KINETIC MODELS FOR IMAGING IN RANDOM MEDIA

GUILLAUME BAL * AND OLIVIER PINAUD f

Abstract. We derive kinetic models for the correlations and the energy densities of wave fields propagating in
random media. These models take the form of radiative transfer and diffusion equations. We use these macroscopic
models to address the detection and imaging of small objects buried in highly heterogeneous media. More specifically, we
quantify the influence of small objects on (i) the energy density measured at an array of detectors and (ii) the correlation
between the wave field measured in the absence of the object and the wave field measured in the presence of the object.
We analyze the advantages and disadvantages of such measurements as a function of the level of disorder in the random
media. Numerical simulations verify the theoretical predictions.

1. Introduction. This paper concerns the macroscopic modeling of high frequency waves propa-
gating in highly heterogeneous media. The energy density of classical waves and the probability density
of quantum waves in random media have long been modeled by kinetic models such as radiative transfer
and diffusion equations [14, 19, 26, 28]. The validity of such approximations was addressed numerically
in [8, 25].

Generalizations of these kinetic models were recently considered to model the correlation of two
wave fields propagating in two possibly different media; see [4, 10]. Theoretical predictions in [10] on
macroscopic models for wave field correlations were confirmed experimentally in [22]. Characterizing
such correlations is of interest e.g. in the analysis of the refocusing properties of time-reversed waves
-when waves propagating in a heterogeneous medium are recorded and retransmitted into a medium
that may have undergone several changes [10]- and in the imaging of changes occurring in the random
medium. As an example of application, we consider the imaging of buried inclusions in random media
from wave field measurements in the presence and in the absence of the inclusion. As we shall see, field
correlation measurements sometimes allow for more efficient imaging capabilities than with any other
type of measurements.

The first contribution of this paper is the validation of radiative transfer equations as accurate
macroscopic models for wave energy densities and wave field correlations; see [8]. We also quantify
the influence of specific realizations of the random media on the measurements. The radiative transfer
equations model the ensemble average of wave energy densities and wave correlations. Even though
theoretical analyses [6, 16] predict the statistical stability of the energy densities in the limit of infi-
nite frequencies, frequency is fixed in practical experiments and measurements are somewhat unstable
statistically. We quantify this statistical instability numerically.

The second contribution of the paper concerns the imaging of (small volume) inclusions in highly
heterogeneous media, when the mean free path characterizing disorder in the medium is too small
-whence the medium too strongly scattering- for techniques based on coherent wave field information
[11, 12] to be relied upon. Once macroscopic models are available to accurately describe wave prop-
agation, the inclusions may be regarded as local perturbations in the constitutive parameters of the
macroscopic equations. Since the volume of the inclusions is typically small compared to the overall
size of propagation, small-volume approximations offer accurate descriptions. Following work in [2, 13],
we characterize the influence of small volume inclusions in two types of regimes, the transport regime
and the diffusion regime, and for two types of measurements, wave energy measurements and wave cor-
relation measurements. The analysis can then be used to image the inclusions as in e.g. [1, 2, 3, 7, 13],
which is not considered further here.

The analysis of the validity of the macroscopic models and the analysis of the influence of small
volume inclusions allow us to compare several imaging scenarios. In all the imaging scenarios considered
here, the realization of the random medium is not known exactly. (i) The first and most difficult
scenario is when energy density measurements are available only in the presence of the inclusion. We
then need to estimate the macroscopic properties of the random medium and image the inclusion at
the same time. The influence of the object then needs to be much larger than the error resulting from
our lack of knowledge of the realization of the random medium, or equivalently much larger than the
aforementioned statistical instability of the energy measurements. (ii) In the second scenario we assume
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that we have access to the wave energy density in the absence of the inclusion and in the presence of
the inclusion. These differential measurements allow us to obtain measurements whose magnitude is
in some sense proportional to the inclusion. Using a kinematic picture, all the paths that do not visit
the inclusion’s location do not contribute to the differential measurements since they exactly cancel.
Such paths cause most of the statistical instability that hampers imaging in the first scenario. (iii)
In the last scenario, we assume access to wave field measurements in the presence and in the absence
of the inclusion so that we can form their two-field correlation. Since wave field measurement may
be more difficult to evaluate accurately than wave energy density measurements, this scenario is the
most demanding technologically. It will prove however extremely valuable in imaging in very scattering
underlying media.

The rest of the paper is structured as follows. Section 2 presents the radiative transfer and diffusion
equations to model wave energy densities. These models are generalized to account for the correlation
of wave fields in the presence and in the absence of the inclusion. Here, an inclusion is modeled by
a (possibly regularized) jump in the sound speed and possibly by a suppression of the heterogeneous
fluctuations. The details in the derivation of the kinetic model are given in Appendix A.

The influence of small volume inclusions is modeled in Section 3. We obtain different orders of
magnitude for the inclusion’s influence depending on the regime of wave propagation, radiative transfer
or diffusion, and on the type of measurements, energy densities or wave field correlations. Some details
of the derivation are postponed to Appendix B. Section 4 analyzes the three imaging scenarios described
above and compares them in the transport and diffusion regimes of wave propagation.

The validity of the transport models is addressed numerically in Section 5. We perform wave field
propagation over a two-dimensional domain of size equal to 200 x 200 wavelengths and compare wave
energy and wave field correlation measurements with kinetic model predictions. The kinetic equations
are solved by using a Monte Carlo method. We also estimate the statistical instability of the energy
density measurements as a function of the size of the array of detectors. This information is important
in imaging based on the first scenario. Section 6 offers some concluding remarks.

2. Macroscopic kinetic models. In this section, we recall the transport and diffusion equations
that model high frequency wave propagation in highly heterogeneous media. We then adapt the macro-
scopic models to account for localized changes in the random media. These changes model here the
presence of a small inclusion. Small means small with respect to the overall distance of propagation.
We shall see that the objects have to be large compared to the typical wavelength of the wave fields in
order to be detectable.

2.1. High frequency regime. We consider here scalar (acoustic) waves for concreteness. Gen-
eralization to other classical waves may be done as in e.g. [4, 26]. Wave propagation may thus be
described by the following second-order equation:

2
% =k x)V-p H(x)Vp, xeR >0, (2.1)
supplemented with initial conditions p(t = 0,x) and %(t = 0,x). Here, p is acoustic pressure and
p and k are density and compressibility of the underlying media, respectively. We shall assume that
p(x) = po is constant to simplify the presentation. All the kinetic models derived in this paper are
readily generalized to the case of a non-constant density.

