates
the temporal and spatial properties of the oscillatory wave fields pε. More precisely, in the
case of a constant background c0(x) = c0, a wave field of the form

pε(t,x) = φ(t,x)e−i 1
ε
(ωt−k·x),

will satisfy that ω = ω(x,k) = c0|k|, whereas the amplitude φ(t,x) will be transported
according to the Liouville equation [50]. The dispersion relation is the most basic property
of wave packets and modifying it requires very strong fluctuations in the random medium.
Modifying the transport properties of the wave packets, however, requires a lesser amount of
perturbation. Following these remarks, the role of kinetic models is thus precisely to preserve
the dispersion relation of the wave fields while accounting for the scattering generated by the
random fluctuations by modifying the transport equation (7) and thus how energy transports.

The simplest way of modifying the transport of energy while preserving the dispersion
relation yields the following kinetic model:

∂a

∂t
+∇kω ·∇xa−∇xω ·∇ka =

∫
Rd

σ(x,k,q)
(
a(t,x,q)−a(t,x,k)

)
δ
(
ω(x,q)−ω(x,k)

)
dk, (9)



where the scattering coefficient is given by:

σ(x,k,q) =
πω2(x,k)
2(2π)d

R̂(x,k− q). (10)

Here, R̂(x,k) is the Fourier transform of the correlation R(x, z) with respect to the
second variable only, where the Fourier transform is defined with the convention f̂(k) =∫

Rd e
−ik·xf(x)dx. The scattering kernel on the right-hand side of (9) provides the amount of

energy that scatters from one direction q to another direction k while the dispersion relation
ω(x,k) = ω(x,q) is preserved (elastic scattering).

The mathematically rigorous derivation of radiative transfer equations of the form in (9)
from first principles is known only in a few settings; see [30, 44]. The derivation of kinetic
models from wave equations in similar settings may be found e.g. in [9, 12, 31]. Formal
derivations for fairly general hyperbolic (systems of) equations may be found in e.g. [6, 48, 50].
For other regimes of propagation of waves in random media, see e.g. [33, 34, 37, 39, 51].

Note that the above transport equation does not involve any randomness. Its solution is
purely deterministic. Since Eε(t,x) in (4) is random, it remains to characterize the sense in
which the limit in (6) is considered. We delay these considerations to the next section where
issues of statistical stability are considered.

Kinetic models for field-field correlations. Kinetic models are traditionally used to describe
the propagation of particles in scattering media. In some sense, the limit (6) describes how
the energy density of high frequency wave packets is approximated by a particle evolving in
a scattering medium, so that the density of particles (in the phase space) is a solution to (9).
We would like to stress that similar kinetic models may be used for more general field-field
correlations. Let us consider two heterogeneous media modeled by two sound speeds cε,k(x) for
k = 1, 2 and let pε,k(t,x) be the corresponding solutions to the wave equation (1), possibly with
different initial conditions. We can then define the following field-field correlation function:

Cε(t,x) =
1
2

( 1
cε,1(x)cε,2(x)

ε
∂pε,1

∂t
ε
∂pε,2

∂t
(t,x) + ε∇xpε,1 · ε∇xpε,2(t,x)

)
. (11)

When the two wave fields are identical, the correlation Cε = Eε satisfies the decomposition (6),
where a solves (9). There are several possible applications where the two fields pε,k may be
different and may propagate in different media. For instance, in the monitoring of a turbulent
atmosphere, one may have access to measurements at different times. Cross-correlating such
measurements provides information about the temporal dynamics of the turbulent atmosphere.
We shall see in section 4 that correlations may also provide larger signal to noise ratios than
measurements based on energy densities. For an application of such correlations to the analysis
of time reversed waves in changing heterogeneous media, see e.g. [20, 43].

Let us assume that the sound speeds are given by

c2ε,k(x) = c20(x)−
√
εVk

(
x,

x
ε

)
, (12)

so that the background sound speeds are the same in the two media. The fluctuations in
the sound speed may differ. We expect the two fields pε,k to be well-correlated when the two
random media are themselves well-correlated. We show below that this is indeed the case.

Let us define the following cross-correlation functions

Rjk(x,y) = E{Vj(x, z)Vk(x, z + y)}, (13)



and let R̂jk(x,k) be the Fourier transform of Rjk(x,y) with respect to the second variable
only. Following [6], we obtain that

lim
ε→0

Cε(t,x) =
∫

Rd

a12(t,x, dk), (14)

where a12(t,x,k) solves the following radiative transfer equation

∂a12

∂t
+∇kω · ∇xa12 −∇xω · ∇ka12 + (Σ(x,k) + iΠ(x,k))a12

=
∫

Rd

σ(x,k,q)a12(t,x,q)δ
(
ω(x,q)− ω(x,k)

)
dk,

(15)

where we have defined the following kinetic parameters:

Σ(x,k) =
πω2(x,k)
2(2π)d

∫
Rd

R̂11 + R̂22

2
(x,k− q)δ

(
ω(x,k)− ω(x,q)

)
dq

iΠ(x,k) =
i

4(2π)d
p.v.

∫
Rd

(
R̂11 − R̂22)(x,k− q)

∑
±

±ω(x,k)ω(x,q)
ω(x,k)−±ω(x,q)

dq

σ(x,k,q) =
πω2(x,k)
2(2π)d

R̂12(x,k− q).

