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Calderón problem

The Calderón problem is modeled by the following elliptic problem with

Dirichlet conditions

Lγu(x) ≡ ∇ · γ(x)∇u(x) = 0, x ∈ X

u(x) = f(x), x ∈ ∂X,
(1)

where X ⊂ Rn is a bounded domain with smooth boundary ∂X. In what

follows, we assume n ≥ 3. Here, γ(x) is a conductivity coefficient, which

we assume is a smooth function, and f(x) is a prescribed Dirichlet data

for the elliptic problem.

The Dirichlet-to-Neumann or voltage-to-current map is given by

Λγ :
H

1
2(∂X) → H−

1
2(∂X)

f(x) 7→ Λγ[f ](x) = γ(x)
∂u

∂ν
(x).

(2)



With X = C2(X̄) and Y = L(H
1
2(∂X), H−

1
2(∂X)), we define the measure-

ment operator

M : X 3 γ 7→M(γ) = Λγ ∈ Y. (3)

The Calderón problem consists of reconstructing γ from knowledge of the

Calderón measurement operator M. To slightly simplify the derivation of

uniqueness, we also make the (unnecessary) assumption that γ and ν ·∇γ
are known on ∂X. The main result of this chapter is the following.

Theorem Define the measurement operator M as in (3). Then M is

injective in the sense that M(γ) = M(γ̃) implies that γ = γ̃.

Moreover, we have the following logarithmic stability estimate:

‖γ(x)− γ′(x)‖L∞(X) ≤ C
∣∣∣ log ‖M(γ)−M(γ̃)‖Y

∣∣∣−δ, (4)

for some δ > 0 provided that γ and γ̃ are uniformly bounded in Hs(X) for

some s > n
2.



The proof of the injectivity result is based on two main ingredients. The

first ingredient consists of recasting the injectivity result as a statement of

whether products of functionals of solutions to elliptic equations such as

(2) are dense in the space of, say, continuous functions. The second step

is to construct specific sequences of solutions to (2) that positively answer

the density question. These specific solutions are Complex Geometric

Optics (CGO) solutions.

∫
∂X

(Λγ1 − Λγ2)f1f2dµ =
∫
X

(γ1 − γ2)∇u1 · ∇u2dx, (5)

where dµ is the surface measure on ∂X and where uj is the solution to

(1) with γ replaced by γj and f replaced by fj.

The above lemma shows that when Λγ1 = Λγ2, the right-hand-side in (1)

also vanishes for any solutions u1 and u2 of (1) with γ given by γ1 and



γ2, respectively. We are now thus faced with the question of whether

products of the form ∇u1 ·∇u2 are dense in the space of, say, continuous

functions. Unfortunately, answering this question affirmatively seems to

be a difficult problem. The main difficulty in the analysis of (1) is that

the unknown coefficient γ appears in the leading order of the differential

operator Lγ. The following Liouville change of variables allows us to

treat the unknown coefficient as a perturbation to a known operator

(with constant coefficients):

γ−
1
2Lγγ

−1
2 = ∆− q, q =

∆γ
1
2

γ
1
2

. (6)

Here ∆ is the usual Laplacian operator.

Consider the Schrödinger equation (still calling the solution “u” rather

than “v”)

(∆− q)u = 0 in X, u = f on ∂X, (7)



with q given by (6). For f ∈ H
1
2(∂X), we find a unique solution u ∈ H1(X)

such that ν ·∇u ∈ H−
1
2(∂X). Indeed, the above equation admits a solution

since it is equivalent to (1) by the change of variables (6). We then define

the Dirichlet-to-Neumann operator

Λq :
H

1
2(∂X) → H−

1
2(∂X)

f(x) 7→ Λq[f ](x) =
∂u

∂ν
(x),

(8)

where u is the solution to (7). We then verify that

Λqf = γ−
1
2
∂γ

∂ν

∣∣∣∣
∂X
f + γ−

1
2Λγ(γ−

1
2

∣∣∣∣
∂X
f), f ∈ H

1
2(∂X). (9)

We thus observe that knowledge of Λγ, γ|∂X and ν ·∇γ|∂X implies knowl-

edge of Λq. It turns out that knowledge of Λγ implies that of γ|∂X and

ν · ∇γ|∂X, which we assume here.

Our next step is therefore to reconstruct q from knowledge of Λq.



Let Λqj for j = 1,2 be the two operators associated to qj and let fj ∈

H
1
2(∂X) for j = 1,2 be two Dirichlet conditions. Then we find that∫

∂X
(Λq1 − Λq2)f1f2dµ =

∫
X

(q1 − q2)u1u2dx, (10)

where dµ is the surface measure on ∂X and where uj is the solution to

(7) with q replaced by qj and f replaced by fj.

The above lemma shows that when Λq1 = Λq2, then the right-hand-

side in (10) also vanishes for any solutions u1 and u2 of (7) with q

replaced by q1 and q2, respectively. We are now thus faced with the

question of whether products of the form u1u2 are dense in the space of,

say, continuous functions. This is a question that admits an affirmative

answer. The main tool in the proof of this density argument is the

construction of complex geometric optics solutions. Such solutions are

constructed later. The main property that we need at the moment is

summarized in the following lemma.



Lemma. Let % ∈ Cn be a complex valued vector such that % · % = 0.