In the high-frequency regime, rescaling time and space as t — et and x — ex, the wave equation
is recast as:

82 ps
ot?

= c2(x)Ap7, (2.2)
with the same initial conditions at t = 0 and where c.(x) := (poke(x))~ /2 with
X
re(x) = o+ VR (2 ),
where kg is the background compressibility (assumed to be constant to simplify) and k; accounts for

the random fluctuations. The strength of the fluctuations is weak and of order y/z. Since the length
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scale of the fluctuations is of order e, waves still encounter on the order of e~/2 > 1 “fluctuations”
when propagating for a distance of order L = O(1).

A systematic derivation of radiative transfer models for wave propagation in random media was
developed in [26]. To avoid complications caused by the presence of vortical (non-propagating) acoustic
modes, we recast the wave equation as a two-by-two system of equations and follow the equivalent
method presented in [4]. Let us introduce the quantity

e Op°
c2(x) E(t’ x).

q°(t,x) = (2.3)

The wave equation may then be recast as the following hyperbolic first-order system of equations for
u. = (p°,¢°):

ou,

€ o + Acu. =0, X € Rd, t>0, (2.4)
where A, is given by
0 3(x)
A = — € . 2.
c ( e2A 0 ) (25)

Based on our assumptions on k.(x), we have, up to negligible lower order terms in &, that

2 =d-vev (), d=—— V) =Dm@). (26)

All of the heterogeneity of the underlying medium is thus encoded into k1 (x) or equivalently V' (x). We
assume that V(x) is a mean-zero, homogeneous stationary random field. All we need to know about the
random field at the kinetic (macroscopic) level is its two point correlation R(x). The power spectrum
of V' is the Fourier transform of R(x) and we have the following relations:

AR =EVeV(x ), 2.7
(2m)%cg R(p)d(p + a) = E{V(p)V(a)},

where V(p) denotes the Fourier transform of V(y) and E denotes ensemble average over the fluctuations.
When an inclusion is present in the random medium, the properties of the underlying media are
perturbed locally. We assume here that the inclusion is modeled by a sound speed ¢? = ¢ + Ac? > 0
that is different from the surrounding environment and constant. Equivalently, the inclusion is modeled
as a local change in the compressibility o + Ax > 0 so that Ac?> = —c3 Hﬁ_’zn. We denote by €2 the
support of the inclusion. In the presence of an inclusion, the sound speed thus need be modified as

¢2(x) = & + X (AP — VE(L = x(x)V(Z), (2.8)

where x(x) = 1 for x € Q and x(x) = 0 elsewhere. Here 7 is a parameter modeling fluctuations
within the inclusion, with v = 1 if random fluctuations are suppressed within the inclusion and v = 0 if
fluctuations are still present within the inclusion and have the same statistics as outside of the inclusion.

To distinguish the fields propagating in the unperturbed and perturbed media, we denote them by
ul = (pl,ql) and u? = (p?, ¢2), respectively. They satisfy the following systems of equations:

ou¥
5%+A?uf=0, 0=1,2 xeR¢ >0,
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The relevant macroscopic quantities we wish to consider are the energy densities £%(t, x) in the absence

and & .(t,x) in the presence of an inclusion and the cross-correlation C*(¢,x) of the two wave fields.

They are defined by
&(t,x) 3 (Ko (P2(t,%))? + polvi (£, %) %) ,
Ene(t,x) = 3 (m2(x) (P2(t,x))* + polVE(t, X)) , (2.9)
)

1 1
Co(t,x) = (g3 (IPLEX) PR(E %) + povi (%) - VE(E X))

»

»

where k3(x) = Ko + Ak x(x) and v? is defined via the relation ¢ = —poV - vi. We now consider the
evolution of these quantities in the radiative transfer regime.

2.2. Transport equations. The macroscopic description of the energy density £°(¢,x) in (2.9) is
quite standard and may be found in e.g. [4, 24, 26]. The asymptotic behaviors of & .(t,x) and C°(¢,x)
in the high frequency regime, i.e., mathematically as € — 0, are the main contributions of this section.
These behaviors are obtained following the methodology developed in [4, 10].

In the regime of radiative transfer, the physical energy densities £°(¢,x) and &7 (¢,x) and the
correlation C¢(t,x) do not satisfy closed-form equations. The energy density need be modeled in the

space of positions and momenta by means of the following Wigner transform

Wik(t,x, k) = W [UZ(tv ), ué(t, )] (x, k), d (2.10)
iky 1j &y : = Y .
= /Rdek ue(t,X—7) (u’;) (t’x—i—?) W’

for 1 < j,k < 2. It is shown formally in the aforementioned references that W7 := W2 converges as
e — 0 to a limiting Wigner measure

W (%, k) = a, (£, %, k)b, (x, k)b, (x, k)" + @’ (t, %, k)b’ (x, k)b (x, k)",
where we have defined
1 [ +ilk|

Lk)=— x 1 +ifk] c(x) = (c X)Ac?)?
b9 == () miean = 5 (N ) = (@ aoac)

In the absence of an inclusion, the amplitude of the propagating mode aﬂr solves the following radiative
transfer equation:

&ﬁr P 1 1
W—I—cok-vanr-l-E(k)aJr:Q(a

augmented with prescribed initial conditions aﬁ_ (0,x,k), where k = ‘—11:‘ and where (Q and ¥~! denote
the collision operator and mean free time, respectively, and are given by:

Q(a)=Ada(t7x,p>o(k,p>6(colp|—co|k|)dp, Z(k)Z/Rda(k,p)é(co|p|—co|k|)dp. (2.12)

), x€R? (2.11)

+ =

The cross section o(k, p) appearing in these expressions is given by

o(k,p) = gfg'ﬂl_‘)'d Rk —p). (2.13)

A similar expression is obtained for al (t,x,k) = al (¢,x,—k). The physical energy density is then
derived from the phase-space energy density by averaging out the momenta variable:

lim £°(t,x) = / al (t,x, k)dk. (2.14)
e—0 R4

The energy density aﬁ_ is a uniquely defined deterministic quantity. In the limit of high frequencies,
the energy densities are thus self-averaging, in the sense that they depend on the statistics of the random
medium and not on its specific realization. This is good news as they are stable observables and thus
are useful in imaging. How stable the energy is at a small but non-vanishing & remains an important
question that will be addressed numerically in Section 5.

