Non-uniqueness result for a hybrid inverse problem

Guillaume Bal and Kui Ren

ABSTRACT. Hybrid inverse problems aim to combine two imaging modalities, one that displays large
contrast and one that gives high resolution. Mathematically, quantitative reconstructions in such
hybrid problems involve reconstructing coefficients in a partial differential equation (PDE) from point-
wise functionals of the coefficients and the PDE solution. There are many settings in which such
inverse problems are shown to be well posed in the sense that the reconstruction of the coefficients is
unique and stable for an appropriate functional setting. In this paper, we obtain an example where
uniqueness fails to hold. Such a problem appears as a simplified model in acousto-optics, a hybrid
medical imaging modality, and is related to the inverse medium problem where uniqueness results
were obtained. Here, we show that two different solutions satisfying the same measurements can be
reconstructed. The result is similar in spirit to the Ambrosetti-Prodi non-uniqueness result in the
analysis of semi-linear equations. Numerical simulations confirm the theoretical predictions.

1. Introduction

Optical tomography consists of sending photons into tissues to probe their optical properties.
Electrical impedance tomography consists of applying currents to probe their electrical properties. Both
imaging techniques are very useful because of the large optical and electrical contrast displayed between
healthy and non-healthy tissues. However, these imaging techniques suffer from very low resolution
capabilities because the operators mapping the properties of interest to the available measurements
are extremely smoothing [1, 17]. At the same time, the sound speed of such soft tissues displays
small contrasts so that acoustic waves can propagate in a fairly homogeneous medium and display high
resolutions (of order % where A is the smallest observable wavelength in the measurements).

Several medical imaging modalities, which we will call hybrid modalities, allow us to physically
couple the large contrast modality with the high resolution modality. A list of such modalities in-
cludes acousto-electric tomography, acousto-optic tomography (also known as ultrasound modulated
optical tomography), magnetic resonance electrical impedance tomography, photo-acoustic tomogra-
phy, thermo-acoustic tomography, transient elastography, as well as other modalities. We refer the
reader to, e.g., [3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 18] for more details. Here, we focus on a
model that appears in acousto-optic tomography [8].

The inverse problem of interest consists of reconstructing an absorption coefficient in an elliptic
equation from measurements of the form H(x) = o(x)u?(x) point-wise x € X in the domain of interest,
where o is absorption and u is the PDE solution; see (2.1) below. Such inverse problems find application
in a simplified model for acousto-optics derived in [8]. In [7], it was shown that o sufficiently small was
uniquely reconstructed from such measurements. Moreover, in [18], it was shown that o was uniquely
determined by similar measurements when the sign of ¢ is changed in (2.1) in such a way that o is now
a non-negative potential rather than a non-negative absorption.

The non-uniqueness comes from the existence of singular points for functionals of the form ¢(u) =
uAu, where Aw is the Laplace operator. Such critical points arise when % takes positive value. In the
neighborhood of such singular points, ¢(u) exhibits a fold that generalizes the behavior of the function
¢(x) = 22 from R to R. A similar non-uniqueness result was obtained for a specific class of semilinear
equations by Ambrosetti and Prodi in [2]. In the latter paper, specific equations are considered in
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which global non-uniqueness results are obtained. Because the singular points of ¢ do not form a
connected (co-dimension 1) manifold in our setting, we were not able to deduce global non-uniqueness
results. However, for the specific, quadratic, functionals ¢(u) considered here, we obtain explicit, global,
expressions for the two branches of solutions that emerge from any critical value of ¢.

This example shows that uniqueness in hybrid inverse problems is not always guaranteed. In fact,
in the vicinity of critical points of ¢(u), small perturbations in the measurements may result in the
inverse problem admitting no solution (think of perturbing 22 by a small negative constant in the
vicinity of x = 0).

The non-uniqueness results suppose that we acquire measurements of the form H(z) = o(z)u?(x)
for one specific, prescribed, boundary condition for the elliptic equation (2.1). It turns out that unique-
ness of the reconstruction is restored when two well-chosen measurements are available as can be
deduced from results obtained in [6].

