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INVERSE TRANSPORT FROM ANGULARLY
AVERAGED MEASUREMENTS AND TIME
HARMONIC ISOTROPIC SOURCES

Guillaume Bal

ABSTRACT. We summarize recent results obtained on the unique
identifiability of constitutive parameters in transport equations from
angularly averaged measurements and isotropic sources. Such set-
tings, which are accurate frameworks in many applications of trans-
port equations, result in severely ill-posed inverse problems. One
possibility to improve the reconstructions is then to use time har-
monic sources (frequency modulations). We show that frequency
modulations of the radiating sources allow us to better reconstruct
the optical parameters in a transport equation and provide theoretical
explanations as to why this is the case.

1. Introduction

The transport equation models the (phase-space) density of particles
u(x, v) at position x propagating with direction v. The transport equation
of interest in this paper is as follows:

iwu + v - Vyu + o(z)u = / k(z,v" - v)u(z,v")du(v'), in D x 71
Snfl
U(ZL‘,U) = f(ZL‘,U) onl'_,
(1.1
where D is an open, convex, bounded, subset in R™, n is spatial di-
mension, S™~! is the unit sphere in R™ with Lebesgue measure dj(v),
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'y = {(z,v) € 0D x S™ ! +v-v(z) > 0}, v(z) outward nor-
mal to D at z € 0D. w is the modulation frequency (divided by light
speed c), corresponding to time-harmonic boundary sources of the form
¢! f(x,v). The optical parameters are o(x), the total absorption pa-
rameter, and k(z, k), the scattering coefficient. In many applications,
k(z, k) may be written as k(x)¢(k), where ¢(x) measures the degree of
anisotropy.

Existence theories for the transport equation (1.1) are well-developed.
We refer the reader to e.g. [5, 8]. Under appropriate sub-criticality as-
sumptions -for instance by imposing that scattering is not larger than to-
tal absorption-, we obtain the existence of a solution u(z,v) € L'(D x
S"=1) provided that f(z,v) € LY(T_, 7d¢), where 7(z,v) is the max-
imal distance from z to 0D in direction +v and where we have de-
fined d¢ = |v - v(z)|dp(v)dS(z) with dS the (Lebesgue) measure on
0D. Moreover, the restriction to the outgoing solution at the domain’s
boundary u|r (z,v) for z € 9D and v - v(x) > 0 belongs to the space
L (FJrv ng) :

Let us assume for now that w = 0. The inverse transport problem
consists of reconstructing the optical parameters o(x) and k(z, k) (or
more generally k(z, v’, v)) from boundary measurements. The most gen-
eral boundary measurements available consist of full knowledge of the
albedo operator:

Atup_ —ur,,

where u(z,v) is the solution to (1.1) with boundary conditions f = up_
on I'_. In dimension n > 2, the albedo operator uniquely determines
o(z) and in dimension n > 3, the albedo operator uniquely determines
k(x,v',v). In dimension n = 2, k(x,v’, v) is uniquely determined when
it is sufficiently small. We refer the reader to [12] for a review of available
theory and stability results when the full albedo operator is known. The
uniqueness results are based on the following observation. The ballistic
component in A, corresponding to setting £ = 0 in (1.1), is always more
singular than the rest of the albedo operator. This contribution allows us
to invert o (x) by inverse X -ray transform. In dimension n > 3, the single
scattering component in 4, i.e., the component of A that is linear in £, is
still more singular than the components in .4 that are at least quadratic in
k. Such a component then allows us to reconstruct k(z,v’, v) explicitly
once o is known.

In practice, however, the full albedo operator is rarely available, ei-
ther because particle counts would be too low to allow for a good resolu-
tion in the angular variable, or because sampling the 4(n — 1) dimensions
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of the albedo operator would be too time consuming. This paper reviews
recent results obtained in cases where the measurements are much more
restrictive.