Let ‖q‖∞ <∞ and |%| be sufficiently large. Then there is a solution u of

(∆− q)u = 0 in X of the form

u(x) = e%·x(1 + ϕ(x)), (11)

such that

|%|‖ϕ‖L2(X) + ‖ϕ‖H1(X) ≤ C. (12)

Proof to follow. The principle of such solutions is this. When q ≡ 0, then

e%·x is a (complex-valued) harmonic function, i.e., a solution of ∆u = 0.

The above result shows that q may be treated as a perturbation of ∆.

Solutions of (∆ − q)u = 0 are fundamentally not that different from

solutions of ∆u = 0.

Now, coming back to the issue of density of product of elliptic solutions.



For u1 and u2 solutions of the form (11), we find that

u1u2 = e(%1+%2)·x(1 + ϕ1 + ϕ2 + ϕ1ϕ2). (13)

If we can choose %1 + %2 = ik for a fixed k with |%1| and |%2| growing

to infinity so that ϕ1 + ϕ2 + ϕ1ϕ2 becomes negligible in the L2 sense

thanks to (12), then we observe that in the limit u1u2 equals eik·x. The

functions eik·x for arbitrary k ∈ Rn certainly form a dense family of, say,

continuous functions.

Let us make a remark on the nature of the CGO solutions and the

measurement operator M. The CGO solutions are complex valued. Since

the equations (1) and (7) are linear, we can assume that the boundary

conditions f = fr+ ifi are complex valued as a superposition of two real-

valued boundary conditions fr and fi. Moreover, the results (5) and (10)

hold for complex-valued solutions. Our objective is therefore to show

that the product of complex-valued solutions to elliptic equations of the



form (7) is indeed dense. The construction in dimension n ≥ 3 goes as

follows.

Let k ∈ Rn be fixed for n ≥ 3. We choose %1,2 as

%1 =
m

2
+ i

k + l

2
, %2 = −

m

2
+ i

k − l
2

, (14)

where the real-valued vectors l, and m are chosen in Rn such that

m · k = m · l = k · l = 0, |m|2 = |k|2 + |l|2. (15)

We verify that %i · %i = 0 and that |%i|2 = 1
2(|k|2 + |l|2). In dimension

n ≥ 3, such vectors can always be found. For instance, changing the

system of coordinates so that k = |k|e1, we can choose l = |l|e2 with

|l| > 0 arbitrary and then m =
√
|k|2 + |l|2e3, where (e1, e2, e3) forms

a family of orthonormal vectors in Rn. Note that this construction is

possible only when n ≥ 3. It is important to notice that while k is fixed,



|l| can be chosen arbitrarily large so that the norm of %i can be arbitrarily

large while %1 + %2 = k is fixed.

Upon combining (10) and (13), we obtain for the choice (14) that Λq1 =

Λq2 implies that∣∣∣∣ ∫
X
eik·x(q1 − q2)dx

∣∣∣∣ ≤ ∣∣∣∣ ∫
X
eik·x(q1 − q2)(ϕ1 + ϕ2 + ϕ1ϕ2)dx

∣∣∣∣ ≤ C

|l|

thanks to (12) since |l|(ϕ1 + ϕ2 + ϕ1ϕ2) is bounded in L1(X) by an

application of the Cauchy-Schwarz inequality and eik·x(q1−q2) is bounded

in L∞(X). Since the above inequality holds independent of l, we deduce

that the Fourier transform of (q1 − q2) (extended by 0 outside of X)

vanishes, and hence that q1 = q2. So far we have thus proved that

Λγ1 = Λγ2 =⇒ Λq1 = Λq2 =⇒ q1 = q2,



where qj and γj are related by (6). From (6) still, we deduce that

0 = γ
1
2
1∆γ

1
2
2 − γ

1
2
2∆γ

1
2
1 = ∇ · (γ

1
2
1∇γ

1
2
2 − γ

1
2
2∇γ

1
2
1) = ∇ · (γ1∇

(
γ2

γ1

)1
2
). (16)

Since γ1 = γ2 on ∂X, this is an elliptic equation for
(
γ1
γ2

)1
2 whose only

solution is identically 1. This shows that γ1 = γ2. This concludes the

proof of the uniqueness result

Λγ1 = Λγ2 =⇒ γ1 = γ2. (17)

Let us return to (10) and assume that Λq1 − Λq2 no longer vanishes but

is (arbitrarily) small. We first want to assess how errors in Λq translates



into errors in q. For uj solutions of the form (11), we find that∣∣∣∣∫
X
eik·x(q1 − q2)dx

∣∣∣∣
≤
∣∣∣∣∫
X
eik·x(q1 − q2)(ϕ1 + ϕ2 + ϕ1ϕ2)dx

∣∣∣∣+
∣∣∣∣∫
∂X

(Λq1 − Λq2)f1f2dµ

∣∣∣∣
≤

C

|l|
+ ‖Λq1 − Λq2‖Y‖f1‖

H
1
2(∂X)

‖f2‖
H

1
2(∂X)

≤
C

|l|
+ C‖Λq1 − Λq2‖Y‖u1‖H1(X)‖u2‖H1(X)

≤
C

|l|
+ C|l|‖Λq1 − Λq2‖YeC|l|.