The rest of the paper is as follows. Section 2 presents the inverse problem of interest, recasts it as a
semilinear equation, and presents the main (local) result of non-uniqueness of this paper in Proposition
2.1 below. Once we have this non-uniqueness result, we show in section 3 how to construct explicitly
two different global solutions that share the same measurements; see Proposition 3.1 below. As an
application of results obtained in [6], we show in section 4 that two well-chosen boundary conditions
allow us to uniquely characterize the absorption term o as well as the diffusion coefficient in the elliptic
equation when the latter is also unknown. Finally, we present in section 5 several numerical simulations
that illustrate the non-uniqueness result in the presence of a single measurements and the uniqueness
result in the presence of two measurements.

2. Local non-uniqueness result
In this paper we consider elliptic problems of the form

Pu=ocu in X
(2.1)
u=gqg on 0X

and assume that measurements of the form H(z) = o(z)u?(x) are available. Here, P is a self-adjoint
(with Dirichlet conditions), non-positive, elliptic operator, which for concreteness we will take of the
form Pu = V-D(z)Vu with D(z) known, sufficiently smooth, and bounded above and below by positive
constants. We assume g > 0 and ¢ > 0 so that by the maximum principle, © > 0 on X. We also assume
enough regularity on X and g so that u € C?#(X) for some 3 > 0 [11]. We want to show that H
does not uniquely determine o.

We observe that

uPu=H in X
u=gq on 0X

(2.2)

so that the inverse problem may be recast as a semilinear (after dividing by u) problem. The non-
uniqueness result is an example of an Ambrosetti-Prodi result [2] and generalizes the simple observation
that z — 2% admits 0, 1, or 2 (real-valued) solution(s) depending on the value of z?.

Let us define

(2.3) ¢: C*P(X) — %P (X), u— ¢(u) = uPu.

We need to find the singular points of ¢ and thus calculate its first-order Fréchet derivative:

(2.4) ¢ (u)v = vPu+ uPu.

The operator ¢/(u) is not invertible when o := £ is such that P + Ao admits A = 1 as an eigenvalue.

This implicitly defines the singular points u and critical values ¢(u) of the functional ¢. Note that
if we replace P by —P as in [18], then ¢ does not admit any singular point and the hybrid inverse
problem is then always well posed. We want to invert the functional ¢(u) in the vicinity of a singular
point ug € C*8(X). We assume that oy = AT%“ > 0 on X so that ug > 0 on X and that ¢/(ug) has a
kernel of dimension 1 and a range of co-dimension 1 as well. This implies the existence of unique (up
to change of sign) functions vy and wy (assumed to be smooth) such that

Vo

(2.5) ¢/(u0)v0 =0, (¢/(UO))*U}0 =0, (U0>'UO) = (Uo,wo) =1, wo = 'yu—()?
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with (u,v) = [ uvdz. Here, (¢ (ug))* is the adjoint operator to ¢'(ug) and wy is easily found to verify
the above expression with a properly chosen normalizing constant ~.
Because of the simple, quadratic, expression for ¢(u), we find that

(2.6) d(u) = d(uo) + ¢’ (uo) (v — uo) + ¢(u — up).

Our objective is to invert the above equation for u in the vicinity of the singular point ug. We follow
the derivation in [2] but also take advantage of the fact that ¢(u) is quadratic in u. Let us define the
projectors

(2.7) mu = u — (u,wp)vo, u=u— ———v9Puvy.