A typical available measurement at a domain’s boundary is the cur-
rent of particles, defined as

J(z) = /Snl v-v(z)u(z,v)du(v), =€ ID. (1.2)

This current may be separated as the part where v - v(z) < 0, which in-
volves only the known boundary conditions, and the part where v-v(x) >
0, which corresponds to the outgoing flux of particles that is measured in
practice. Current measurements also correspond to the measurements
available in inverse transport problems with highly scattering media. In-
deed, in such a situation, the solution U(z) to a diffusion equation be-
comes a good approximation to the transport solution u(x,v) of (1.1)
and u(z,v) ~ U(z) — 2v - VU, so that J(z) ~ Dg—[l{ with D = L. We
refer the reader to e.g. [5] for the validity of the diffusion approximation
and to e.g. [1] for applications of inverse transport in highly scattering
media to optical tomography.

The question now is to know whether the optical parameters may be
reconstructed from angularly averaged measurements given by J(x) or
by other angular integrals where v - v(x) is replaced by a more general,
known, kernel m(x, v). In the case where the source term f(x,v) is still
allowed to depend on the angular variable, the answer is that o(z) is
uniquely determined and that k(z) is uniquely determined under appro-
priate analyticity constraints on the coefficients; we refer the reader to [7]
for more details and related stability estimates. Because f(x,v) is still
allowed to be singular in the whole phase space D x S™~ 1, the ballistic
component of the measurements (corresponding to k& = 0) is more sin-
gular than the other contributions to the measurements and thus allows
us to reconstruct o(z) by inverse X -ray transform as in the case of full
knowledge of A.

The most restrictive measurements are of the form f(x,v) = f(z),
where the incoming radiation is independent of the angular variable. Be-
cause of their close relationship with inverse theories for the diffusion
equation, we call diffusion-type measurements the following type of mea-
surements

D: f(z) — J(z), (1.3)

where u solves (1.1) with f = f(x) as boundary conditions and J(x) is
defined in (1.2). In diffusion theory, D would correspond to the Dirichlet
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to Neumann map, which uniquely determines a scalar valued diffusion
coefficient [13].

The theory of the reconstruction of optical parameters from knowl-
edge of D is still in its infancy. In section 2, we present recent results
obtained in [3] on the reconstruction of k(x) under strong assumptions:
o(x) is known and both k(z) and o () are small. These results show that
we can reconstruct the low-frequency component of k(x) with an error
proportional to the high-frequency component of k(z). The method of
inversion is surprisingly similar to the linearization of the inverse diffu-
sion problem, the so-called Calderén problem [4]. The same complex
geometrical optics (CGO) solutions are used. The practical downside of
such an analogy is that the stability estimates for the reconstruction of
the scattering coefficient are of exponential type: high frequency compo-
nents in the data are exponentially amplified during the reconstruction,
which makes the inversion a severely ill-posed problem.

One of the major differences between full angular measurements as
in A and angularly averaged measurements as in D is that A has singular
components that are no longer present in D. Mathematically, this im-
plies that Holder-type stability results available from angularly resolved
measurements are replaced by exponential type stability results. Mildly
ill-posed problems become severely ill-posed problem, and thus the num-
ber of degrees of freedom one can reasonably expect to reconstruct from
available data will be much smaller in the latter case.

An interesting possibility to improve the reconstruction capabilities
of optical parameters from angularly averaged measurements, which are
often all that is available in practice, is to use modulated frequencies, i.e.,
w # 0in (1.1). It is known in diffusion theory that w # 0 is necessary
to reconstruct both the diffusion coefficient and the absorption coefficient
04(z) = 0(x) = [gu-1 k(z,v - v')dp(v'). In transport theory with an-
gularly averaged measurements, the same conclusion is expected to hold:
we expect to obtain better reconstructions for o () and k(x) when w # 0.
This was observed numerically in [10, 11]. The salient features of these
two works that are of interest in this paper are recalled in section 3. The
main results are that inverse transport reconstructions from knowledge of
DY, the equivalent of (1.3) for values of w # 0, perform significantly
better when the modulation frequency w is a large fraction of a GHz than
when w = 0. Moreover, the cross-talk between the reconstructions of
the absorption and scattering coefficients (the phantom reconstruction of
a scattering fluctuation if the presence of an absorbing-only fluctuation
and vice-versa) is significantly reduced when w increases.
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In order to explain these two behaviors, namely that reconstructions
are better and cross-talk is reduced when larger frequency modulations w
are being used, we consider the asymptotic regime of very high modula-
tions w. It turns out that the transport solution u(x, v; w) of (1.1) admits
the following asymptotic expansion in two dimensions of space. The bal-
listic component, which corresponds to solving (1.1) with £ = 0, has an
intensity independent of w. Its phase is modified by e*!, where [ is the
distance between the source and the detector. Because scattering can oc-
cur over the whole domain D, the single scattering term is of order %