The rest of this section is devoted to the derivation of macroscopic models for £ (¢,x) and C*(¢, x).
The details of the derivations are postponed to Appendix A.
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Energy density in the presence of an inclusion.. We now generalize the above kinetic model to
obtain a description of the energy density & .(f,x) in the presence of an inclusion. As in (2.14), the

physical energy density &£ . may be decomposed in the phase space as:

lim anc(t,x):/ ai(t,x,k)dk. (2.15)
e—0 R4

We need to find an equation for a? (¢, x,k). The derivation of the kinetic model from (2.10) to (2.11)
is local in nature. This means that that limit of W [¢(x)ul(t,-), ¢(x)uk(t,-)] (x,k) is [¢(x)|? times
the limit of W [ui(t,-), uf(¢,-)] (x,k), where ¢(x) is an arbitrary smooth test function; see [17] for the
details. As a consequence, a? (¢,x, k) solves (2.11) for x € RY\Q.

For the same reasons, a2 (t,x,k) solves a radiative transfer equation of the form (2.11) with ¢2
replaced by ¢ = 2 + Ac? and Q replaced by (1 — )Q for x € Q, i.e., inside the inclusion. The
parameter « introduced in (2.8) measures the amount of random fluctuations inside the inclusion (with
~ =1 corresponding to a suppression of the random fluctuations inside the inclusion).

It remains to link the energy densities ai (t,x,k) across the interface 9. In the case of a sharp
jump of the velocity field ¢(x) = ¢y for x outside of 2 and ¢(x) = ¢; inside €2, wave fields impinging
upon the interface 92 are partially reflected and partially transmitted according to the classical Snell-
Descartes laws. These laws directly translate into equivalent reflection and transmission conditions for
the wave energy density at the inclusion’s boundary. Because we shall not use such interface conditions
any further in the paper, we refer the interested reader to [5] for a detailed account of such transmission
and reflection conditions. Rather, we consider the limit where the sound speed inside the inclusion ¢;
tends to infinity. In such a limit, which corresponds to non-penetrable inclusions, we verify that the
energy is specularly reflected at the inclusion’s boundary, which means that we have:

a3 (t,x,k) = a% (t,x,k — 2k -n(x)n(x)), x €I, (2.16)

where n(x) is the outward unit normal to the boundary 02 at x € 9€). In our comparison of various
kinetic models in the next section, we shall restrict ourselves to these specific boundary conditions.

Cross-correlations in the presence of an inclusion.. It remains to analyze the cross-correlation term
Ce(t,x). Although kinetic models have historically been applied to the derivation of energy densities
as in [26], relatively straightforward generalizations, as they were developed e.g. in [4, 10], also allow
us to derive kinetic models for correlations of wave fields propagating in possibly different media. The
details of the computation are presented in Appendix A. The salient features of the derivation are that
W22(t,x,k) converges as ¢ — 0 to

W (t.x. ) = al2 (% J)bL () (b (x, )" + a2 (t,x, K)b! (k) (b? (x. k)",

where the propagating modes a'? solve radiative transfer equations. More precisely, we find that af
solves the equation

8&12 R .
a: + ok - Veal? + 2(k) al? = Q(al?), x € RN\Q, 2.17)
al?(t,x,k) =0, x € 09, k-n(x) >0,

with the initial conditions a}?(0,x,k) = a! (0,x,k) for x € R/\Q and a}?(0,x,k) = 0 for x € 9Q. In
other words, af solves the same radiative transfer equation as a}|r except that the solution vanishes
inside 2. Moreover, as in the case of energy densities, we have the relationship:

lim C°(t, x) :/ al?(t,x, k)dk. (2.18)
e—0 R4

The physical interpretation of such a result is as follows. The two wave fields, one in the absence
of an inclusion, and one in the presence of the inclusion, satisfy different dispersion relations inside
Q) because of the sound speed difference. As a consequence, they interfere destructively so that their
interference pattern converges (weakly) to 0 inside 2. Such destructive interferences may be explained
as follows. Let us consider the two fields p*(¢,x) = X(x)ew defined inside the inclusion
for m = 1,2 with different dispersion relations. We assume that the velocity fields vanish to simplify.
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Then, we verify by straightforward calculations that the Wigner transform W_[pl, p?](t, x, k) is given,
up to lower order terms, by

c1lky—colko| kj—ko
ezt - = X|X

_kitk

() o — =

).

In the limit € — 0, the above term converges to 0 weakly (in the sense of distributions) unless ¢1|k1| =
c2lka| = w and k; = ko. This implies ¢; = ¢2. Unless the latter constraint holds, the two wave fields p!
and p? interfere destructively inside the inclusion. This is the reason why af = 0 inside Q. We refer
to the first part of the appendix for additional details.

Note that in the appendix, we make the additional assumption that the sound speed Ac?(x) =
Ac?(d(x,00); \/€) is regularized at the inclusion’s interface. More specifically, we assume that it is
a smooth function, which vanishes outside of € and is constant and equal to ¢? — ¢3 at each point
separated from the boundary 9 by a distance at least equal to y/z. Such a smoothing of the interface
allows us to derive a closed form equation for the Wigner transform of the two wave fields, which
avoids the complications inherent to a jump in the sound speed and the related Snell-Descartes laws
[5]. Since the resulting equations for a}? are independent of the regularization, we formally obtain that
(2.17) also holds for sound speeds modeled by ¢(x) = ¢o outside the inclusion and ¢(x) = ¢; inside the
inclusion. The appendix also covers configurations where inclusions have the same sound speed as the
surrounding (¢; = ¢o) but where the fluctuations are suppressed (v = 1; this could model a canopy
gap in a forest), and the transition regime where the difference in the sound speeds Ac? is of the same
order as the wavelength .

2.3. Diffusive regime. It is well known that solutions of radiative transfer equations in the small
mean free path regime are well approximated by solutions to diffusion equations [15, 20]. Let us define
the mean free path [ = coX~1. The diffusive regime arises when n = [/L < 1, where L is the typical
distance of wave propagation. Rescaling time and space as t — t/n? and x — x/n, we find in the limit
n — 0 that a! (¢, x, k) becomes independent of the angular variable k = k/|k|:

al(t,x,k) ~ U'(t,x, k),

and more precisely that U? satisfies the following diffusion equation [15, 26]:

1
U Dy(K)AUL =0, xR
?t ‘o ) (2.19)
N |, L 0.x.p)5(c0l] = [pl)ip.

The above equation is written in the three dimensional setting, d = 3, to simplify. The diffusion
coefficient is defined as

b

Do(|k|) = , (2.20
D= Sy — 2] :
where the anisotropy factor A is given via the relation
Rk [
AkDk = ——=5 | R(p—k)pd(co([k| — [p]))dp. (2.21)
(47'(') R3

Similar expressions exist in two space dimensions [8].