Indeed, fj = uj|∂X and ‖u‖
H

1
2(∂X)

≤ C‖u‖H1(X) is a standard estimate.

This step is where the ill-posedness of the Calderón problem is best

displayed.

Define δq = q1 − q2. So far, we have obtained a control of δ̂q(k) uniform



in k ∈ Rn. Upon choosing

|l| =
σ

C
ln

1

ε
, 0 < σ < 1,

so that eC|l| = ε−σ, we find that for ε := min(1, ‖Λq1 − Λq2‖Y),

|δ̂q(k)| ≤ η := C
∣∣∣ ln ε∣∣∣−1

. (18)

Since q is assumed to be bounded and compactly supported, it is square

integrable in Rn so that ‖δq‖L2(Rn) := E < ∞. This and the control in

(18) allows one to obtain a control of δq in H−s(Rn) for s > 0. Indeed

‖δq‖2
H−s(Rn) =

∫
〈k〉−2s|δ̂q|2dk

≤ kn0η
2 + k−2s

0 E2,

by splitting the integration in k into |k| < k0 and |k| > k0 and choosing



k0 ≥ 1. We then choose

k0 =
(
E

η

) 2
n+2s

.

This implies

‖q1 − q2‖H−s(Rn) ≤ CE
n

n+2s| ln ε
∣∣∣− 2s

n+2s. (19)

It remains to convert the estimate on q1− q2 into an estimate for γ1−γ2.

We find that (16) is replaced by

(γ1γ2)
1
2(q1−q2) = ∇·(γ1∇

(
γ2

γ1
−1

)1
2
) in X,

(
γ2

γ1
−1

)1
2

= 0 on ∂X.

(20)

Standard elliptic regularity results and the fact that γ1 is of class C2

therefore show that

‖γ1 − γ2‖H1(X) ≤ C‖q1 − q2‖H−1(X) ≤ C| ln ε
∣∣∣−δ, (21)



with δ = 2
2+n if q is bounded in the L2 sense and δ = 2(1+ς)

n+2(1+ς) if q is

bounded. The final result in (4) then follows from interpolating the a

priori bound in Hs of γ1− γ2, the above smallness bound in H1 to obtain

a small bound in Hτ for some n
2 < τ < s. Then by the Sobolev imbedding

of L∞(X) into Hτ(X), we conclude the proof of the Calderón result.
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Complex geometrical Optics Solutions

Let us consider the equation ∆u = qu in X. When q = 0, then a rich

family of harmonic solutions is formed by the complex exponentials e%·x

for % ∈ Cn a complex valued vector such that % · % = 0. Indeed, we verify

that

∆ex·% = % · % ex·% = 0. (22)

A vector % = %r + i%i is such that % · % = 0 if an only if %r and %i are

orthogonal vectors of the same (Euclidean) length.

When q 6= 0, it is tempting to try and write solutions of ∆u = qu as

perturbations of the harmonic solutions e%·x, for instance in the form

u(x) = e%·x(1 + ϕ(x)).



This provides an equation for ϕ of the form

(∆ + 2% · ∇)ϕ = q(1 + ϕ). (23)

Treating the right-hand side as a source f , the first part of the construc-

tion consists of solving the problem

(∆ + 2% · ∇)ϕ = f, (24)

for f a source in X and ϕ defined on X as well. Surprisingly, the analysis

of (24) is the most challenging technical step in the construction of

solutions to (23). The construction with f ∈ L2(X) is sufficient for the

proof of Theorem . In later chapters, we will require more regularity for

the solution to (24) and thus prove the following result.

Lemma Let f ∈ Hs(X) for s ≥ 0 and let |%| ≥ c > 0. Then there exists a

solution to (24) in Hs+1(X) and such that

|%|‖ϕ‖Hs(X) + ‖ϕ‖Hs+1(X) ≤ C‖f‖Hs(X). (25)



Proof. We first extend f defined on X to a function still called f defined

and compactly supported in Rn and such that

‖f‖Hs(Rn) ≤ C(X)‖f‖Hs(X).

We thus wish to solve the problem

(∆ + 2% · ∇)ϕ = f, in Rn. (26)

The main difficulty is that the operator (∆ + 2% · ∇) has for symbol

Fx→ξ(∆ + 2% · ∇)F−1
ξ→x = −|ξ|2 + 2i% · ξ.

Such a symbol vanishes for %r · ξ = 0 and 2%i · ξ + |ξ|2 = 0. We thus

construct a solution that can be seen of the product of a plane wave

with a periodic solution with different period. Let us define

ϕ = eiς·xp, f = eiς·xf



for some vector ς ∈ Rn to be determined. Then we find(
∆ + 2(%+ iς) · ∇+ (2i% · ς − |ς|2)

)
p = (∇+ iς + 2%) · (∇+ iς)p = f. (27)

Let us now assume that f is supported in a box Q of size (−L,L)n for L

sufficiently large. Then we decompose as Fourier series:

p =
∑
k∈Zn

pke
iπLk·x, f =

∑
k∈Zn

fke
iπLk·x. (28)

We then find that (27) is equivalent in the Fourier domain to

pk =
1

−|πLk + ς|2 + 2i% · (ς + π
Lk)

fk (29)

The imaginary part of the denominator is given by 2%r · (πLk + ς). It

remains to choose

ς =
1

2

π

L

%r

|%r|
,



to obtain that the above denominator never vanishes since k ∈ Zn. More-

over, for such a choice, we deduce that∣∣∣∣− ∣∣∣πLk + ς
∣∣∣2 + 2i% ·

(
ς +

π

L
k
)∣∣∣∣ ≥ C|%|,

for some constant C independent of %. This shows that

|pk| ≤ C|%|−1|fk|.