(16)

The so-called total absorption parameter Σ(x,k) is thus the average of the total absorptions
of the random media k = 1 and k = 2. The scattering coefficient σ is now proportional to
the correlation function of the two random media R̂12. When the two random media are
perfectly correlated, then the scattering operator becomes that in (9), which is a conservative
operator (energy may change from direction k to direction q but is conserved overall as∫

R2d a(t,x,k)dxdk is an invariant of (9)). When the two random media are no longer perfectly
correlated, the absorption term Σ(x,k) remains high independent of that correlation. The
amount of scattering into other directions, however, decreases with the cross-correlation
parameter R̂12. High values of R̂12 generate a large amount of scattering, which in turns
increases the smoothness of the solution a12(t,x,k), in the sense that the smooth high-
order scattering component dominates the less smooth low-order scattering component. It
is shown in [17] that this smoothness is the very factor that explains why time reversed
signals focus tightly in regimes of wave propagation where the kinetic models are valid. Such
a result explains for instance why time reversed waves no longer refocus tightly when the
random medium changes before waves are back-propagated [20, 43], and thus why imaging
in heterogeneous media based on back-propagation of measured signals degrades when the
random medium is not known exactly or worse replaced by a homogeneous medium (in which
case R̂12 = 0).

Kinetic models for stationary equations. Thus far, we have considered evolution equations
to model the propagation of acoustic waves. In many experimental settings, including those
described lated in the paper, it is more convenient to model the waves as time harmonic waves.
We model the propagation of time harmonic acoustic waves with frequency ω

ε by the following
Helmholtz equation:

ε2∆uε(x) +
ω2

c2ε(x)
uε(x) =

1

ε
d−1
2

ϕ
(x− x0

ε

)
, (17)

where ϕ(x) is a smooth source term localized in the vicinity of a point x0. We assume that
c0(x) = c0 is constant to simplify so that ∇kω(x,k) = c0k̂ with k̂ = k

|k| . Following [16], we
show that

lim
ε→0

|uε(x)|2 =
∫

Rd

a(x,k)dk, (18)



where the phase space density a(x,k) solves the following radiative transfer equation

c0k̂ · ∇a+ Σ(x,k)a =
∫

Rd

σ(x,k,q)a(x,q)δ(c0|k| − c0|q|)dq +Q(x,k). (19)

The source term is given by

Q(x,k) =
c30

4ω2(2π)d−1
δ(x− x0)δ

( ω
c0
− |k|

)
|ϕ̂(k)|2, (20)

while the kinetic parameters σ and Σ are as before.

Weak coupling regime and low density regime. So far we have assumed that the sound speed
fluctuations were of the form given in (2). Such fluctuations have small amplitude of order
O(
√
ε) and very small correlation length, lc = εL. They are referred to as the weak coupling

regime. Although the amplitude of these fluctuations is small, they appear sufficiently often
so as to have an effect of order O(1) on the propagating waves. This effect is measured by
the mean free path l = c0Σ−1, which is of order O(1) and which measures the mean distance
between successive interactions of the energy density with the underlying structure.

Another practically relevant type of random fluctuations that combine to provide order
O(1) mean free paths is that of lower-density larger-amplitude scatterers. Such random media
were analyzed in [16]. Let us consider a collection of point scatterers xε

j(ω) given by a Poisson
point process of density νε = εγdn0 for some 0 < γ < 1 and rescaled density n0 > 0. The
points xε

j(ω) should be seen as the centers of the scatterers. Let us assume to simplify that
all scatterers have the same velocity profile up to a random multiplicative factor τj and define
V(x) a compactly supported, non-negative, uniformly bounded, function. We replace the
fluctuations in (2) by

√
εVε(x,

x
ε
) = χ(x)ε

1−(γ+β)d
2

∑
j

τjV
(y − xε

j

εβ

)∣∣∣
y=x

ε

. (21)

The process τj is a mean-zero, square integrable, process chosen independent of the Poisson
point process. The function χ(x) indicates the intensity of the fluctuations at the macroscopic
scale x. The above expression means that we consider scatterers with a density nε = ε−dνε =
ε(γ−1)D � 1, with a correlation length lc = ε1−γL, and whose thickness is given by ε1+β � ε.
The scatterers may thus be modeled by point scatterers since their width is much smaller than
the wavelength.

The amplitude of the scatterers may now be of order O(1) provided that e.g. β = γ = 1
2d .

Their thickness and density has to be chosen to make sure that the resulting mean free path
is of order O(1). Following [16], we find that the optical parameters are given by

σ(x,k,q) =
π

2(2π)dc20
|k|2|V̂(0)|2E{τ2}n0χ

2(x),

Σ(x, |k|) =
|Sd−1|π
2(2π)dc30

|k|d+1|V̂(0)|2E{τ2}n0χ
2(x),

(22)

where |Sd−1| is the measure of the unit sphere in Rd.
We observe that scattering is now isotropic, as it no longer depends on the angle between

k and q. The mean free path, given by l = c0Σ−1 is seen to be inversely proportional to the
rescaled density of scatterers n0 and to the (d+1)th power of the wavenumber. Scattering thus
increases very rapidly with frequency, as the fourth power of frequency in three dimensions of
space. This is referred to as Rayleigh scattering.



The above calculations show that radiative transfer equations arise as a natural perturbation
of the Liouville equations, which are valid in the absence of rapid fluctuations. The radiative
transfer equations arise for a large variety of heterogeneities, provided that the resulting mean
free path is neither too large, in which case the Liouville equations are valid, nor too small,
for then other phenomena of wave propagation, such as wave localization [51], may arise.

3. Statistical instabilities
The radiative transfer equations (9), (15), and (19), do not involve the realization of the random
medium and their solutions are thus deterministic. It remains to specify how the limits in (6)
and (14) are considered. The rigorous results obtained in [30, 44] show the convergence of
the ensemble average E{Eε(t,x)} to its limit weakly in space (i.e., after integration in space
against a sufficiently smooth test function). Although important physically, such a result
would not be sufficient for the purpose of inverse problems. Since only one realization of the
random medium is accessible in practice, the measured data could possibly be very far from
their ensemble average and the macroscopic model (9) would not provide the right mapping
between the constitutive parameters of the transport equation and the available measurements.