The limiting equations for aﬁ_ and af are obtained similarly in the limit  — 0. We assume here
that the inclusion Q is perfectly reflecting (¢; = +00) and is of size comparable to L > 7. In the
limit 7 — 0, the specular reflection conditions (2.16) at the transport level translate into homogeneous
Neumann boundary conditions for U?(t, x, |k|) ~ a% (f,x,k). Indeed, in the diffusion approximation,
a? (t,x,k) = U%(t,x, [k|) — %k - VU? [15, 20] up to lower-order terms in 7. Multiplying the latter
equation by n(x) - k and integrating over the unit sphere k = ‘—11:‘ € 891 yields, using (2.16), that
n(x) - VU? =0 for x € 90. So U%(t,x, |k|) solves (2.19) on R3\Q with the same initial conditions as
before and satisfies

2
%Ln =0, x€d. (2.22)



Note that the above interface conditions at 0f) in the diffusive regime may be generalized to the case
where the sound speed inside 2 is bounded (¢; < 00). Although this case is of practical interest, we do
not consider it further here and refer the interested reader to [9] for more details.

Similarly, in the limit n — 0, U'2(¢, x, |k|) ~ a?(t, x, k) still vanishes inside Q so that U'?(t, x, |k|)
also solves (2.19) on R3\Q with the same initial conditions and verifies

U2=0, x€09Q. (2.23)

To summarize, the energy density Ul(t,x, |k|), which is equal to £(¢,x) if the initial condition
is concentrated at the frequency w = colk|, solves the unperturbed diffusion equation (2.19) in the
absence of an inclusion. In the presence of the inclusion, U?(t, x, |k|) solves the same diffusion equation
with Neumann boundary conditions at the boundary of the inclusion and U2 (¢, x, |k|) solves the same
diffusion equation with vanishing boundary conditions on 9.

3. Modeling and imaging of small volume inclusions. The macroscopic models derived
in the preceding section lead us to the following observation. Provided that the random medium is
sufficiently mixing -this will be addressed numerically in Section 5.1-, buried inclusions may be modeled
by constitutive parameters in a transport equation or a diffusion equation. In the detection and the
imaging of such inclusions, the microscopic inverse wave problem has thus been replaced by an inverse
transport problem or an inverse diffusion problem. The advantages of such a modification are the
following: (i) we no longer need to model the random fluctuations explicitly and rather only need
to estimate their statistical properties; (ii) the highly oscillatory wave fields (at a frequency of order
e~!, whose accurate numerical description demands high computational costs) have been replaced by
slowly varying phase-space energy densities (in the transport model) or physical energy densities (in
the diffusive regime); (iii) the imaging of the inclusion depends on fewer macroscopic parameters such
as the mean free path cgX~! in the transport regime and the diffusion coefficient D in the diffusive
regime. The smaller these coefficients, the larger is the optical distance between the array of detectors
and the inclusion and consequently the more difficult is the reconstruction of the detailed geometry
of the inclusion. We refer the reader to e.g. [18, 23] and their references for more details on inverse
transport and inverse diffusion theories.

In order to better assess the imaging capabilities of algorithms based on macroscopic energy densi-
ties and two-field correlations, we consider the case where the inclusions have small volume, in the sense
that their properly defined diameter 2RL is small compared to the typical distance of propagation L
(i.e., R < 1). The small volume approximation provides two benefits. The first benefit is that asymp-
totic expansions in the volume allow us to characterize the influence of the inclusion on the various
kinetic quantities ai, af, U? and U'? defined in the previous section. Such a characterization then
enables us to compare the influence of the inclusion on the different types of available measurements.
The second benefit is that the asymptotic influence typically depends on only a few geometric param-
eters of the inclusion such as its position and volume. Such simplified models can then be exploited in
the imaging of the inclusion from available measurements; see e.g. [2, 3, 13].

3.1. Small volume inclusions in the transport regime. We first consider the influence of the
inclusion on the transport regime quantities ai and af. We do not obtain explicit expressions for the
quantities a}r — ai and a}r — af in the full generality of transport equations. Rather we are interested
in the order of magnitude of these quantities as a function of the volume of the inclusion. Let us recast
the transport equation as

Ja
ot
where a(0,x, k) is prescribed, K is defined as @ in (2.12) with o(k, p) replaced by o(k, p)/2(k), and
o5 is a constant that would be defined as o, = ¥ in (2.11). We assume here that |k| is fixed and thus

obtain a solution a(t, x, 1A<) function of the variables ¢, x, k = k/|k|. We still denote momentum by k.
We choose initial conditions in the transport equation (3.1) of the form

+ cok - Vxa + Ya = osKa, (3.1)

a(0,%,k) = 4(x),

or more generally of the form 8(x)¢(k) with ¢(k) a smooth function. The smoothness of the latter
function means that we do not know a priori in which direction to send the energy in order to detect

7



and image the inclusion. It can be verified that such initial conditions are indeed admissible as limits
of Wigner transforms when ¢ — 0 [8, 21].
In the limit where o4 vanishes, the transport solution reads

ao(t,x, k) = e 25 (x — tcolA{).

This solution, which represents the (non-scattering) ballistic part, is independent of space dimension.
Decomposing the exact solution to (3.1) as @ = ag + as, we find that the scattered component solves
the equation

Oag
ot

+ cok - Vyas + Yas = 0sKas + osKay, (3.2)

with vanishing initial conditions as(0,x,k) = 0. We have thus replaced the initial value problem by
a non-homogeneous transport equation. Provided that scattering is of order O(1) so that the ballistic
part is not negligible, we obtain that as is of order comparable to the source term o,Kag from the
well-posedness of the transport equation [15]. Note that we do not assume smallness of o5. We simply
assume that it is not of the form o4/n for n < 1, for then we are in the diffusive regime of wave
propagation, which is considered in Section 3.2.