Since f ∈ Hs(Q), we deduce that ‖f‖2
Hs(Q) =

∑
k∈Zn |k|2s|fk|2 < ∞, from

which we deduce that

‖p‖Hs(Q) ≤ C|%|
−1‖f‖Hs(Q).

It remains to restrict the constructed solution to X (and realize that eiς·x

is smooth) to obtain that |%|‖ϕ‖Hs(X) ≤ C‖f‖Hs(X) and the first step in

(25).

The result on ‖ϕ‖Hs+1(X) requires that we obtain bounds for |k|pk. For



|k| small, say |k| ≤ 8L
π |%|, then we use the same result as above to obtain

|k||pk| ≤ C|fk|, |k| ≤
8L

π
|%|.

For the other values of |k|, we realize that the denominator in (29) causes

no problem and that

|k||pk| ≤ C|k|−1|fk|, |k| >
8L

π
|%|.

This shows that |k||pk| ≤ C|fk| for some constant C independent of k and

|%|. The proof that ‖ϕ‖Hs+1(X) ≤ C‖f‖Hs(X) then proceeds as above.

This concludes the proof of the fundamental lemma of CGO solutions to

Schrödinger equations.

We now come back to the perturbed problem (23). We assume that

q is a complex-valued potential in Hs(X) for some s ≥ 0. We say that



q ∈ L∞(X) has regularity s provided that for all ϕ ∈ Hs(X), we have

‖qϕ‖Hs(X) ≤ qs‖ϕ‖Hs(X), (30)

for some constant qs. For instance, when s = 0, when qs = ‖q‖L∞(X).

Then we have the following result.

Theorem Let us assume that q ∈ Hs(X) is sufficiently smooth so that

qs < ∞. Then for |%| sufficiently large, there exists a solution ϕ to (23)

that satisfies

|%|‖ϕ‖Hs(X) + ‖ϕ‖Hs+1(X) ≤ C‖q‖Hs(X). (31)

Moreover, we have that

u(x) = e%·x(1 + ϕ(x)) (32)

is a Complex Geometrical Optics solution in Hs+1(X) to the equation

∆u = qu in X.



Proof. Let T be the operator which to f ∈ Hs(X) associates ϕ ∈ Hs(X)

the solution of (26) constructed in the proof of Lemma . Then (23) may

be recast as

(I − Tq)ϕ = Tq.

We know that ‖T‖L(Hs(X)) ≤ Cs|%|−1. Choosing |%| sufficiently large so

that |%| > Csqs, we deduce that (I − Tq)−1 =
∑∞
m=0(Tq)m exists and

is a bounded operator in L(Hs(X)). We have therefore constructed a

solution so that q(1 + ϕ) ∈ Hs(X). The estimate (25) yields (31) and

concludes the proof of the theorem.

Let us now consider the elliptic equation (1). The change of variables in

(6) shows that u = γ−
1
2v with v a solution of ∆v = qv, is a solution of

(1). We therefore have the

Corollary. Let γ be sufficiently smooth so that q = γ−
1
2∆γ

1
2 verifies the

hypotheses of Theorem . Then for |%| sufficiently large, we can find a



solution u of ∇ · γ∇u = 0 on X such that

u(x) =
1

γ
1
2(x)

e%·x(1 + ϕ(x)), (33)

and such that (31) holds. For instance, for s ∈ N, we verify that (30)

holds provided that γ is of class Cs+2(X). The case s = 0 with γ of class

C2(X) is the setting of Theorem .
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Unique Continuation and Cauchy problem

The proofs of the (weak) unique continuation principle (UCP) stating

that a solution vanishing on an open set vanishes everywhere, of the

Cauchy data problem, stating that a solution vanishing on an open set of

the boundary with vanishing Neumann conditions on that open set has

to vanish everywhere, are based on Carleman estimates.

We show that the Laplacian controls lower-order derivatives locally by

means of Carleman estimates.

Let ψ(x) be a function such that ψ = exp(φ) with φ ≥ 0 on a domain of

interest. We are looking at the operator

Pτψ = eτψ(−∆)e−τψ = −eτψ∇e−τψ · eτψ∇e−τψ = −(∇− τ∇ψ) · (∇− τ∇ψ)

and want to show that for an appropriate function ψ defined on a bounded



domain X and for u ∈ C∞c (X), we have

‖Pτψu‖ ≥ C
(
τ

1
2‖∇u‖+ τ

3
2‖u‖

)
for a positive constant C independent of τ sufficiently large.