It turns out that the asymptotic statistical stability of Eε(t,x) may be established for
slightly modified wave equations. We first introduce the Wigner transform of two complex-
valued functions f and g at the scale ε:

W [f, g](x,k) =
1

(2π)d

∫
Rd

eik·yf
(
x− εy

2
)
g∗

(
x +

εy
2

)
dy. (23)

The Wigner transform may be seen as a decomposition over wave numbers of the correlation
f(x)g∗(x), since by integrating both sides, we obtain that∫

Rd

W [f, g](x,k)dk = f(x)g∗(x). (24)

Let us define

Wε(t,x,k) =
1
2

( 1
cε,1(x)cε,2(x)

W [ε
∂pε,1

∂t
, ε
∂pε,2

∂t
](x,k) +W [ε∇xpε,1, ε∇xpε,2](x,k)

)
. (25)

We verify that the above quantity, which we also call a Wigner transform, is a decomposition
over wave numbers of the field-field correlation (11):

Cε(t,x) =
∫

Rd

Wε(t,x,k)dk.

In other words, we are interested in which sense the limit of Wε(t,x,k) is equal to a12(t,x,k),
the solution of (15).

The results of convergence are essentially the same for energy densities and field-field
correlations, even though the analysis of the latter is slightly more involved; compare e.g.
[5, 12] and [18] in the paraxial and Itô-Schrödinger regimes of wave propagation and [9] and
[19] for the regime of wave propagation where the correlation length of the medium lc is such
that ε� lc � L. We thus assume for the rest of the section that pε,1 = pε,2 so that

Eε(t,x) =
∫

Rd

Wε(t,x,k)dk.

The main theoretical advantage of the Wigner transform Wε(t,x,k) is that it satisfies a closed-
form equation [6, 50]. Formal asymptotic expansions developed in [50] allow us to pass to the
limit in that equation and obtain the transport equation (9).



One way to show that the full random process Wε(t,x,k) converges to a(t,x,k) is to look
at the following scintillation function (covariance function):

Jε(t,x,k,y,p) = E{Wε(t,x,k)Wε(t,y,p)} − E{Wε(t,x,k)}E{Wε(t,y,p)}. (26)

A non-vanishing limiting scintillation is responsible for the scintillation of stars whose positions
seem to depend on time because the realization of the turbulent atmosphere changes with time.
That the scintillation converges to 0 in some appropriate sense has been shown rigorously for
several regimes of wave propagation. We have already mentioned the regime where ε� lc � L
leading to a limiting Fokker-Planck equation rather than a radiative transfer equation [9, 19].
A similar result has been obtained in the paraxial approximation to the wave equation [12].
The paraxial approximation consists of assuming a privileged direction for the waves, say the
z−direction, and of neglecting back-scattering in that direction. The approximation thus holds
for very narrow beams. The reason why the mathematical analysis is much simplified is that
the assumption prevents waves from seeing the same position z twice. Classical techniques
of mixing of random processes may then be applied and provide a law-of-large-numbers-type
self-averaging that allow us to conclude that Wε(t,x,k) converges weakly in (x,k) and in
probability as a random process, to its deterministic limit a(t,x,k).

In other words, for ϕ ∈ L2(R2d),∫
R2d

Wε(t,x,k)ϕ(x,k)dxdk
prob.−−−→

∫
R2d

a(t,x,k)ϕ(x,k)dxdk.

In both regimes [9, 12], however, the convergence may be proved when Wε(t, ·, ·) ∈ L2(R2d)
uniformly in time. Moreover, the test function ϕ(x,k) is not allowed to depend on the small
parameter ε.

This shows that the transport measurements Wε(t,x,k) or Eε(t,x) after averaging over
wavenumbers k such that ω(x,k) = c(x)|k|, are asymptotically statistically stable provided
that: (i) the energy density is sufficiently smooth, and (ii) measurements are averaged over
sufficiently large arrays.

More accurate information on the scintillation may be obtained by further simplifying the
regime of wave propagation. Still assuming a narrow beam approximation for the propagating
waves and neglecting backscattering in the direction −z, we further assume that the random
fluctuations are very rapid in the z direction. These very rapid fluctuations may then formally
be replaced by their limiting process, namely a Wiener measure. We call the limiting model
of wave propagation, a (stochastic) partial differential equation, the Itô-Schrödinger equation
and refer the reader to [3, 12] for its derivation. The limiting model describes the propagation
of a beam in the main direction z and how the beam widens in the transverse directions x.
The main advantage of the Itô-Schrödinger model is that the scintillation (26) becomes the
solution of an explicit kinetic equation.

The analysis of the scintillation function was considered in [5] and significantly generalized
in [15] in the Itô-Schrödinger regime. The salient feature of these analyzes is that the size
of the scintillation function crucially depends on two factors: (i) the regularity of the initial
condition for the wave equation; and (ii) the size of the array of measurements. Whether
the theoretical results obtained in that simplified regime extend to more challenging models
of wave propagation remains to be seen. However, we expect the regularity of the initial
conditions and the size of the array of measurements to have a qualitatively similar influence
on the scintillation function in more general regimes of wave propagation as well.