In this context, let us analyze the influence of an inclusion on the quantities aﬂr — a%r and aﬂr — af,
which we re-label as a — a? and a — a'?2. We define a® = a + a2 and a'? = a}? + al?, where a and a}?
are the ballistic parts for energy and correlation measurements in the presence of the inclusion. Then
we find that

a(1)2 (t,x, k) = e*Zté(x - tCOR)XinC(x), (3.3)

where Yinc(x) = 0 when the segment {tx, 0 <t < 1} intersects  and Xinc(x) = 1 otherwise. Similarly,
we find that

ad(t,x,k) = e Z5(x— st x, K)cok — (t — s(t, x, k))cok/ (¢, x, k)), (3.4)

where s(t,x,k) is the time it takes for the signal to reach the inclusion Q knowing that it will be at
point (x,k) at time ¢ (with s = 0 when such a scenario cannot happen), and where k’(¢,x, k) is the
direction of the signal after scattering at Q2 (with k’ = k if no scattering has happened). We assume
here that the inclusion is convex so that the ballistic part hits 2 at most once. Neglecting second-order
interactions of the wave fields with the inclusion Q (which is valid when Q is sufficiently small), we
obtain that the scattered parts a? and al? satisfy the following equations

da?
ot

+ cok - Vya? + Yaf = 0, Ka? + 0. Kaf, p=2or ¢=12. (3.5)

12 12

As a consequence, a — a? and a — a'? are of the same order as their ballistic parts ag — a and ag — a}?,
respectively.

We obtain by inspection that both differences ag — a3 and ag — a}?, integrated over momenta and
over a spatial box of size L sufficiently large, are of order R%™!, where we recall that 2RL measures the
physical diameter of the inclusion and d is space dimension. In other words, the inclusion modifies the
intensities and correlations by an amount proportional to the solid angle of the inclusion seen from the
source term location.

Assuming that the mean free path is not too small, so that multiple scattering does not dominate
the transport solution, we therefore obtain that the influence of the inclusion on energy or correlation
measurements (wherever the detectors may be located) is of order

la —a?||p ~ RYE, la —a*?|pr =~ R* (3.6)

Here the L' norm is in the space (x,k) € R? x §9-1,

Note however the following differences between a — a? and a — a'?. The former difference averages
(in the phase space (x, l;)) to 0 because specular reflection at 99 conserves energy. Moreover a3 allows
us to detect the object no matter where the detectors are located. This is to be contrasted with the
behavior of @ — a'?. Note that a — a'? has a positive average because some correlation is lost at the
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interface 992 because of the mismatch of sound speeds inside and outside of the inclusion. Moreover,
a— a}? is non-zero only when detectors are located in the shadow of the inclusion viewed from the delta
point source location. This means that in the absence of sufficient scattering, measuring the correlation
a$? is not efficient and does not bring any additional information compared to the measurements of a3.

The situation is different in the diffusive regime as we now demonstrate.

3.2. Small volume inclusions in diffusion regime. Let us now consider the influence of lo-
calized small-volume inclusions on measurements in the regime of diffusion. We still assume that |k| is
fixed and do not write it explicitly. The quantities a, a?, and a'? are now replaced by U', U? and U2,
respectively. We refer to Section 2.3 for the equation they satisfy.

The influence of small volume inclusions in diffusive equations has been extensively studied recently;
see [2, 13] and their references. Assuming that the inclusion is a ball of radius R to simplify (see the
aforementioned references for extensions to more general geometries), we have shown in [7] that the
perturbed energy density is given by

t
U%(t,x) = U(t,x) + %DowRd/ VUt — s,%p) - VG(s,x — xp)ds + ORI, (3.7)
- 0

where G is the Green function of the unperturbed diffusion equation (2.19). This expression holds for
all space dimensions.

The behavior of the correlation difference U' — U'2 is quite different. We refer the reader to
Appendix B for the details of the calculations. What the asymptotic analysis reveals is that:

t
U2 (t,x) = U'(t,x) — Derd’Q/O M(t — 5)G(s,x,xp)ds + O(RT™), (3.8)

where M is a coefficient explicitly defined in Appendix B, which is independent of the size of the inclu-
sion. Here dimension d > 3. In dimension d = 2, the difference U — U'? is proportional to |logR|~?,
whereas in dimension d = 1, the difference is of order O(1). This shows that absorbing conditions like
(2.23) have a much larger effect on measurements (at arbitrary positions x) than Neumann conditions
like (2.22).

4. Correlations and energy measurements: what is the best scenario?. How do the two
types of measurements &,. and C*(¢,x) then compare in practice? We mention three possible scenarios
and compare their advantages and disadvantages based on the results obtained in the preceding section
on the influence of small volume inclusions.

(i) In the first scenario, we are only able to measure £ .. We do not have access to measurements
in the absence of the inclusion and thus cannot form &7, — £°, let alone C*(¢,x) — £°.

(ii) In the second scenario, we can estimate energy densities £° and &£, and thus can form the

difference £ . — £°. We may not be able to measure wave fields accurately enough to form

mc
Ce(t,x).
(iii) In the last scenario, we can measure uf for ¢ = 1,2 accurately and thus can form £¢, £, and
C®(t,x) as well as the differences &, . — £° and C*(t,x) — £°.

These scenarios are increasingly constraining technologically and practically. Imaging is hardest in
the first scenario. The reason is that the measurements are inevitably noisy because the random wave
energy density does not quite satisfy its deterministic limit at ¢ = 0. Because of this, the measured
energy density is statistically stable (independent of the realization of the random medium) only up
to a certain point. The influence of the inclusion, modeled by a — a? in the transport regime and by
U' — U? in the diffusive regime, thus has to be larger than the noise level coming from our lack of
knowledge of the specific realisation of the random medium. Detection and imaging of inclusions in
highly heterogeneous random media with a given noise level has been addressed in [7] to which we refer
the reader. We will provide numerical estimates of the noise level for specific random media in our
section on numerical simulations.

Imaging is much simplified in scenarios (ii) and (iii) because we can form differential measurements:
i.e., the difference of measurements in the absence and in the presence of the inclusion. Scenario (ii)
requires energy measurements only, which ideally may be performed at a more macroscopic level than
the wavelength, and are thus technologically less demanding than the measurements required in scenario
(iii) to form accurate correlations.



Both scenarios (ii) and (iii) allow us to remove a substantial amount of noise coming from our lack
of knowledge of the specific realization of the random medium. The reason is simple: path emanating
from the source term and reaching the array of detectors without hitting the inclusion are not known
exactly. They generate considerable noise in scenario (i). However, they cancel in scenarios (ii) and
(ili) when we form the differences £, —£° and C°(t,x) — £°. In the latter two measurements, noise has
to be proportional to the product of the size of the inclusion with our lack of knowledge of the random
medium. Such a product is therefore quite small.