The reason is that signals arrive with a phase equal to (1 1%2)  where
[1 is the distance from the source to the location of the scattering and [
the distance from the location of the scattering to the detector. The phase
shift [; + lo depends on position so that signals arrive at the detector with
different phases that interfere destructively. Double scattering and higher

contributions provide a term much smaller than —. This allows us to

w

reconstruct o (z) and k(x)¢(0) (scattering in the f(\)rfward direction) from
knowledge of D“! and D“? for wy # ws sufficiently large. The recon-
struction is based on the inversion of a classical Radon transform for the
attenuation o and a weighted Radon transform for the scattering coeffi-
cient k(x). This means that the reconstruction of the optical coefficients
from angularly averaged measurements and isotropic sources becomes a
mildly ill-posed problem in the limit of infinitely large modulation fre-
quencies. More details on the derivation are provided in section 4.

The theory, although valid for sufficiently large modulation frequen-
cies, gives a reasonable intuition as to why the reconstructions in [10, 11]
performed better for high values of w than for continuous waves, where
w = 0. The theory also indicates that higher values of the modulation
frequency would allow us to obtain sharper reconstructions of the optical
parameters provided that the phase modulations can be measured accu-
rately. The main parameter that allows us to gauge the validity of the high
modulation regime is the total phase shift p;, = 2”7“’1 as particles travel
across the domain. The decorrelation of scattering events will occur pro-
vided that pg is sufficiently large, say on the order of 5. For a domain
of size [ = 10cm, this corresponds to w = @ ~ 300c ~ 100GHz.
Such frequencies are 100 times what is currently being used in practice
in optical tomography, and may therefore be out of reach at least in the
near future.
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2. Reconstructions from diffusion-type measurements

We summarize here results obtained in [3]. Let f(z) be the incoming
boundary conditions and u(x, v) the solution in (1.1). Let then g(z) be a
test function defined on 0D. We define the measurements

M(f.9) = [ 9@ @S = [ g@Df@is@), @
oD oD
where J is defined in (1.2) and D in (1.3). Under fairly restrictive as-
sumptions, including that o(z) is assumed to be known, we show that
the low-frequency part of k(x) may be reconstructed from knowledge of
M(f,g) forall (f,g)in L' (D).

The reconstructions are based on the following decomposition of the
measurement operator:

o0
M(f7 g) = <f ® g, TO>L2((8D)2) + Z <f ® g, Tm(k)>L2((6D)2)7 (22)
m=1
with the notation (f ® ¢,T) = f(aD)Q T(z,y)f(x)g(y)dS(x)dS(y),
where T is complex conjugation of T'. Here, T} corresponds to the bal-
listic part of the measurements obtained by setting £ = 0 in (1.1). The
kernels T), (k) are then multilinear of order m in k() so that T} (k) cor-
responds to single scattering, 75 (k) double scattering, and so on.
More precisely, let us define

ly—z| _
B y—
E(x,y) = exp (—/0 a(a: + 7’9 — $’3> ds) , (2.3)

the total attenuation between points z and y and by induction

E(zi1,...,¢pn-1,2n) = E(x1,...,2p-1)E(zn—1,2n), (2.4)
the total attenuation on the broken path [z1, ..., x,]. Then we have
E(x0,2)|ve - v[[Va - V]
Tt = ’ -
0(1}0,33) |ZL’0 — $|n71 )
E(xg,...,Tm,T)
T (k = k -k
B)@0w) = [ K- bl o