Let us summarize some of the results obtained in [5, 15]. A first, negative, result is that
the scintillation function does not decay to 0 in the limit ε → 0 when the initial conditions
for the transport equation are a(0,x,x) = δ(x− x0)δ(k− k0). Note that initial conditions for
the wave equation may be constructed so that the initial condition of the Wigner transform



converges to the singular measure δ(x − x0)δ(k − k0). More precisely, it is shown in [5] that
for such initial conditions, the scintillation Jε(t,x,k,y,p) is equal to a leading term given by
δ(x − y)δ(k − p)α(t,x,k) plus other components that are mutually singular with respect to
that leading term, where the density α(t,x,k) admits an explicit characterization obtained by
solving a kinetic equation. This implies that the wave energy density is not statistically stable
in the limit ε→ 0 and this is a very negative result as far as the inverse transport problem is
concerned.

For smoother initial conditions for the wave equation, scintillation indeed decreases to 0 as
the wavelength ε → 0. Following [15], we consider initial conditions for the wave equation in
the Itö Schrödinger regime given by

ψε(x) =
1

ε
dα
2

χ
( x
εα

)
ei

x·k0
ε , (27)

where χ(x) is a smooth function modeling the support of the source and k0 is the direction of
propagation of the wave packet. The scaling is such that the initial condition is bounded in
L2(Rd) independent of ε. Here d is the spatial dimension of the transverse directions x. More
general initial conditions are considered in [15]. Let us now model the array of detectors by

ϕε(x,k) := ϕε,s1,s2(x,k) =
1

εd(s1+s2)
ϕ
( x
εs1

,
k− k1

εs2

)
, (28)

with an aperture of size εs2 in wavenumbers in the vicinity of k1 and size εs1 in space in
the vicinity of x0 = 0. The function ϕ(x,k) is assumed to be non-negative and such that∫

R2d ϕ(x,k)dxdk = 1. Normalization is such that the average of ϕε is independent of ε.
The scintillation function quantifies the probability that the measurements deviate from

the kinetic solution. Using the Chebyshev inequality, we obtain that

P
(
|〈Wε(t,x,k), ϕε〉 − 〈a(t,x,k), ϕε〉| ≥ δ

)
≤ 1
δ2

∣∣∣〈Jε(t), ϕε ⊗ ϕε〉
∣∣∣. (29)

For initial conditions of the form given in (27), we obtain in [15] the following bound for
the scintillation function:∣∣∣〈Jε(t), ϕε ⊗ ϕε〉

∣∣∣ ≤ Cε(2α−1)∨0−2ds2

(
εd(1−α−2s1) ∧ εd(1−2α−s1)

)
, (30)

where a ∧ b = inf(a, b) and a ∨ b = sup(a, b). The above formula shows how scintillation
decreases as the size of the array of measurements increases (s1 and s2 decrease) and the
smoothness of the initial condition increases (α decreases).

Let us assume that s2 = 0 so that the energy density is angularly averaged. For a large array
of detectors so that s1 = 0, we find that scintillation is proportional to εα+d(1−α). For smooth
initial conditions with α = 0, we thus obtain the smallest possible value of the scintillation, of
order O(εd). This means that the measured random variable 〈Wε, ϕ〉 has a standard deviation
proportional to O(ε

d
2 ).

For initial conditions with narrow spatial support and α = 1, we obtain that the scintillation
is proportional to O(ε). This means that the measured random variable 〈Wε, ϕ〉 has a standard
deviation proportional to O(

√
ε), which is much larger than the optimal O(ε

d
2 ). Such a bound

is in fact optimal as we showed in [15] that ε−1Jε converges in the sense of distributions to a
limiting scintillation function solution of an explicit kinetic equation.

Another interesting expression we can derive from (30) pertains to the minimal size of the
array of measurements. Let us assume that α = 0 so that the source has large support. Then
we find that scintillation is bounded by O(εd(1−s1)). This result shows that the wave energy
measurements are asymptotically statistically stable in the limit ε → 0 as soon as the array
of measurements has a spatial aperture εs1 that is large compared to the wavelength ε. This
result is also optimal as we do not expect any statistical stability of the wave energy density
at the scale of the random fluctuations ε.



4. Inverse transport theory
Uniqueness results from knowledge of the albedo operator. The transport equations seen in
the preceding sections may be recast as

∂a

∂t
+ θ · ∇a+ Σ(x)a =

∫
Sd−1

σ(x,θ,θ′)a(t,x,θ′)dµ(θ′), (31)

after proper rescaling of the wave number θ = k
|k| ∈ S

d−1 and dµ is the standard measure on
the unit sphere. We have assumed here that c0(x) = c0 = 1 and refer the reader to e.g. [46]
for generalizations when the sound speed c0(x) is also unknown.

We may now probe the scattering medium on a bounded, convex, domain X ⊂ Rd, d ≥ 2,
by sending information from the domain’s boundary and taking measurements of outgoing
particles at the domain’s boundary. Let us define the sets

Γ± = {(x,θ) ∈ ∂X × Sd−1, such that ± n(x) · θ > 0}, (32)

where n(x) is the outward unit normal to X at x ∈ ∂X, and dξ = |n(x) ·θ|dµ(θ)dS(x), where
dS is the surface measure on ∂X. For a− ∈ L1

c(R;L1(Γ−, dξ)), the above transport equation
with conditions a = a− on R × Γ− admits a unique solution and a trace a+ = a|Γ+

, which
is well defined in L1

loc(R;L1(Γ+, dξ)); see [52]. We then define the albedo operator A, which
maps a− to a+ = Aa−. It is shown in [27] that A uniquely determines Σ(x) and σ(x,θ,θ′).