These are two projectors, the first one projecting on the range of ¢'(ug). The usefulness of the second
projector will appear shortly. In its definition, we need to assume that

v} ovd
(2.8) (voPuvg,wp) = 'y/ =2 Pyodx = —7/ —%dx # 0.
Xx Uo X Uo

Such a constant is certainly non 0 when vy is the non-negative eigenvector associated to A = 1, the
smallest eigenvalue of (—P)~!o. In the sequel, we assume that (2.8) holds.
Let us now decompose
1

(2.9) u:uOJrowoJrvé‘, a = (u—ug,wp), vy =uU—Uy— Q.
Then (2.6) may be recast as

(2.10) d(u) — d(ug) = &' (ug)vy + avgPug + vy Pug-.
Multiplying the equation by wy and integrating, we get

(¢(u) = d(uo), wo) — (vg Pvg-,wo)

211 aQ =
( ) (’U()PU(),QU())

Applying the projector 7 to the above equation, replacing a? by its expression, and using the expression
of 7 in (2.7), we obtain after some algebra that

(2.12) (p(u) — d(uo)) = ¢'(uo)vg +7(vg Puy),

where 7 is defined in (2.7). If we denote by X the range of ¢/ (ug), we see that ¢/ (ug) is invertible on
X ¢ C%#(X) with values of (¢/(uo))~" in C%#(X) by standard regularity estimates. As a consequence
of the inverse mapping theorem, we obtain that the above equation admits a unique solution vd- provided
that 7(¢(u) — ¢(uo)) is sufficiently small in C%%(X).

Once vy is reconstructed, the equation for (2.11) is easily invertible: There is no real-valued solution
if the right-hand side is negative, one solution if it vanishes, and two solutions if it is positive. In the
vicinity of ¢(ug) in C%?(X), we thus obtain either 0, 1, or 2 solutions. Mimicking the proof of [2,
Theorem 2.7], we actually prove the following slightly more precise statement:

ProPOSITION 2.1. Let W be the set of singular points of ¢ and U be a sufficiently small neigh-
borhood of the singular point ug € W. Then ¢(W NU) is a co-dimension 1 manifold in C%#(X). If
#(u) € (WNU), then there is a unique u € C#(X) solution of (2.6). Then on either side of (W NU),
we have either zero or two solutions u € C?#(X) of (2.6) depending on the sign of the right-hand size
in (2.11).

3. Global non-uniqueness result

Because of the specific structure of ¢(u), we obtain an explicit expression for the two solutions in
(2.6) in the vicinity of a critical point of ¢. Moreover, these two branches extend to provide non-local
non-uniqueness results as we shall see. This does not provide a global results as in [2], which is obtained
for semilinear equations with hypotheses that are not satisfied by (2.2).

Moreover, we want to show that the solutions obtained in (2.6) indeed allow us to construct two
different absorption coefficients o that are non-negative, equal on the boundary 0X, and such that the
measurements H(x) = ou?(z) agree on X. In other words, we want to ensure that the non-uniqueness
results for the semi-linear equation (2.2) does translate into a non-uniqueness result for the hybrid
inverse problem.
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Let us first define

Sy = {a >0, 1¢ Sp((fP)71§>} - {a >0, e sp((fp)fla) }

We have seen that critical points of ¢(u) = uPu corresponded to solutions o := % € S.

Let us assume that we are given 0 < o € Sy with A < 1 close to 1. Then %a € &1 and we define
tip the solution of (2.1) with o replaced by §. Note that (2.1) is an elliptic problem for all ¢ > 0. It is
P + ¢ that may not be invertible.

We thus have constructed a singular point @y € W and we can apply Proposition 2.1 to obtain the
reconstruction of two solutions u4s (what § means will be apparent shortly) such that

ui(;Puig = H5 = (Tuz.

We know that the above problem admits two local solutions with either us or u_s being equal to .
Indeed, 0 € S, with A < 1 so that v ¢ W and since u is a solution, there are exactly two solutions
locally.
It turns out that the parameter 6 may be chosen arbitrarily between (0, dp) to provide two solutions
0 (2.2). The construction goes as follows. Let ugs be defined as above and let
ug = 1(ug +u_s), P

1
2 = %(ufs - u_5) 75 0.