Now to the detailed comparison of scenarios (ii) and (iii). In the transport regime, we have observed
that both differences £ . —E&° and C* (¢, x) —E° are roughly of order R~ where R < 1 is proportional to
the diameter of the inclusion. Worse yet, the correlation difference C¢ (¢, x)—E¢ is not visible everywhere
in the weak scattering limit. Scenario (ii) therefore provides the most adapted type of measurements
for detection and imaging.

The situation is reversed in the diffusive regime. Because energy is conserved at the boundary of
the inclusion in the case of specular reflection, the net effect of the inclusion’s influence is a source term
whose phase-space average vanishes. In the diffusive limit, this means a very localized effect of the
inclusion so that its influence has to be obtained at a higher order (Rd versus Rd_l) in the inclusion’s
radius. In contrast, the vanishing boundary conditions (2.23) create a very strong constraint in the
diffusive regime: because of increasing scattering, more and more paths reach the inclusion where they
are absorbed. The net effect of the inclusion on measurements is an increase from a influence of order
R?™! in the transport regime to an influence of order R~2 > R?~! in the diffusion regime.

When scattering is sizeable, correlations of the form C®(¢,x) provide more signal to detect and
image small volume inclusions than do energy measurements. Scenario (iii) becomes optimal among
the three considered scenarios.

5. Validity of the transport model. This section concerns the numerical validation of the
macroscopic radiative transfer model for the correlation C¢ (¢, x). We pursue the research effort presented
in [8] comparing wave simulations of £°(¢,x) with transport theoretic predictions. After recalling the
numerical tools that we use to solve wave and transport equations in Section 5.1, we show the very
good accuracy of the radiative transfer model (2.17) to estimate C*(¢,x) in Section 5.2. The statistical
stability of the energy measurements £°(t,x) is briefly addressed in Section 5.3. A comparison of the
influence of small inclusions on both £°(¢,x) and C°(¢,x), which provides direct information about
what one can expect in terms of detection and imaging capabilities, is shown in Section 5.4. Explicit
inversions are not considered here; see e.g. [7] where imaging of small-volume inclusions is considered.

5.1. Numerical setting. The numerical setting for wave propagation was described in detail in
[8]. We recall here its main characteristics. The wave equation is solved in two-space dimensions as a
mixed finite-difference discretization of the equations
ov dp
PO+ TP =0, KD +V V=0, p0%) =po(x), vOX) =volx). (D)
The computational domain is surrounded by a classical perfectly matched layer. We use a second order
centered scheme for the discretization in time so that the overall scheme is second order both in time
and space. The code is parallelized using the PETSc library, which allows for simulations on large
domains. The initial condition is chosen so that only one frequency |k| is present at the transport level,
at least approximately. More precisely, we choose:

x — xq|?
202

t
o(x) = (o,coexp( | )Jo<|ko||x—><o|>) = (0,p0)' (5.2)
where Jy is the zero-th order Bessel function of the first kind. This initial condition exhibits an
oscillatory behavior at the frequency k/e (reduced frequency k) and is localized in the vicinity of the
point xg. The constant Cj is chosen so that the energy associated to ug is equal to one. The exponential
term is chosen here to localize the source term. However, it has sufficiently slow variations in order
not to interfere with the highly oscillatory Bessel function. Here, o is chosen to be on the order of ten
wavelengths so that the frequency content of ug is primarily that of a single wavenumber |ko|.
In the simulations, we assume that

po=1 kr(x)=1+ ﬁm(?), (5.3)
10



where k1 is a stationary mean-zero random variable. The average sound speed is thus normalized to
¢o = 1. The fluctuations of the compressibility x1(x) have been carefully modeled to satisfy prescribed
power spectra in (2.7). This was done in the Fourier domain as in e.g. [8, 10].

The transport equations are solved by a Monte Carlo method as in [8]. The modified transport
equation (2.17) is solved as usual, except that particles are killed when they hit 9Q. The difference of
intensities aﬁ_ - af is estimated by using the same variance reduction technique as in [8]: namely the
random trajectories that do not hit Q2 are the same in the calculation of both aﬂr and af. The initial

condition at the transport level is
ag(x,k) = d(x — x0)8(|k| — [ko|)ko| " (5.4)
The power spectrum R is chosen isotropic and of the form

R(r):{ Ry for r< M,

0 for r > M,
where M is a given parameter such that M > 2|kg|. The scattering coefficient ¥ is then given by

2@:@?. (5.5)

In order to test the validity of the correlation prediction in the high scattering regime, where they are
of interest, we have chosen a random medium with 8% of standard deviation, namely /Ry = 8% with
Ry given by (27)?Ry = 7M 2Ry. We note that such high standard deviations for the heterogeneities in
the random medium essentially preclude the use of scenario (i) in imaging unless the inclusion is quite
large.

5.2. Accuracy of transport theoretic correlations. Accuracy of the transport model is tested
following the same two steps we used in [8]. We first evaluate the transport parameter of the random
medium, namely the mean free path coX~! and then use this mean free path to assess the validity of
the transport model to characterize the influence of a small-volume inclusions on the measurements.

Estimation of the transport parameters.. Denoting by D the physical location of the array of de-
tectors, we calculate numerically the following quantities

&) = [ ettxax =3 [ (=0 (12 + ol () dx.

for the wave description and

ﬁ@z//a%m@ﬁ&://a%mﬂ@%&Mﬂk
D JR2 D JSt

for the transport prediction, where we dropped the subscript + in a'. Statistical stability for such wave
measurements is of the order of 6 — 7% based on numerical simulations on 4 realizations. We do not
estimate the physical parameter X! based on a single realization as we did in [8] but rather average
here over four realizations in order to obtain a more accurate description. The computational domain
is of order 200 x 200 wavelengths and the detector array 60 x 40 wavelengths; see Fig.5.1 for the setting.

The transport energy density A! = A'[¥] depends parametrically on 3, whose theoretical predic-
tion is given in (5.5). We minimize ||€ — A'[X]||2(0,7) to estimate the mean free time X! A value
of T'= 1800 yields a numerical estimate of ¥, 1 = 37 while the theoretical value in (5.5) is given by
¥, = 38.37. The residual value of ||€ — A [Snum]|| r2(0,7)/ A [Snum]| 20,7 18 about 3.0%. Because
fluctuations are here (purposely) significantly larger than what we had in [8] (8% versus 5%) and be-
cause the array of detectors is significantly smaller (60 x 40 wavelengths versus 150 x 150 wavelengths)
there is considerably more noise in the estimation. Note however the good accuracy of the radiative
transfer model since the best fit approximation lowers the residual value between wave energies and
transport predictions to roughly 3%, a figure that would be quite accurate in many practical situations.
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Fic. 5.1. Domains of computation used in the numerical experiments.