X|Vgo - V0||Va - U lday - .. AT,
(2.5)
Note that T and 7, (k), taken at points = and x, are the measurements
given source f = dy,1, and weight g = 6y, where 4y, is the surface
delta function such that [, 01,1 f(y)dS(y) = f(x). In other words
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oo o Tm(k)(zo, ) is formally the Schwartz kernel of the operator D:

Df(z) = /a i (To(xg,x) f(xo)+n;:rm(k)(xo,x) f(:co))dxo. 2.6)

We refer the reader to [3] for the derivation of (2.2), which relies on
writing the solution to (1.1) in integral form; see e.g. [5, 8].

Because o(x) is known, then so is (f ® g,Tp) in (2.2). For k suffi-
ciently small, M(f,g) — (f ® g,Tp) is then equal to (f ® g,T1(k)) up
to a small term that is quadratic in k. The first objective is therefore to
reconstruct & from the linearized measurements ( f ® g, T (k)). This may
be done explicitly when o vanishes. Specifically, we have that

(f ®g,T1(k))r2(apy2) = (Af Ag, k) 2Dy,

where the so-called half-adjoint operator A is defined as

Af(y) =wn [ f(2)E(2,y)8, N(z,y) du(z). 2.7)
oD
Here w,, is the measure of the unit sphere S ! and N (z,y) = N(x —y)
is the Newton potential

1

N(z,y) S P

(n>2); —loglo—y| (n=2),
C2

where ¢, = (2—n)wy, and co = 27. Indeed, we verify that 9, N(x,y) =
%. Let A be the operator defined as A in (2.7) with ¢ = 0 so
that E(xz,y) = 1. We thus draw the following conclusion: Agf(y) is
a harmonic function on D because y — N(x,y) is. Moreover, each
sufficiently smooth harmonic function v on D may be constructed as v =
Ag f,, for some function f, on dD. The implicit construction goes as
follows. Let us define

2 f(y) = wn - f(2)0y, N(z,y) du(z),

the classical double layer potential for y € 9D. It is a classical result
that 21 +w;, '.% is an isomorphism on L?(9D). We may then define the
operator

1 . 1, -
Al = (§I+wn1%) Yw tulap), (2.8)
and verify that AOA(T)U = u|p for all harmonic function v € H 3 (D).

We are now ready to use the same Complex Geometrical Optics
(CGO) solutions as in the Calderén problem [4]. Let C" 3 p = %(5 +in),
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where {,n € R", {-n=>"",&n; = 0, and |{| = |n|. Then the func-
tions €, and e*”'* are harmonic, and e?%e?T = €T Define the
boundary conditions

fe(x) := Age_ip':E and ge(z) == Age_iﬁ'x, x € dD. (2.9)
Then we find that
(fe ® ge. TY (k) 12(opy2y = (Ao fg Aogga k) 2Dy
= {7 k) () (2.10)
k(€),

where TP (k) is defined as T} (k) with o = 0, whence E = 1.

In other words, we obtain an explicit reconstruction of l%(f ) from the
single scattering measurements provided that absorption o = 0. We have
thus two sources of error: one is from the higher scattering contributions
T (k) for m > 2, and one is from the error coming from the non-zero

absorption T (k) := Ty (k) — T?(k). The approximation k;(€) of k(¢)
obtained by this linearization algorithm is thus given by

k(&) = Ml(fe,g¢)

= B+ @9 TTR) + 3 (e @ ge. Tu(®). &'V
m=2

The error made by the linearization is given by
€)=k < (IT7 W)+ D 1Tkl z2 ) 1 fellz2 lge 2. @.12)
m>2
Under smallness assumptions on k£ and o, we obtain that
177 (B)llz> < Cllolloollklloos Y 1Tm(k)z2 < ClIk.
m>2

The bound on || f¢||z2 and ||ge||z2 is however exponentially large as &
increases:

diam(D
Il zomy el zomy < Cetl, o= TPL g 13

for some constant C' independent of £. This shows that
ki) = k(&)] < Clikloo(lolloo + [Ik]loc)e* . (2.14)

Errors on the reconstructions of the Fourier modes of k(z) grow expo-
nentially with wavenumber £. The reconstruction of k(x) is severely
ill-posed.