Here, 4 is a constant chosen so that (¢,4) = 1. Note that ug > 0 and ug = g on 0X. Moreover, we
verify that

ug Py + Y Pug = 4—1(5(u5Pu5 —u_sPu_g) =0.
This shows that wg is a critical point of ¢ since ¢'(ug)y) = 0 with ¢ # 0. Let us define

_ % E Puy Osus + o0_su_gs

(3.1) o5 = = 0p 1= =
Us u?’ U Us + U_g

We know that the original o we started with equals either o5 or 0_5. When A is sufficiently close to 1,
then by continuity, we deduce that both g1s > 0 and that ¢y > 0 on X.
We are therefore in the presence of a pair (g, up) such that

(3.2) Pug = ogug, X, up =g, 0X, oo > 0.

Moreover, ug is a singular point of ¢(u) with ¢'(ug)®y = 0 and 1) # 0. When oy is constructed in the
vicinity of o € Sy with A < 1, we know that ¢ can be chosen with a given sign, say ¥ (z) > 0 on X
while ¢» = 0 on 0X.

The construction of uy above was based on the availability of ¢ € Sy. More generally, we can
assume that ug is an arbitrary singular point of ¢(u) associated with ¢’(ug)y = 0, such that u = g on
0X and with an absorption coefficient og := Pu—qéo >0 on X. Then define

(33) us = ug + 0¥, X, 6 € (—(50, (50)

Define as well
Pu ug — 0
(3.4) o5 = u; =09 UZ n 52, Hj = osu3 = ogusu_s = oo(ui — 621)?).

We choose d§j such that o5 > 0 a.e. on X for all § € (—dg, dg). We have obtained the following result:

PROPOSITION 3.1. Let uy be a singular point and Hy = ¢(ug) a critical value of ¢ as above and
let ¢ be the normalized solution of ¢'(up)y = 0. Let us, s, and Hs be defined as in (3.3)-(3.4) for
d € (—dp, dp) for dp sufficiently small. Then we verify that

0575075, os >0, Hs=H_5, Pus=osu; in X, Uus =g on 0X.

This shows the non-uniqueness of the reconstruction of o from knowledge of H = cu?. Moreover we
verify that 045 agree on X so that this boundary information cannot be used to distinguish between
os and o_g.

In this example, we observe that ¢(us) = Hs = Ho — 620¢? < Hy = ¢(ug) when § # 0. This shows
that ¢(u) is invertible in the vicinity of the critical value Hy provided that ¢(u) is smaller than Hy and
that no solutions exist, at least locally, when ¢(u) > Hy. This shows that for exact measurements in
the vicinity of a critical value, small amounts of noise may push available measurements to values H
where the semi-linear equation ¢(u) = H admits no solution.
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4. Uniqueness result with two measurements

In the preceding sections, only one measurement H(z), corresponding to a prescribed boundary
condition g on 0X, is available. The non-uniqueness actually disappears when two measurements
corresponding to two well-chosen boundary conditions are available. In fact, we can show more precisely
that both the absorption coefficient o and the diffusion coefficient D can be reconstructed for two well
chosen measurements. Let us recast (2.1) as

(4.1) -V -D(@)Vuj+o(z)u; =0 inX
Uj = gj on 0X

for j = 1,2 with measurements

Hj(x) = o(a:)u?(x) or equivalently /H;(z) = v/o(z)u;(z).
The theory in [6] shows that for well chosen pairs of boundary conditions (g1, g2), we can reconstruct
(1; q) with

VD o
4.2 ==, A+qVD+ — =0.
(4.2) n="75 (A+q) 75
We refer the reader to [6] for an explicit definition of well-chosen boundary conditions. So we have
access to p? = g and we can recast the equation for v/D as

(4.3) (A+q+%)\FD:O.

We verify that [6]
(=V-DV +0)- = (—VD(A + ¢)VD) - .