Validity of transport equations in the presence of an inclusion.. We now add into the medium a
spherical inclusion of radius R and effective sound speed twice as large as the surrounding medium.
The jump in the sound speed is regularized over two wavelength (2 times 20 grid points numerically).
Fluctuations are suppressed inside the inclusion.

The influence on the correlations is denoted by 6., = € — C for the wave fields and by 6 Acor =
A — A2 for the kinetic description, where

C(t):/C(t,x)dx,
D
1
:540#%¥@wwmﬁwm+m¢wmw%m0@,
A%):// a12(t,x,k)dxdk:// a2 (t, x, k|ko|) 27 |ko|dx dk.
D JR2 DJSt

Numerical comparisons of 0€.., and d. Ao, are presented in Fig.5.2 for balls of radius R = 15 (left)
and R = 8 (right) wavelengths, respectively. The calculations are averaged over 2 realizations in the
case R = 15 and over 4 realizations in the case R = 8 to slightly suppress oscillations (smoothing in
time would have a similar effect). We observe a very good agreement between the wave simulations
and the kinetic predictions. Note moreover that both 6., > 0 and 0. Acor > 0 as is expected physically
since correlation is lost at the inclusion’s location because of the mismatch in the sound speed.

5.3. Statistical stability. Statistical stability of the energy measurements is a crucial component
for detection and imaging in the framework of scenario (i). As we have already said, lack of knowledge
of the realization of the random medium translates into a significant noise level between the true energy
density £ and its kinetic prediction. Detection and imaging are then possible only when the influence
of the inclusion is larger than this noise level [7], unless the inclusion possesses a particular statistical
signature that is very different from that of the random medium, an extremely unlikely scenario in
wave propagation in highly heterogeneous media.

How unstable measurements of £ are primarily depends on two parameters: the level of disorder
Ry and the size of the detector D. Consider the relative standard deviation

where o denotes standard deviation, E average (mathematical expectation) and £ the energy averaged
over the array of detectors. The average and the standard deviation are computed over 8 realizations of
the random medium and the measurements are performed over an array of size 40 x 60 centered at the
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Fia. 5.2. Verification of the accuracy of the modified transport regime: comparison wave in changing media -
transport equations, for 8% fluctuations. We plot 6Ecor and §Acor. The domain of computation is that of fig. 5.1. The
R =15 (resp. R=28) case on the left (resp. right) is averaged over 2 (resp. 4) realizations.

point (100, 100). Fig.5.3 (left panel) shows the relative standard deviation S(¢) in that configuration.
We do not possess theoretical models for S(¢). The growth observed in Fig.5.3 may be explained as
follows. It is known in the homogenization of rapidly varying ordinary differential equations that, in
the appropriate context, the solution converges to a deterministic solution (following the law of large
numbers), and the next-order corrector becomes a stochastic integral (following a generalization of the
central limit theorem). The variance of such a stochastic integral increases with time (it starts at 0
at time T = 0 as in Fig.5.3) before it stabilizes in a way depending on the nature of the problem at
hand. A similar process is observed here. A more careful explanation requires a theoretical model for
the correction term 5 — €9, where £%(x) = [;. a} (x,k)dk with the notation used in earlier sections.
Such a model does not exist at present.

Relative standard deviation computed over 8 realizations Relative standard deviation for several detectors
0.161 0.18p
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Fi1G. 5.3. Left: S(t) performed over 8 realizations, for a 40 x 60 detector located at the center of the domain. Right:
S(t) performed over 20 realizations and computed for 4 different detectors located at the center.

The right panel of Fig.5.3 shows the evolution of S(t) for four different detectors Dy, 0 < k < 3
centered in the middle of the domain and of sizes equal to 10 x 10, 20 x 20, 40 x 40, and 80 x 80,
respectively, based on 20 realizations of the random medium. See Fig.5.1 (right) for the computational
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setup. Averages of the statistical instability in time are defined by

1 1500

I = —
500 J1000

Sk (t)dt, 0<k<3,

for Sk (t) measured on Dy. We obtain the results Iy = 0.124, I; = 0.080, I = 0.059, and I3 = 0.051,
respectively. We conclude that larger detector sizes provide more stable measurements, as we expected,
but that the convergence of Ij; to 0 as k increases is quite slow, and certainly slower than what would
be predicted by the law of large numbers for uncorrelated random variables. Such a behavior has to
be explained by long-range spatial correlations of the corrector £5 — £°. To further quantify this long-
range correlation, we consider the following four random variables Ej(t) for 0 < k < 3, where Ey(t) is
the energy detected on the detector Dy and where Fj(t), 1 < k < 3 is the difference of the energies
measured on Dy and on Dy_; (i.e. on a ring we call Gi). The expected values of the Ei(t) are given
in Fig.5.4 (left). Their correlation matrix is given by

Gty = BB — EAB (D (B (1) — BAE; ()}))
N ol Ei ()] o[E; ()] :

The values of Co(t) for k = 1,2, 3 are plotted in Fig.5.4 (right). Let us denote by C;; the average of
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Fia. 5.4. Left: Averaged energies over Dy and the rings Gy, k = 1,2,3. Right: Correlations Co for k =1,2,3.

C;;(t) over the interval [1000, 1500]. We find the following values: Co; = 0.54, Cpa = 0.29, Cp3 = 0.32,
Cis = 0.96, Ci3 = 0.46, and Ca3 = 0.73. The random variables become thus less correlated as their
spatial domains of integration separate, but we still observe a very strong long-range correlation between
the energies measured on the disjoint rings G. This is not good news for imaging as it indicates that
the corrector £5 — &Y is random (i.e., strongly depends on the realization of the random medium)
and has such a long correlation length that its effect can barely be mitigated by increasing the size
of the array of measurements. Such long range correlations are characteristics of the regime of wave
localization; see [27, 28].

5.4. Influence on detection and imaging. Let us come back to a comparison of the detection
and imaging capabilities in the scenarios presented in Section 4. We define §&inc = £ — Eine Where

ginc (t) = N ginc (t, X)CZX7

1

3 [ (R2GOGP () + poGIV 1)) .