Because the operator T} (defined as the integral operator with Schwartz
kernel TO1 (x,y)) is highly smoothing, which is responsible for the above



INVERSE TRANSPORT FROM ANGULARLY AVERAGED MEASUREMENTS AND TIME HARMONIC ISOTROPIC SOURCES

severe ill-posedness, we introduce the following approximate inverse.
Let x (&) be a compactly supported (to simplify) smooth function in R™.
Typically x(§) = 1 for |{| < M and x(&) = 0 for |{| > M if one wants
to reconstruct all frequencies |{| < M of k(z). Let then P,k be the
operator

Pki= [ HOMO G

and let k, = P, k. We define

- d
. &
T*h(z) :== /Rn<f§ ® ge, h) 2 (@apy2)x(§)e'™" 2 (2.15)
as the regularized inverse of Tl0 (since TXTlO = P,). Using (2.12), we
find that

T L2 poe < ClX(©)** N 11 oy,

so that eventually,

lkx (x) = Peki(@)lloo < Cllklloo(lolloo + [1Flloo) [X(€)e [ 11 gm),
(2.16)
where P, k() is the regularized inverse Fourier transform of &y (€) de-
fined in (2.11).

We obtain an error estimate for the low-frequency component of
k(z). Note however that the estimate is very large, even for small val-
ues of &, unless ¢ and k are extremely small. Such an estimate may be
improved by using an iterative scheme. Once P, k;(x) has been obtained,
it may be used to estimate the error term in (2.11), which may be used
to modify the measured data M( f, g) and use the linearized inverse one
more time to obtain a better estimate of k, (x). More precisely, let us
define iteratively:

o
B = T T(k)
m=1
kA = X (3o (k) — T (TY (KY) 4+ > e T (KX)) -

2.17)

Here, T, (k) are seen as integral operators with Schwartz kernel 1), (k) (z, y).

Note that kg = Pk, the linearized reconstruction. Under appropriate

smallness conditions on ¢ and k, which are given explicitly in [3], a Pi-

card fixed-point theorem shows that the above iterative scheme converges

to k3 and that

[kx = kMoo < CllE = Fyloo- (2.18)
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In other words, the smooth part of &, is well reconstructed provided that
the non-smooth part k — k,, of k is small. The result is not very satisfac-
tory because the smallness hypotheses on k and o depend on the norm
of TX. In other words, the constraints of smallness on k£ and o become
exponentially stronger as the maximal wavenumber we want to recon-
struct increases. Nonetheless, the result shows that reconstructions of
optical parameters are indeed theoretically feasible from diffusion type
measurements, but that problems are severely ill-posed.

3. Frequency modulation sources

We summarize here results obtained in [9, 10, 11]. Let f(z) be the in-
coming boundary condition in (1.1) and J(z) = D“ f(z) be the measured
current for x € dD. Using the decomposition (2.2) and the definitions
(2.5), we may define the Schwartz kernel D(z, y) of D such that

J(z) = /d D) )dS ).

The kernel D is a functional of the optical parameters k(x, k) and o ().
Experimental data for each source term f(x) may be modeled as

Tn(z) = /B D) )dS(). 3.0)

where D% (z, y) would be the experimental linear operator mapping f to
the possibly noisy outgoing measurements and N(x). The reconstruction
of k(x, k) and o(x) could then be based on minimizing the error between
the model and the experimental data and, for instance in a least squares
formulation, finding k(x, k) and o () that minimize

1
Flk,o):= / (D — D%)*(e,)dS(@)dS(y).  (3.2)
oD?
In practice, minimizations are based on a finite number of source terms
fq for 1 < ¢ < @ and the functional may be modified as