Let ϕ be a smooth function bounded below and such that |∇ϕ| ≥ c0 > 0

on X̄. Then for λ sufficiently large and ψ = exp(λϕ), there is a positive

constant C independent of τ and u ∈ H2
0(X) such that for all τ sufficiently

large, we have

‖eτψLu‖ ≥ C
(
τ

1
2‖eτψ∇u‖+ τ

3
2‖eτψu‖

)
for any operator of the form L = a∆ + b · ∇+ c for a(x) scalar bounded

below by a positive constant and a, b, c bounded above (component by

component) or in divergence form L = ∇ · a∇+ b · ∇+ c provided a is

Lipschitz in the latter case. Lipschitz continuity of a is then optimal to



obtain unique continuation results as such results are known not to hold

for Hölder continuous coefficient a(x).

Similar estimates hold for a tensor valued as well.

We now want to use the above Carleman estimate to obtain unique

continuation principles.

Let φ(x) be a smooth real-valued function with non-vanishing ∇φ in the

vicinity V of a point x0 ∈ Rn. Set Σ = φ−1(0) in V and Σ± the parts

of V where ±φ > 0. We assume that u = 0 on Σ+ and that Lu = 0 on

V . We want to show that u = 0 in an open neighborhood of x0. This is

done as follows. We define

ϕ(x) = φ(x) + δ3 − 3δ|x− x0|2



for some δ > 0 sufficiently small. We then verify that ∇ϕ 6= 0 in V and

that ϕ is bounded from below. Note that ϕ(x0) = δ3 > 0. The level sets

ϕ = 0 and ϕ = −δ3 are hypersurfaces intersecting Σ− within a distance

δ of x0; see above figure.

Let us define χ ∈ C∞c (Rn) equal to 1 on {ϕ > 0} ∩ B(0, δ), equal to 0 on

{ϕ < −δ3} and hence with support of ∇χ in Σ− given by {−δ3 < ϕ < 0}.
This is also the domain where u∇χ is supported and hence where [L, χ]u

is supported. Define ψ = eλϕ − 1 as above with λ sufficiently large, so

that ϕ and ψ share the same 0−level set.



Now we have

‖u|χ=1‖ ≤ ‖e
τψuχ‖ ≤ τ−

3
2‖eτψL(χu)‖ = τ−

3
2‖eτψ[L, χ]u‖ ≤ τ−

3
2‖[L, χ]u‖

since eτψ ≥ 1 where χ = 1 and u 6= 0 and eτψ ≤ 1 where [L, χ]u is

supported.

Finally, for u sufficiently smooth, ‖[L, χ]u‖ is bounded so that, sending



τ → ∞, we observe that u|χ=1 = 0. This domain includes an open set

including the point x0.

This proves unique continuation across a surface locally. When u = 0 on

one side of the surface and Lu = 0 in the vicinity of the surface, then

u = 0 in a (possibly smaller) vicinity of the surface simply by displacing

x0 along the surface.

From this, we deduce the weak unique continuation principle for second-

order elliptic equations (with scalar coefficients in the above proof al-

though the method extends to the general elliptic (scalar!) case). This

goes as follows.

Theorem. Let X be a bounded connected open domain and u ∈ H2(X)

with Lu = 0 on X and L with sufficiently smooth coefficient that the

above Carleman estimates hold. Let X0 be an open subdomain with

X̄0 ⊂ X and assume that u = 0 on X. Then u = 0 on X.



Proof. Let us first assume that for open balls B0 ⊂ B1 ⊂ X, we have

u = 0 on B1 when u = 0 on B0. We define Bt a continuous family of balls

such that B0 ⊂ Bs ⊂ Bt ⊂ B1 for s < t. From the above construction, we

observe that if u = 0 on Bs, then u = 0 on a slightly larger ball Bs′ for

s′ > s. This is obtained by constructing functions φ such that the level

set of φ is the boundary of Bs locally in the vicinity of x0 ∈ ∂Bs, then ϕ

positive in the vicinity of x0, and finally ψ such that the Carleman estimate

holds. This shows that u vanishes in the vicinity of x0. Now rotating

x0 along ∂Bs yields the result. We also observe from the construction

that the vicinity is independent of s since the coefficients are uniformly

sufficiently smooth on X. This shows that u = 0 on each ball Bs including

B1.

Now let x be any point in X and V a bounded connected (since X

is connected) open domain including x and X0 such that V̄ ⊂ X. By

compactness, we can cover V̄ with a finite number of open balls supported



in X. Let us add to the collection a ball in X0 where u vanishes. Assume

that u vanishes on a ball Bk and that Bk ∩ Bk+1 6= ∅. Then there is a

ball in the intersection where u vanishes so that u vanishes on Bk+1 as

well. This shows that u vanishes on all balls and hence at x, which was

arbitrary. Therefore, u vanishes on X.

We also have the local UCP result for Cauchy data

Theorem. Let X be a bounded connected open domain with smooth

boundary and u ∈ H2(X) with Lu = 0 on X and L with sufficiently

smooth coefficient that the above Carleman estimates hold. Let Γ be a

non-empty open subset of ∂X and assume that u and ∇u vanish on Γ.

Then u = 0 in X.