A similar theory holds for the steady state problem, where solutions of (31) of the form
a(x,k) independent of time are sought. Under appropriate smallness assumptions on the
scattering coefficient σ(x,θ,θ′) so that the transport equation is well-posed, it is shown in
[28] that the albedo operator, which maps a− ∈ L1(Γ−, dξ) to a|Γ+

= Aa− ∈ L1(Γ+, dξ),
uniquely determines Σ(x). In dimensions d ≥ 3, the scattering coefficient σ(x,θ,θ′) is also
uniquely determined. In dimension d = 2, σ(x,θ,θ′) is uniquely determined provided that
it is sufficiently small [53]. Several uniqueness results come with stability analyses; we refer
the reader to [52] for more details on the inverse transport theory from knowledge of the full
albedo operator.

In both the time dependent and the steady state cases, the unique reconstructions of the
optical parameters comes from the following decomposition of the albedo operator:

A = A0 +A1 +A2, (33)

where A0 corresponds to the ballistic part, obtained by setting σ ≡ 0 in (31), and where A1

is the part of A that is linear in σ and thus corresponds to the single scattering contribution
to the albedo operator. In all cases, it may be shown that A0 is more singular (in the sense
that its Schwartz kernel is more singular) that the other components of A. We then observe
that the X−ray transform of Σ(x) is uniquely determined by A0, whence the reconstruction
of Σ(x) by inverse Radon transform. In dimension d ≥ 3 for the steady-state problem and in
dimension d ≥ 2 for the time-dependent problem, A1 is also more singular than A2 and allows
one to uniquely determine σ(x,θ,θ′).

Reconstructions from averaged measurements. Radiative transfer equations of the form (31)
may be used in several applications such as radiation through turbulent atmospheres [26] and
clouds [45] and near-infra-red photon propagation in tissues and its applications in optical
tomography [2]. In most applications, the full albedo operator is rarely available. Moreover,
angularly resolved measurements are rarely feasible, either because they would be too long to
acquire or because the amount of energy (or photon count) is too low.

In the propagation of waves in random media, we have seen that there is another important
limitation: the statistical instability of the measurements. Localized sources of radiations or



localized measurements in the phase space both result in statistically unstable quantities. It
may therefore be more suitable to model available measurements as averaged measurements.

The main theoretical difficulty with averaged measurements is that the singularities of
the albedo operator A are often lost by integration, so that the theories recalled in the
preceding paragraph no longer apply. The theory of uniqueness of optical parameters from
averaged measurements is less well understood. Consider the following angularly averaged
measurements at the domain’s boundary:

J(x) =
∫

Sd−1

θ · n(x)a(x,θ)dµ(θ), (34)

where J(x) is the current of particles at x ∈ ∂X. Reconstructions of optical parameters from
knowledge of J(x) (rather than a(x, θ)|Γ+

) have recently been addressed in [10, 41]. In [41],
it is shown that knowledge of J(x) for all possible a|Γ− (so that the sources are still angularly
resolved) allows us to uniquely reconstruct Σ(x) and to reconstruct σ(x,θ,θ′) = σ(x)φ(θ,θ′)
provided that σ(x) is sufficiently small and φ is known and real analytic. In [10], it is shown
that knowledge of J(x) for all possible a|Γ−(x,θ) = f(x) (so that sources are no longer
angularly resolved) uniquely determines the low-frequency part of σ(x,θ,θ′) = σ(x) provided
that Σ(x) and σ(x) are sufficiently small. Surprisingly, the latter result, which is based on a
linearization with respect to σ of the measurement operator, uses the same complex geometrical
optics solutions as in the Calderón problem, where the reconstruction of parameters in an
elliptic equation is sought [24]. As a consequence, the reconstruction of σ(x) from available
measurements is shown to be a severely ill-posed problem.

Reconstruction of small-volume inclusions. In the case of averaged measurements, which are
necessary in waves in random media if one is to expect to obtain statistically stable data, it
is often necessary to have a low-dimensional parameterization of the quantities one aims to
reconstruct. One useful, and now well-studied, such parameterization consists of assuming
the presence of well-localized small inclusions buried in an underlying medium with smooth
coefficients. This parameterization provides a good tool to quantify what type of perturbations
can (or cannot) be reconstructed at a given noise level; see [1, 4, 25].

In the context of the imaging of buried inclusions in random media, the reconstruction of
small-volume inclusions from energy density and from field-field correlation measurements was
recently considered in [13].

We denote by pε,1 the wave solution in the absence of the inclusion and by pε,2 the wave
solution in the presence of the inclusion. Let us consider inclusions that are either sound-soft
or unpenetrable. This translates at the kinetic level as specular boundary conditions for the
wave energy density. We thus obtain that the phase-space energy density a2(t,x,k) in the
presence of the inclusion solves (9) on Rd\D, where D is the support of the inclusion, and
satisfies the following boundary conditions

a2(t,x,k) = a2(t,x,k− 2k · n(x)n(x)), x ∈ ∂D, (35)

where n(x) is the outward unit normal to D at x ∈ ∂D.
Let us now consider the correlation Cε in (11) based on correlating the wave solution pε,1

in the absence of the inclusion with the wave solution p2,ε in the presence of the inclusion.
At the kinetic level, the limit a12 solves the equation (9) on Rd\D, since on Rd\D, the two
random media for pε,1 and pε,2 agree. The boundary conditions, however, are now given by

a12(t,x,k) = 0 in x ∈ D (and on x ∈ ∂D). (36)

The reason why a12 vanishes at the inclusion’s location may be understood as follows. Let us
think of a localized wave packet impinging on the object. In the absence of the inclusion, that



wave packet propagates though D. In the presence of the inclusion, it is specularly reflected.
These two wave packets then propagate in different directions and interfere destructively. As
a result, their Wigner transform converges (weakly) to 0 with ε and we obtain in the (weak)
limit that a12 vanishes inside D; see [13] for more details.