1 @ 5 2
Fa(k,0) =5 Z_; /aD (D* fy — 2) " (x)dS(z), (3.3)

where z, is the experimental measurement corresponding to f,, for in-
stance zq(z) = [, D% (2, ) fy(y)dS(y) in the setting of (3.2). Because
the measurements are now discrete, the reconstruction of the optical pa-
rameters from the measured data is under-determined. The parameters
thus need be regularized.
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Let us assume as in [9, 10, 11] that k(x, k) = k(z)¢(k) where ¢(k)

is the Henyey-Greenstein phase function
1—g°

(1+g2 —2gk)2
where g € [0, 1) measures the degree of anisotropy (¢ = 0 corresponds to
isotropic scattering as in the preceding section) and is chosen as g = 0.9
in the two numerical simulations that follow. We thus wish to reconstruct
k(z) and o(z) from the available measurements. A possible regulariza-

tion consists of assuming that k£ and ¢ are sufficiently smooth. We thus
introduce the regularized functional

(k) =

Fil (k) = Da(k, ) + BL(k,0), (3.4)
where the choice of 7 in [10, 11] is given by
1
Z(k,0) = 5 (I o) + 17301 ). (3.5)

It remains to discretize the transport equation (1.1), here by a finite
volume method, and minimize F 5 , based on the adjoint method and a
limited memory BFGS algorithm [11]. The choice of the optimal (3 is
based on the L-curve methodology; see [11]. Several numerical simu-
lations are performed in the aforementioned references. Two interesting
observations for us here are as follows.

Consider a two-dimensional computational domain D = [0,2]? of
size 2 x 2 cm? discretized with 80 x 80 uniform cells and a angular space
(0,27) uniformly discretized by 128 discrete directions. The transport
equation (1.1) is used with the above discretization during the inversion
process. The synthetic data z, are constructed using a discretization twice
as fine in all spatial and angular variables. We consider a setting with four
sources located at the corners of the domain D and 20 detectors uniformly
distributed over 0. The minimum of the functional (3.4) is sought by
using a limited memory quasi-Newton iterative algorithm [11].

We consider a geometry with two small discs of radius 0.2 cm and
centered at (1.35 cm, 1.35 cm) and (0.65 cm, 0.65 cm), respectively. The
first disc is highly absorbing and the second one is highly scattering. Op-
tical properties for the two discs are o, = 0.2 cm™!, oy = 70 cm™! and
oq, = 0.1cm™!, o, = 80 cm™!, respectively. The background parame-
ters are o, = 0.1 cm~! and o5 = 70 cm~!. We present on top of Fig. 1
the reconstruction of both the absorption and scattering coefficients along
the diagonal between (0,0) and (2,2) when w = 0. Notice the large
cross-talk between the absorption and scattering reconstructions. The
bottom row of Fig. 1 shows the same reconstruction for w = S800MHz.
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FIGURE 1. Reconstruction of the absorption coefficient
(left) and scattering coefficient (right) along the diagonal
between (0, 0) and (2, 2) after 40 (solid line), 80 (dashed
line), 120 (dash-dotted line) and 156 (dotted line) it-
erations of the quasi-Newton algorithm at frequencies
w = 0 (top) and w = 0.8GHz (bottom). The true piece-
wise constant coefficients are also indicated in solid
lines.

Not only are the reconstructions more accurate, but the cross-talk be-
tween the reconstructions of the scattering and absorbing coefficients is
significantly smaller. We refer the reader to [11] for a similar conclusion
based on numerical simulations performed in three dimensions of space.

We now consider the three-dimensional reconstruction in [11], where
D is a cylinder D(0,1) x (0,2) with D(0, 1) the two-dimensional disc
of radius 1. Four sources are placed at (cos¢,sinf, 1) for = &F, n =
0,1,2,3 and 32 x 7 detectors are placed at the surface of the cylinder at
(cos ¢, sin ¢, z;) for 32 uniformly distributed angles ¢ and 7 uniformly
distributed z; = %, 1 <4 < 7. The background optical properties are
s = 0.1 cm™! and 05 = 100 cm™~!. A vertical cylindrical absorbing
inclusion is placed inside the domain. The vertical cylinder is centered at
(0.5,0, 1), has a radius of 0.2 and a vertical extension of 1.6.