Proof. Note that the conditions are u = 0 and ν · ∇u = 0 on Γ with ν(x)

the outward unit normal to X at x ∈ ∂X. Let x0 ∈ Γ and let B be a

sufficiently small ball centered at x0 so that the intersection of ∂X and



B0 is in Γ. Let us extend u by 0 in the open part Y1 of B that is not

in X. We then extend the coefficients in L to smooth coefficients in B

that preserve ellipticity. Then Lu = 0 in Y1 and in Y2, the intersection

of B with X. Moreover, the compatibility conditions at ∂Y1 ∩ ∂Y2 ensure

that u ∈ H2(B). We have therefore constructed an extension u such that

Lu = 0 on B and u = 0 in Y1. From the preceding theorem, this means

that u = 0 in the whole of B, and hence in Y2 and finally all of X.
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Runge Approximation

Can one control solutions in a subdomain B from solutions in X? It

should be clear that such a control cannot be exact. Solutions in B need

not be smooth on ∂B. When the coefficients in the vicinity of ∂B are

smooth, then solutions on X have to be smooth there. So control has to

be approximate at best. What makes the approximate control possible is

the unique continuation principle (UCP) we already used in the analysis

of the Cauchy problem for elliptic equations.

We denote L = ∇ · a∇+ b · ∇+ c and recall that UCP holds for such an

operator when a is elliptic and of class C1 while all other coefficients are

bounded. We proved such a result in the case where a is scalar. Such

results extend to the anisotropic setting as well. We assume L invertible

on X when augmented with Dirichlet conditions.



Theorem[Runge approximation]Let X0 be an open subset with closure

in X and let u be a solution in H1(X0) of Lu = 0 on X0. Then there is

a sequence of function uε ∈ H1(X) solutions of Luε = 0 in X such that

vε → u in L2(X0), where vε = uε|X0
is the restriction of uε to X0.

Proof. The proof goes by contradiction as an application of a geometric

version of the Hahn-Banach theorem. Let

F = {v|X0
; v ∈ H1(X), Lv = 0 on X}

and

G = {u ∈ H1(X0), Lu = 0 on X0}.

Both are subspaces of L2(X0). Let F̄ and Ḡ be the closures of F and G

for the L2(X0) topology. The Runge approximation states that F̄ = Ḡ.

Assume otherwise. We verify that F̄ is a closed convex subset of L2(X0)

since F is a linear space. Assume the existence of u ∈ Ḡ with u 6∈ F̄ .



Then {u} is a compact subset of L2(X0) and Hahn-Banach states that

F̄ and {u} are separated, in other words, there is an element f ∈ L2(X0)

identified with its dual such that (f, v) < α < (f, u) for some α > 0, say.

Since v may be replaced by λv for any λ ∈ R, this implies (f, v) = 0 for

each v ∈ F̄ while (f, u) > 0. Let us now prove that this contradicts the

unique continuation principle (UCP).

Let us extend f by 0 in X outside X0 and still call f the extension. Let

us solve

L∗w = f, in X, w = 0, on ∂X.

This equation admits a unique solution by assumption on L (and the

Fredhiolm alternative). Then, for v ∈ F , we have

0 = (Lv,w)− (v, L∗w) = −
∫
∂X

(an · ∇w)vdσ.

This holds for arbitrary trace v|∂X in H
1
2(∂X), from which we deduce



that an · ∇w = 0 on ∂X. However, we also have w = 0 on ∂X so that

all Cauchy data associated to w vanish. From the UCP, we deduce that

w ≡ 0, and hence that f ≡ 0, which is incompatible with the existence of

u 6∈ F̄ . This proves the result.

The approximation we obtain is in the L2(X0) sense. This is not sufficient

to obtain point-wise linear independence of Hessians of vj. However,

such an estimate clearly comes from elliptic interior regularity. Indeed,

we have uε − u small in X0 and L(uε − u0) = 0 in X0. Elliptic regularity

with coefficients in Cp,α shows that uε − u is also small in Cp,α(X1) for

any X1 open with closure in X0. This concludes our control of internal

derivatives of elliptic solutions from the boundary. The boundary controls

are obviously the sequence of traces fε = uε|∂X. We choose ε small

enough so that the Hessian of uε and that of u are sufficiently small. This

proves the linear independent of Hessians and gradients of the functions

uj,ε approximating uj. By continuity of elliptic solutions with respect



to perturbations in the boundary conditions, we therefore obtain the

existence of an open set of boundary conditions fj such that the resulting

solutions uj satisfy the independence conditions on the domain X1. This

may be repeated for a covering of X by domains of the form X1 (including

by domains that cover the boundary ∂X using a slightly different regularity

theory leading to the same results).
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Sub-elliptic stability in PAT

Here are mathematical assumptions on the coefficients and a definition

of well-chosen illuminations.

(H1). We denote by X the set of coefficients (γ, σ,Γ) that are of class

W1,∞(X), are bounded above and below by fixed positive constants, and

such that the traces (γ, σ,Γ)|∂X on the boundary ∂X are fixed (known)

functions.

(H2). The illuminations fj are positive functions on ∂X that are the

restrictions on ∂X of functions of class C3(X̄).

(H3). We say that f2 = (f1, f2) is a pair of well-chosen illuminations with

corresponding functionals (H1, H2) = (H(γ,σ,Γ)f1,H(γ,σ,Γ)f2) provided that

(H2) is satisfied and the vector field

β := H1∇H2 −H2∇H1 = H2
1∇

H2

H1
= H2

1∇
u2

u1
= −H2

2∇
H1

H2
(34)



is a vector field in W1,∞(X) such that

|β|(x) ≥ α0 > 0, a.e. x ∈ X. (35)

(H3’). We say that f2 = (f1, f2) is a pair of weakly well-chosen illumi-

nations with corresponding functionals (H1, H2) = (H(γ,σ,Γ)f1,H(γ,σ,Γ)f2)

provided that (H2) is satisfied and the vector field β defined in (34) is

in W1,∞(X) and β 6= 0 a.e. in X.