Let a1(t,x,k) be the solution of the kinetic equation (9) in the absence of the inclusion.
Then we can measure the influence of the inclusion on the energy data by looking at
(a1 − a2)(t,x,k) for x ∈ ∂X where measurements are taken. The influence on the field-
field correlation data may be defined as (a1 − a12)(t,x,k). The main result of the analysis in
[13], which borrows from similar analyses in [1, 25], shows that

‖a1 − a2‖L1 ≈ Rd−1, ‖a1 − a12‖L1 ≈ Rd−1, (37)

when the mean free path c0Σ−1 is of order O(1). Here, R is the radius of the inclusion and
the L1 norm is defined in the space (x,k) ∈ Rd×Sd−1. In such a regime, it may therefore not
be worth while measuring field-field correlations.

In the regime of very small mean free paths compared to L (but very large compared to the
wavelength so that the kinetic models are still valid with the same stability estimates as those
shown before), which corresponds to the high scattering regime, the solution to the transport
equation may be well-approximated by the solution to a diffusion equation [29]. In such a
regime, it is shown that

‖a1 − a2‖L1 ≈ Rd, ‖a1 − a12‖L1 ≈ Rd−2, (38)

for d ≥ 3, where Rd−2 above should be replaced by | lnR|−1 in dimension d = 2. Instead
of being proportional to its volume, the influence of the inclusion on the correlation data is
proportional to its radius in dimension d = 3. In scattering media, the measurement of field-
field correlations may thus provide significantly higher signal-to-noise ratios than would the
measurement of energy densities.

5. Imaging scenarios
In the appropriate regimes of wave propagation, we have obtained macroscopic kinetic models
for energy densities and field-field correlations. The constitutive parameters in these kinetic
equations are the statistical properties of the heterogeneous media and the properties of the
buried inclusions. For the rest of this paper, we consider the following simplified problem,
where the random medium is assumed to be statistically invariant by translation, so that the
mean free path is independent of position, and where we assume that we have one buried
inclusion with a very simple geometry (we shall assume that it is spherically symmetric for
concreteness; see [16] for extensions).

We assume that the probing waves are high frequency waves with wavenumbers of order
(Lε)−1. We are interested in reconstructing the optical parameters of the medium and the
properties of the inclusion from such frequencies.

High frequencies are typically being used because of their resolution capabilities,
proportional to the wavelength ε. In the absence of any high frequency fluctuations of the
underlying medium, such a resolution may be obtained by back-propagating available data
into the homogeneous medium. The back-propagated (time-reversed) waves tightly focus at
the inclusion’s location with an accuracy of half of a wavelength when a sufficiently large
aperture is available. In the presence of known high frequency fluctuations in the random
medium, the back-propagation of measured waves still provides a very useful imaging tool
[21, 32, 34] as it allows for an accuracy of up to half of a wavelength even in the presence
of small aperture measurements. The analysis in [20, 43] shows, however, that the random
medium need be known extremely accurately for the time reversed waves to refocus at the
location of the inclusion.



When the random medium oscillates rapidly and is not known explicitly, which is the case in
most applications, the back-propagation of the measured waves will not provide any meaningful
reconstruction. Moreover, the reconstructed image will be extremely unstable statistically. In
the presence of a limited amount of randomness, this statistical instability may be mitigated
in an optimal way by averaging the unknown random fluctuations at a scale that renders the
data statistically stable while preserving the highest degree of resolution. This is the method
of coherent interferometric imaging [22, 23]. As randomness increases, the spatial resolution at
the scale ε degrades. However, so long as the mean free path is sufficiently large, the method
provides an optimal degree of resolution.

When the amount of randomness increases to a larger level and the mean free path
becomes sufficiently small, the model of propagation in a homogeneous medium may no
longer be used. As we have claimed earlier in this paper, the simplest modification for
wave propagation in a homogeneous medium is to model the energy density or the field-
field correlation of those waves with a kinetic description. Although measurements may be
statistically stable in such configurations, they require that the source terms and the arrays of
detectors be sufficiently delocalized spatially, and certainly at scales significantly larger than
the wavelength. Wavelength resolution is therefore irretrievably lost in such regimes unless
additional information is inserted. These facts bring us to the introduction of several possible
imaging scenarios.

(i) The first scenario is based on measurements of the energy density Eε(t,x) for an interval
of times and on an array of detectors. We do not have access to measurements in the absence
of an inclusion. We call these measurements direct measurements.

(ii) The second scenario is based on measurements of the energy density Eε,1(t,x) in the
absence and Eε,2(t,x) in the presence of the inclusion. We call such measurements differential
measurements.

(iii) The third scenario is based on measurements of the field-field correlation Cε and of the
energy density Eε,1. This requires us to measure the fields pk,ε for k = 1, 2 accurately to form
the correlation Cε.

The first scenario is the least demanding technologically. It requires that we measure
the energy density, which does not necessitate a measurement accuracy at the level of the
wavelength. Also, it does not require that we probe the medium in the absence of the
inclusion, which may not be feasible in many applications. This scenario, however, provides
measurements of limited quality. Because of the statistical instability presented in section
3, the influence of the inclusion need be significantly larger than the error caused by the
uncontrolled instabilities. For not-too-small mean free paths and small inclusions, this means
that Rd−1 need be significantly larger than the instability, which ranges from ε

d
2 to almost

O(1) depending on the smoothness of the initial conditions and of the array of detectors.
The second and third scenarios are defined to mitigate the influence of the statistical

instability on the measurements. In the absence of an inclusion, the difference of energies and
the difference of correlations vanish. The resulting statistical instability for these scenarios
is therefore proportional to the influence of the object itself. This is a much lower statistical
instability than that of scenario (i). The advantage of scenario (iii) over scenario (ii) is that
the influence of the object is significantly larger in the former than in the latter when the
mean free path is relatively small; see (38).