Using the same minization procedure as in the previous numerical
example, Fig.2 shows the error in the L? norm of the reconstructed ab-
sorption coefficient as a function of modulation frequency w varying be-
tween 200MHz and 800MHz. We observe a steady decrease in the error
as frequency increase from a relative error of 9% when w = 200MHz to
an error of 6% when w = 800MHz.

These two numerical simulations support the following conclusion:
larger values of w allow us to obtain better reconstructions of the optical
parameters k() and o4(z).
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FIGURE 2. Relative L? error of the reconstructed
absorption coefficient in the aforementioned three-
dimensional simulation as a function of modulation fre-
quency w.

4. High modulation frequency asymptotics

In this section, we propose a theoretical explanation for the behav-
ior presented in the preceding section. We show that, as w increases, the
contributions of scattering in the diffusion-type measurements decreases.
More specifically, in two dimensions of space, we show that the ampli-
tude of the contribution of the ballistic part in the measured data D% is
independent of modulation frequency w; the amplitude of the single scat-
tering contribution in D* is at most of order w™ 3 , and the contribution of
the higher orders of scattering in D* is negligible compared to w™ 2. The
details of the study will appear in a joint work with Ian Langmore [2].

Let us come back to the definitions (2.5) and (2.6). When w # 0,
E(x,y) should be replaced in those definitions by

E¥(z,y) = e“I* Y E(2, y), (4.1)

since the absorption term o (x) is replaced by o (z) +iw; E“(x1,. .., Ty)
is defined by modifying (2.4) accordingly. We define the operators T} (k)
for m > 0 as in (2.5) with E replaced by E“ and the measurements
MY (f,g)in (2.2) accordingly. We then formally obtain that

MO (829, 82) = D¥[0ap) () = > Ty (o, ). (4.2)
m=0

We assume that we have access to these measurements for all zg and x
at the domain’s boundary dD. The intensity of the ballistic part is not
affected by the modulation frequency, for

T5 (zo, z) = eiw‘x_m("To(:vo,:E). 4.3)

Let us now turn to the scattering contributions. We assume here that
D is a domain with real-analytic boundary 0D (for instance D is a disc).
We also assume that scattering takes the form k(z)¢(x) and that k(z)
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vanishes in the 0 < J-vicinity of the boundary 0D. Then the single
scattering term 77 may be shown to be given by

T (zo,z) = //%F@mww@ﬁw,
F(t,0) = k‘%&wo{u— tv)p(v - w)E(xg, o + tv, z)|vg - wl,
ei(0) = t+ |z — (zo+tv), @4
v = v(0) = (cosf,sinb)
wo= wlt0) = =

The single scattering contribution may thus be seen as an oscillatory
integral with (smooth) amplitude F'(¢,6) and highly oscillatory phase
wpy(0). Tt turns out that for each fixed value of ¢, the phase ¢;(6) ad-
mits a unique critical point corresponding to 6 given by (cos 6, sin ) =
v = |£:§8|' Most of the energy in T}’(zo,x) is thus concentrated on
single scattering events occurring along the segment [z, z].

More precisely, a careful stationary phase analysis shows that

iw|z—x0| .
T¢k(wo, o) = 67\/7762”3(%,%)% 0%
le—=2ol |z —x0| —t 1 43)
E(zo + tv)o(1)y | ———dt + O(— ),
| ko myo() (Bt L+ o)

‘i :;8‘ , and where the remainder is uniform in zy and z.

Similar stationary phase analyses show that the higher-order contri-
butions are even smaller. More precisely, we may show that

where v =

Cy .

where p < 1 for ||k||« sufficiently small and where C; is a constant
independent of w, xg, and z for % <s< % This shows that

, M
Mw(5x0,5x) _ e’Lw|IE7$0| <M0(I‘0,x) + 133’56)) + O(w*%+7]))’
w
4.7
for all > 0, where, still with v = é:ig',
E(zo,z)|vg - v||Vay - v
M, = T =
o(zo, ) 0(909;90) 2o — 2| T
Mi(xo,z) = /me's E(zo,)|vy - v|x (4.8)
o=l |z — x| — ¢
k(xg + tv)o(l)y | —————dt.
| ke[S
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If we have access to M*“(dy,,05) for a large value of w and for all

xo and x, then we measure E(zo,z) up to an error of size w3, Upon
talking the logarithm, this gives us access to the line integral of o(y)
along the segment [z, xo]. We thus obtain the Radon transform of o(y),
which may be inverted explicitly to provide an explicit expression for the
total attenuation parameter o ().