Let us assume that /D7 is another solution of (4.3) with 7 = 1 on 9X. Then, using the above equality,
we find the equation for 7:

D
(-V:-DV+0—-—)r=-V-DVr=0in X, 7=1o0ndX.
7

The only solution is 7 = 1. This proves that (D, o) is uniquely determined by (Hy, Hz). The results
in [6] show that the reconstruction of y is Holder stable with respect to errors in the measurements
(Hy, Hs). The above uniqueness result for 7 and D may be modified to yield a stability result for D
as well, and hence for . We are therefore in the setting of a hybrid inverse problem combining a large
contrast (in the optical coefficients o and D) with a high resolution (exemplified by the Holder stability
result).

5. Numerical verifications

We present here some numerical verifications of the non-uniqueness and uniqueness theories that
have been developed in the previous sections. We limited ourselves to the dimension d < 2 case even
though the theories also hold in more physical three-dimensional spaces.

In the first set of numerical simulations, we briefly verify the proposed construction leading to two
absorption coefficients with the same measurements. We construct two absorption coefficients o5 # o_s
that lead to the same interior data Hs = H_s. For concreteness, we display in Fig. 1 a one-dimensional
construction in the interval (0, 7) and in Fig. 2 a two-dimensional construction in the disc with radius 2
and centered at xg = (2,2), X = {x: |[x—X¢| < 2}. As can be seen from both plots, the data generated
with the two very different absorption coefficients are identical (with relative difference < 107! in both
cases).

In the second numerical simulation, we gives an example of the non-uniqueness result by recon-
structing both absorption coefficients from knowledge of the data associated with one of the absorption
coeflicients. Assuming that we are given an absorption coefficient o, which could be either o5 or o_s,
we intend to recover both ois following the local constructions in section 2. We first calculate the
largest eigenvalue of (—P)~'o with P = A and rescale o so that § € S;. This provides us with a
singular point ug as in section 2. We then use the projection algorithm and the equation for o to obtain
the two solutions o5 described in Proposition 3.1. We show in Fig. 3 the results of the reconstruction
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FIGURE 1. Verification of non-uniquenss in one-dimensional case. Top row: two ab-

sorption coefficients o5 (left) and o_s (right). Bottom row: The interior data Hg
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constructed with o5 (left) and the normalized difference S
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FIGURE 2. Same as Fig. 1 but in the two-dimensional case.
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in the disc X defined above. The o we start from in this simulation is such that 0.95 is the lowest

eigenvalue of (—A)~1o.

The non-uniqueness results that we have seen above are all constructed when only one set of
interior data is available. It turns out that with two sets of interior data, we can uniquely reconstruct
two coefficients as presented in Section 4. We now present two typical reconstructions of the diffusion
and absorption coefficients in Fig. 4 (for smooth coefficients) and Fig. 5 (for discontinuous coefficients)
that are very similar in spirit to the reconstructions obtained in a similar setting in [6]. In both
reconstructions, the synthetic data have been randomly perturbed by 5% multiplicative noise obtained
by the algorithm H = H * (1 + 725 rand) with rand a random field with values in [~1 1]. The
reconstructions are done with a slightly modified version of the vector field method implemented in [6].
The relative L? error in the reconstructions are 0.1% (diffusion) and 0.1% (absorption) in Fig. 4,
and 0.2% (diffusion) and 0.1% (absorption) for the case in Fig. 5 respectively. This shows that the
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FI1GURE 3. From left to right: original absorption coefficient o, reconstructed o5 and

reconstructed o_g.
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FIGURE 4. Reconstructions of the diffusion and absorption coefficients with two sets
of interior data. From Left to right: true diffusion (left) and absorption (right) coeffi-

cients; reconstructed diffusion (left) and absorption (right) coefficients.
[
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FIGURE 5. Same as in Fig. 4 except that the coefficients are discontinuous.

reconstructions are very accurate with a much higher resolution than what can be achieved in inverse
problems for elliptic problems of the form (2.1) or (4.1) with boundary measurements (measurements
of the form of a Dirichlet-to-Neumann map).
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