6. Inversions from numerical and experimental data
Accuracy of time domain kinetic models. The accuracy of the kinetic models in the time
domain and the frequency domain has been tested numerically in a series of recent papers
[13, 14, 16, 49]. These calculations are computationally fairly intensive as they require that
waves propagate through large domains (compared to the wavelength) so that the mixing
predicted by theory may occur.



The comparison of simulations of the time dependent wave equation with simulations of the
kinetic models were considered in [13, 14]. The wave equation is solved by a finite difference
model and the kinetic equation is solved by a Monte Carlo method. The agreement between
the exact wave equation and the kinetic prediction is very good. We present a few numerical
comparisons in Fig.1, where we consider the influence of inclusions of radius R between 30 and
50 wavelengths on energy density measurements 300 wavelengths away. The mean free paths
range between 36 and 88 wavelengths approximately; see [13] for more details.
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Figure 1. Comparison of wave energy densities obtained by solving the wave equation and
the kinetic model. In each case, the energy density is calculated in the presence and in the
absence of an inclusion. The resulting difference of energies at the detector’s location is plotted
as a function of time. From left to right: Void inclusion of radius R = 50 and mean free path
of 88 wavelengths; Void inclusion of radius R = 50 and mean free path of 36 wavelengths;
Reflecting inclusion of radius R = 30 and mean free path of 71 wavelengths.

In [14], we considered the influence of inclusions of size R = 8 and R = 15 wavelengths on
an array of detectors located 150 wavelength away from the inclusion. The source and the
detectors are located at the same place. The size of the detector is 40×60 wavelengths, and the
random medium has fluctuations of standard deviation 8% of the average sound speed, which
result in a mean free path (the sole meaningful quantity to measure the amount of disorder in
the random medium) equal to 37 wavelengths. The waves have to travel for 8 mean free paths
to probe the inclusion. The kinetic model for the correlation function Cε is as accurate as for
the energy densities plotted in Fig.1; see [14]. We want to insist here on the results plotted
in Fig.2. The dotted (green) curve represents the relative statistical instability (standard
deviation) of the energy measurements as a function of time. It is based on calculations over
20 realizations of the random medium. The relative influence of the inclusion on the energy
density is the solid (red) line while the influence of the inclusion on the field-field correlation
is the dashed (blue) line.

In both cases, imaging based on scenario (i) would fail because the statistical instability of
the measurements is significantly larger than the influence of the object. In scenarios (ii) and
(iii), the dotted (green) curve no longer represents the measurement noise. The latter noise
may come from taking the difference of large numbers or from external noise. In any case, we
observe that the signal to noise ratio is significantly larger for correlation measurements than
for energy measurements. Moreover, the presence of an inclusion can only degrade the quality
of field-field coherence so that the dashed (blue) curve can only be positive valued, at least on
average. In such a regime, we see the clear advantage of reconstructions based on field-field
correlations, provided the latter are technologically available.

Reconstructions from time harmonic measurements. The reconstruction of buried inclusions
from the time-harmonic kinetic model (19) was studied recently in [16]. We consider a
heterogeneous medium composed of tightly localized scatterers modeled as point scatterers.



Figure 2. Comparison relative standard deviation - relative correlation correction - relative
energy correction, for a mean free path of 37 wavelengths and R = 8 (left) and R = 15 (right).

The Helmholtz equation (17) is thus solved by using a Foldy-Lax model. The kinetic model
with parameters given in (22) is solved by a Monte Carlo method. In both the wave and
kinetic models, the source term is a delta function in space located outside of the random
medium (see below for a pictorial description of the numerical setting).

The statistical instability of the measurements depends on the the size of the array
of detectors, as expected, but also on the density of scatterers (at a fixed mean free
path). Although theoretical calculations are still under way, we expect fewer and stronger
scatterers to generate more unstable measurements than higher densities of weaker scatterers.
Such instabilities are confirmed by looking at the comparisons between wave and transport
simulations presented in Fig.3.

Figure 3. Comparison between measured transport and wave data at frequencies between
ω = 2π

λ and 1.25ω with detectors of size 40λ× 40λ (left) and 80λ× 80λ (center), respectively
for a mean free path c0Σ−1 = 40λ, where λ(= 1) is wavelength. Solid line: transport energy
density; Circles with error bar: wave energy density E{Eε} and its standard deviation σ(Eε).
Right: Statistical stability of wave data with respect to media properties for a mean free path
c0Σ−1 = 30λ. Each dot corresponds to the wave energy measured on the array of detectors
for one realization with an average of 6000 scatterers (top lines labeled 3; lc ≈ 3.65λ), 3000
scatterers (middle lines labeled 2; lc ≈ 5.16λ), and 1500 scatterers (bottom lines labeled 1;
lc ≈ 7.30λ), respectively.