Let us now assume that we have access to M“# (0, d,) for two large
modulation frequencies w; > ws > 1. Then we have access to o =
e~ wklr=wol Af@k (5, 8,) for all 2 and z and find that

o/ — 2
My = P11 a0 + O(w, 3+n)
A/ W1 — /W2

1 I\t FE+3+n
M= (=-—) (a2 O(wy® =),
1 Jo  Jor (a2 — 1) + O(w, )
We may then reconstruct o (x) from knowledge of M as before, which
provides us with knowledge of

o=l |x —xo| — t
Rk = k t —dt 4.9
hana) = [ b+t SR @)

provided that the anisotropy factor in the forward direction ¢(1) is known.
We observe that Ryk(zo,x) is a weighted Radon transform of & along
the segment (zg,x). Because we have assumed that k& was supported

away from 0D, we observe that the weight w(z, g, t) = 4/ % is

0
real-analytic in ¢, x, and xg, on the support of k. We can then use the
general results in [6] to obtain that R; is an injective transform so that
k is uniquely determined by Rk and that the reconstruction is mildly
ill-posed (with Holder-type stability).

These results show that D“ known for two frequencies wy > wo

uniquely determines the weighted Radon transforms of k(z)¢(1) and
2

1

o(x) up to error terms of order wy 572 Provided that ¢(x) is known
in advance, we thus obtain the approximate reconstruction of o(x) and
k(z) from knowledge of two modulation frequency measurements D“.
Moreover, unlike the case w = 0, the reconstructions are based on in-
verse Radon transforms, which are mildly ill-posed rather than severely
ill-posed as in section 2. To some extent, the large-w behavior of D%
explains the results obtained in section 3: as w increases, the effects of
(total) absorption and scattering separate, which explains why both opti-
cal parameters can be reconstructed in a more stable fashion.
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5. Conclusions

This short review paper supports the following conclusions. Inverse
transport problems based on knowledge of D yield severely ill-posed as
for the diffusion equation. This means that the backward map from the
data to the optical parameters is more unstable than any finite number of
differentiations. Noise is very much amplified during the inversion pro-
cedure and we should therefore not expect to obtain too fine a resolution.

Two possible solutions that allow us to obtain more accurate recon-
struction are as follows. One may either look for angularly resolved data,
which gives an approximation of the albedo operator .A. The reconstruc-
tions of the optical parameters have been show to be Holder stable (the
map from the data back to the optical parameters is not more singular
than a finite number of differentiations) in several cases. When such an-
gularly resolved measurements are not accessible, an alternative strategy
would be to increase the modulation frequency w. Stationary-phase-type
expansions show that the reconstruction of k(x) and o (x) is feasible with
Holder-type stability provided that D is available for two large frequen-
cies wi # wa.

One of the main drawbacks of the asymptotic expansions performed
in section 4 is that w needs to be on the order of 100GHz in order for the
large-w assumptions to make sense for domains of width equal to 10cm.
Such modulations seem to be much larger than what is technologically
feasible at present. Note that high modulation frequencies correspond to
short time scales and thus accurate sampling in the time domain. High
modulation frequencies are thus very similar to accurate measurements in
the time domain, where first arrivals, which correspond to ballistic par-
ticles, are just followed by particles that scatter once, whereas multiply
scattered particles arrive at somewhat later times. Similar small-time as-
ymptotic expansions could then be performed as was done in section 4,
with the same conclusion that time-dependent angularly-averaged mea-
surements allow for Holder stable reconstructions of the optical parame-
ters as well.
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