Remark. Note that (H3’) is satisfied as soon as f1
f2
6= C is not a constant.

Indeed, if β = 0 on a set of positive measure, then ∇u2
u1

= 0 on that same

set. Yet, u2
u1

solves the elliptic equation (37) below. It is known that

under sufficient smoothness conditions on the coefficients, the critical

points of solutions to such elliptic equations are of measure zero unless

these solutions are constant.

Hypothesis (H3) will be useful in the analysis of the stability of the



reconstructions. For the uniqueness result, the weaker hypothesis (H3’)

is sufficient. Note that almost all illumination pairs f2 satisfy (H3’),

which is a mere regularity statement. Beyond the regularity assumptions

on (γ, σ,Γ), the domain X, and the boundary conditions fj, the only real

assumption we impose is thus (35). In general, there is no guaranty

that the gradient of u2
u1

does not vanish. Not all pairs of illuminations

f2 = (f1, f2) are well-chosen although most are weakly well-chosen. That

the vector field β does not vanish is a sufficient condition for the stability

estimates presented below to be satisfied. It is not necessary. As we shall

see, guaranteeing (35) is relatively straightforward in dimension n = 2. It

is much complicated in dimension n ≥ 3. The only available methodology

to ensure that (35) holds for a large class of conductivities is based on

the same method of complex geometric optics (CGO) solutions already

used to solve the Calderón problem in Chapter 7.

Under these hypotheses, we obtain the following result:



Theorem. Let X be defined as in (H1) and let f2 be well chosen illumi-

nations as indicated in (H2) and (H3’). Let I ∈ N∗ and f = (f1, . . . , fI)

be a set of (arbitrary) illuminations satisfying (H2). Then we have the

following:

(i). The measurement operator Mf2 uniquely determines Mf (meant

in the sense that Mf2(γ, σ,Γ) = Mf2(γ̃, σ̃, Γ̃) implies that Mf(γ, σ,Γ) =

Mf(γ̃, σ̃, Γ̃)).

(ii). The measurement operator Mf2 uniquely determines the two follow-

ing functionals of (γ, σ,Γ) (meant in the same sense as above):

χ(x) :=
√
γ

Γσ
(x), q(x) :=

(
∆
√
γ

√
γ

+
σ

γ

)
(x). (36)

(iii). Knowledge of the two functionals χ and q uniquely determines (in

the same sense as above) Mf2 = (H1, H2). In other words, the recon-

struction of (γ, σ,Γ) is unique up to any transformation that leaves (χ, q)

invariant.



Proof. Let us start with (i). Upon multiplying the equation for u1 by u2,

the equation for u2 by u1, and subtracting both relations, we obtain

−∇ · (γu2
1)∇

H2

H1
= 0, in X

γu2
1 = γ|∂Xf

2
1 , on ∂X.

(37)

This is a transport equation in conservative form for γu2
1. More precisely,

this is a transport equation ∇ · ρβ̃ = 0 for ρ with ρ|∂X = 1 and

β̃ = χ2β = (γu2
1)∇

H2

H1
.

Since β̃ ∈ W1,∞(X) and is divergence free, the above equation for ρ

admits the unique solution ρ ≡ 1 since (35) holds. Indeed, we find that

∇·(ρ−1)2β̃ = 0 by application of the chain rule with ρ|∂X−1 = 0 on ∂X.



Upon multiplying the equation by H2
H1

and integrating by parts, we find

∫
X

(ρ− 1)2χ2H2
1

∣∣∣∣∇H2

H1

∣∣∣∣2dx = 0.

Using (H3’) and the above remark, we deduce that ρ = 1 on X by

continuity. This proves that γu2
1 is uniquely determined. Dividing by H2

1 =

(Γσ)2u2
1, this implies that χ > 0 defined in (36) is uniquely determined.

Note that we do not need the full W1,∞(X) regularity of β in order to

obtain the above result. However, we still need to be able to apply the

chain rule to obtain an equation for (ρ−1)2 and conclude that the solution

to the transport equation is unique.

Let now f be an arbitrary boundary condition.Replacing H2 above by H



yields

−∇ · χ2H2
1∇

H

H1
= 0, in X

H = Γ|∂Xσ|∂Xf, on ∂X.

(38)

This is a well-defined elliptic equation with a unique solution H ∈ H1(X)

for f ∈ H
1
2(∂X). This proves that H = H(γ,σ,Γ)f is uniquely determined

by (H1, H2) and concludes the proof of (i).

Let us next prove (ii). We have already seen that χ was determined by

Mf2 = (H1, H2). Define now v =
√
γu1, which is also uniquely determined

based on the results in (i). Define

q =
∆v

v
=

∆(
√
γu1)√
Du1

,

which is the Liouville change of variables used to solve the Calderón

problem. Since u1 is bounded from below and is sufficiently smooth, the



following calculations show that q is given by (36). Indeed, we find that

∇ · γ∇u1 = ∇ · (√γ∇v)−∇ · ((∇√γ)v) =
√
γ∆v − (∆

√
γ)v = σu1 =

σ
√
γ
v.