Reconstructions of inclusions inside the random medium, outside the random medium, and
hidden behind a blocker were considered in [16]. We focus on the latter configuration presented
in Fig.4. The reconstructions are based on differential measurements as described in scenario
(ii). In the configuration of a statistically homogeneous background with buried inclusions, the

Figure 4. Reconstruction of an inclusion hidden behind a large blocker with c0Σ−1 = 75λ.
From left to right: a typical reconstruction (the dashed circle is the reconstructed inclusion),
distribution of the reconstructed locations and histogram of the reconstructed radius.

use of high frequency waves may not be optimal to probe the medium. Lower-frequency wave
fields would scatter less and consequently provide better imaging capabilities in spite of their
lower resolution in homogeneous media. There is a configuration in which high scattering may
become necessary: When the line of sight between the source term and the object one wishes
to reconstruct is blocked, the reconstruction in weakly-scattering environments relies on the
diffraction of waves, which may be extremely faint when the blocker is a smooth object as in
Fig.4. The presence of scatterers thus helps to focus energy on the unknown inclusion. All
that the radiative transfer model requires is that the number of scatterers be sufficiently large
and the resulting mean free path be not too small so that the measurements are relatively
stable statistically. We observe that the reconstructed size of the inclusion range from 30 to 50
for a real radius of the inclusion R = 40 wavelengths. Even when differential measurements are
available, the statistical instabilities of the energy measurements prevents one from obtaining
wavelength-scale resolution.

Reconstruction from experimental data. Let us conclude this section with the reconstruction
of inclusions buried in a heterogeneous environment from experimental data in the microwave
regime. The results are reported in greater details in [8].

The experiments performed in L.Carin’s group at Duke University [8, 43] consist of a forest
of 600 dielectric rods with dielectric constant εr = 2.5. A target was placed beyond the random
medium or behind a blocker. In an other experiment, three nearby rods were removed from
the random medium. In all cases, the inclusion or void is parameterized by its position and
its radius, assuming a cylindrical symmetry. All the reconstructions presented here are based
on differential measurements (scenario (ii)) of mono-frequency waves of frequency 10GHz,
which corresponds to a wavelength of roughly 3cm. The mean free path is estimated from
the energy measurements in the absence of any inclusion. The parameters of the inclusion are
then estimated by using the energy differences.

The mean free path in the medium was estimated to be 40cm. The random medium
is therefore 2.5 mean free paths thick, which corresponds to significant disorder. The
experimental and numerical settings are presented in Fig.5. Energy measurements are
performed at 18 equi-distant antennas on the same side of the random medium as the source
term. A comparison of the exact inclusions and their reconstructions from the kinetic model
are given in Fig.6. Because of the invariance of the geometry in the vertical direction,



Figure 5. Experimental setting (left) and corresponding Numerical Setting (right)

Figure 6. Reconstructions of inclusions (left), voids (center), and inclusions behind a blocker
(right). The scatterers have been removed in the latter plot for better readability.

the experimental medium may be modeled as a two-dimensional medium. In the Rayleigh
scattering regime, we expect the mean free path to decay as the third power of frequency, a
law which was very well reproduced experimentally [8].

The reconstructions of the locations of the inclusions and voids are fairly accurate. The
reconstruction of their sizes is less accurate. This is because specular reflections for the energy
density were assumed at the boundary of the inclusions. Such assumptions do not hold for
small inclusions and should be replaced by a more accurate model for scattering. But overall,
the kinetic models perform quite well in a configuration of dielectric scatterers that was not
optimized in any way: the scatterers were placed manually to simply look random. Note,
however, that the reconstructions require that we be given differential data. The size of the
inclusions was much too small to allow for any meaningful detection, let alone reconstruction,
in the presence of direct data as in scenario (i).

7. Conclusions
Kinetic theories provide an interesting macroscopic model for the propagation of high frequency
waves in random media with mean free paths that are neither too large with respect to the
overall size of the medium (for then, effective medium theories will work well) nor too small
with respect to the wavelength (for then, localization effects or other statistical instabilities
dominate the measurements).

These theories have been validated numerically and experimentally in practically relevant
situations, where the mean free path is roughly two orders of magnitude larger than the



wavelength and comparable or one order of magnitude smaller than the overall distance
of propagation we are interested in, such as e.g. twice the distance between a source
term/detector array and a localized inclusion.

The statistical instability as measured for instance by the size of the scintillation function
is now well-understood in several regimes of wave propagation. The size of the scintillation
function is the main limiting factor in the accuracy of the kinetic models to solve inverse
problems. We have a quantitative understanding of the size of scintillation as a function of
the regularity of the array of detectors and of the source term. Although the theory is not yet
complete, we have a qualitative understanding of the scintillation as a function of the density
of scatterers in the heterogeneous medium.

The inverse transport theory that best models these instabilities consists of assuming that
only spatially or angularly averaged measurements are available. Although inverse transport
theories from full measurements are now well-understood, inverse transport theories based on
partial and averaged measurements remain fairly incomplete.

The resolution one can hope for in regimes of validity of kinetic models is much lower than
that in the absence of small scale heterogeneities. Wavelength-scale resolution is no longer
available and resolution degrades as the frequency increases because scattering increases as
well. The detection and reconstruction of small objects thus requires us to obtain differential
measurements, i.e., measurements in the presence and in the absence of a perturbation. In
the regime of fairly high scattering, field-field correlations provide much higher signal to noise
ratios than energy measurements do.

Although we have focused here on the reconstruction of localized inclusions, the same
inverse problems allow us to reconstruct spatially varying optical parameters, as is the case
in e.g. optical tomography. Applications of such inverse problems include the analysis and
monitoring of turbulent atmospheres probed by acoustic or electromagnetic waves, or the
analysis of structure in the earth crust probed by seismic waves.

In such applications, it may be useful to consider additional properties of the waves to
their intensity. Kinetic equations for electromagnetic waves model the full Stokes vectors,
which account for possible polarization of the waves [6, 50]. Polarization measurements
of electromagnetic and elastic waves allow for much better practical reconstructions of the
underlying medium; see e.g. [11]. To the best of the author’s knowledge, the theoretical
analysis of vector-valued transport equations has not been done yet.
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