(39)

Finally, we prove (iii). Since q is now known, we can solve

(∆− q)vj = 0, X, vj =
√
γ|∂Xgj ∂X, j = 1,2.

Because q is of the specific form (36) as a prescribed functional of

(γ, σ,Γ), it is known that (∆ − q) does not admit 0 as a (Dirichlet)

eigenvalue, for otherwise, 0 would also be a (Dirichlet) eigenvalue of the

elliptic operator

(−∇ · γ∇+ σ)· = (−√γ(∆− q)√γ) · . (40)

The latter calculation follows from (39). Thus vj is uniquely determined



for j = 1,2. Now,

Hj = Γσuj =
Γσ
√
γ
vj =

vj

χ
, j = 1,2,

and is therefore uniquely determined by (χ, q). This concludes the proof

that (χ, q) uniquely determines Mf2.

Theorem. Let Mf2(γ, σ,Γ) = (H1, H2) be the measurements correspond-

ing to the coefficients (γ, σ,Γ) such that (H1), (H2), (H3) hold. Let

Mf2(γ̃, σ̃, Γ̃) = (H̃1, H̃2) be the measurements corresponding to the same

illuminations f2 = (f1, f2) with another set of coefficients (γ̃, σ̃, Γ̃) such

that (H1), (H2) hold. Define δMf2 = Mf2(γ̃, σ̃, Γ̃)−Mf2(γ, σ,Γ).Then we

find that

‖χ− χ̃‖Lp(X) ≤ C‖δMf2‖
1
2

(W1, p2(X))2
, for all 2 ≤ p <∞. (41)

Let us assume, moreover, that γ(x) is of class C3(X̄). Then we have the



estimate

‖χ− χ̃‖Lp(X) ≤ C‖δMf2‖
1
3

(L
p
2(X))2

, for all 2 ≤ p <∞. (42)

By interpolation, the latter result implies that

‖χ− χ̃‖L∞(X) ≤ C‖δMf2‖
p

3(d+p)

(L
p
2(X))2

, for all 2 ≤ p <∞. (43)

Proof. Define ν = χ2 and ν̃ = χ̃2 with χ defined in (36) and β and β̃ as

in (34). Then we find that

∇ ·
ν − ν̃
ν

(νβ) +∇ · ν̃(β − β̃) = 0.

Note that νβ = χ2H2
1∇

H2
H1

is a divergence-free field. Let ϕ be a twice

differentiable, non-negative, function from R to R with ϕ(0) = ϕ′(0) = 0.

Then we find that

∇ · ϕ
(
ν − ν̃
ν

)
(νβ) + ϕ′

(
ν − ν̃
ν

)
∇ · ν̃(β − β̃) = 0.



Let us multiply this equation by a test function ζ ∈ H1(X) and integrate

by parts. Since ν = ν′ on ∂X, we find∫
X
ϕ

(
ν − ν̃
ν

)
νβ · ∇ζdx+

∫
X
ν̃(β − β̃)∇ ·

[
ζϕ′

(
ν − ν̃
ν

)]
dx = 0.

Upon choosing ζ = H2
H1

, we find

∫
X
ϕνH2

1

∣∣∣∣∇H2

H1

∣∣∣∣2dx+
∫
X
ν̃(β−β̃)·∇

H2

H1
ϕ′dx+

∫
X
ν̃(β−β̃)·∇

ν − ν̃
ν

H2

H1
ϕ′′dx = 0.

Above, ϕ stands for ϕ(ν−ν̃ν ) in all integrals. By assumption on the coef-

ficients, ∇ν−ν̃ν is bounded a.e.. This is one of our main motivations for

assuming that the optical coefficients are Lipschitz. The middle term is

seen to be smaller than the third term and so we focus on the latter one.

Upon taking ϕ(x) = |x|p for p ≥ 2 and using assumption (H3), we find

that

‖ν − ν̃‖p
Lp(X) ≤ C

∫
X
|β − β̃||ν − ν̃|p−2dx.



By an application of the Hölder inequality, we deduce that

‖ν − ν̃‖Lp(X) ≤ C‖β − β̃‖
1
2

L
p
2(X)

.

We next write β − β̃ = (H1 − H̃1)∇H2 + H̃1(∇(H2 − H̃2) − . . . and use

the fact that the elliptic solutions and the coefficients are in W1,∞(X)

to conclude that (41) holds.

The other results are obtained by regularity theory and interpolation.

Indeed from standard regularity results with coefficients in W1,∞(X), we

find that the solutions to the diffusion equation are of class W3,q(X)

for all 1 ≤ q < ∞. Since the coefficient γ is of class C3(X̄), then the

measurements Hj are of class W3,q(X) for all 1 ≤ q < ∞. Standard

Sobolev estimates show that

‖Hj − H̃j‖W1,q(X) ≤ C‖Hj − H̃j‖
2
3
Lq(X)‖Hj − H̃j‖

1
3
W3,q(X)

.



The last term is bounded by a constant, which gives (42) for q = p
2.

Another interpolation result states that

‖ϕ‖∞ ≤ ‖∇ϕ‖θ∞‖ϕ‖1−θp , θ =
d

d+ p
.

This provides the stability result in the uniform norm (43).