Thus §E¢or is the correlation correction while §&;,. is the correction introduced by the inclusion on the
energy. We show in Fig.5.5 the evolution of §&.o; and §&,. (normalized by £(0)) in the case of 8% of

14



fluctuations in the random medium and for three different sizes of the inclusion: R = 4, R = 8 and
R = 15. The energies and correlations associated to the cases R = 4 and R = 8 are averaged over 4
realizations while they are averaged over 2 realizations in the case R = 15. In all cases, the correlation

x10°® Comparison Correlation - Energy corrections for R=4 1C095mparison Correlation ~ Energy corrections for R=8
10

Comparison correlation — Energy corrections for R=15
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Vb
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Fic. 5.5. Comparison correlation correction - energy correction, for 8% fluctuations, for the radii R =4, R = 8

and R = 15, respectively. The case R =15 is averaged over 2 realizations while the cases R= 8 and R =4 are averaged
over 4 realizations.

correction is significantly larger than the energy correction. This is compatible with our analysis of
small volume corrections in the diffusive regime, where scattering is quite important.

The same quantities as in Fig.5.5 are reproduced in Fig.5.6 when the fluctuations in the random
medium have a standard deviation equal to 3% instead of 8%. The energy variations are now comparable
to or even larger than the correlation variations, in agreement with our theoretical predictions in the
transport regime. In such a configuration, scenario (iii) is not necessarily optimal and should not

perform better than scenario (ii). Of course, a combination of both energy and correlation measurements
can only improve imaging.
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Fic. 5.6. Comparison correlation correction - energy correction, for 3% fluctuations, for radii equal to R=4, R=8
and R=15. The ballistic part of the waves is significant.

Finally, we plot on the same graph the relative correlation correction 6€.0(t)/E(t), the relative
energy correction 6&inc(t)/E(t) and the relative standard deviation S(t), for two size of the inclusion
R =8 and R = 15 in Fig.5.7. In the case R = 8, the statistical error between the wave energy and the
transport prediction are so overwhelming that noise is significantly larger than the inclusion’s influence
on energy measurements. The situation slightly improves when R = 15. Energy measurements are
however still quite small compared to the noise level so that detection capabilities remain small; see [7]
for a description of standard statistical test that can be used in such a detection. Scenario (i) will thus
fail to provide good detection and imaging results in such random environments.

Scenarios (ii) and (iii) provide better configurations. Because we now are in a position to obtain
differential measurements, the noise generated by our lack of knowledge of the random medium is
significantly reduced. Note however that the difference of energies is on the order of 1% of the total
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Fic. 5.7. Comparison relative standard deviation - relative correlation correction - relative energy correction, for
8% fluctuations and R =8 (left) and R =15 (right).

energy when R = 8 and on the order of 2% when R = 15. Thus, in the presence of external noise
that is independent of the random medium, e.g. generated by external sources or by defects in the
measurements, scenario (ii) may provide limited detection and imaging capabilities. The influence of
the inclusion on the correlation is significantly higher, on the order of 6% of total energy when R = 8
and on the order of 10% when R = 15. When accurate measurements can be obtained in scenario (iii),
which requires that one sample the wave fields at the level of the wavelength to capture correlations
accurately, they provide the most accurate data towards the detection and imaging of inclusions buried
in a random medium.

6. Conclusions. The two main contributions of the paper are (i) the numerical validation of
radiative transfer equations to model the energy density and the two-field correlations of waves prop-
agating in highly heterogeneous media; and (ii) the characterization of small-volume inclusions for
imaging based on the three scenarios considered in Section 4 in the radiative transfer and in the diffu-
sive regimes of wave propagation. Inclusions here were modeled by changes in the average wave speed
and/or changes in the statistics of the random fluctuations.

We have shown that differential measurements were necessary when the influence of the inclusion
was larger than the statistical instability resulting from our lack of knowledge of the underlying random
medium. We have shown that wave-field correlations provided superior imaging capabilities in highly
scattering environment. In the regime of moderate scattering however, wave field correlations do not
provide any additional advantage compared to energy density differential measurements.

In the absence of differential measurements, imaging based on scenario (i) remains the only choice.
We have shown in Section 5 how large the statistical instability may become in random media with
large fluctuations (see Fig.5.3). Further theoretical studies are necessary to quantify this instability and
understand its spatial and temporal behavior (such as the increase observed for short times in Fig.5.3
and the spatial long range correlations which explain why the instability barely decreases as the size of
the detectors increases).
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Appendix A. Derivation of the transport equations.
We derive in this appendix the high-frequency asymptotics for the two-field correlation W12, Recall
that each field u? is a solution of

ou?
ot

+ A%u? =0, =12, t>0, x € RY, (A1)
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with appropriate initial conditions. We assume that A¥ has the following form

2
AP = — (520A Cé))+1/;¢(x,§)l(, K=<8 (1)) x € R (A.2)

Here, co is the average speed of propagation and the potentials V* are given by

X X

VA, D) = VEVE), V2% D) = —x(0AC + VE(L - x(x)V (), (A.3)

where V accounts for the random fluctuations and is a mean-zero stationary process, and Ac? is the
velocity jump at the inclusion’s boundary. As in (2.8), v is a parameter modeling fluctuations within
the inclusion, with v = 1 if random fluctuations are suppressed, and v = 0 is they are still present and
have the same statistics as outside of 2. For simplicity, we assume that the inclusion is spherical and
denote by x its characteristic function, namely y(x) = 1 when x € B(xg,R) and x(x) = 0 otherwise.
We regularize the jump of the velocity and replace y by a smooth cut-off function x° such that

1 if x € B(xo,R—9),

0 if x¢ B(xo,R). (A-4)

P eCERY), 05y <1, yo(x) = {

Such a function can be obtained by convolution of a standard mollifier (g)_dw(%") of unit integral

with the characteristic function of the ball B(xg,R — d/2). Then x° verifies the property

)
félﬂgdl XX (x )I_ S

(A.5)

where C), is a constant independent of §, chosen such that 0 < ¢ < d(¢) < 1, and for concreteness
chosen as d(g) = /e.
The Wigner function of the two fields is defined as

i Ey * Ey dy
W51’2(t,X,k) = W.(t,x,k) = /Rd etky (t X — 7) (ug) (t,x + 7) (2m)d

and solves

8W
ot

[Alu1 u}—i—W[u A2 2] =0.

€ €

Note that only the second field u? depends on the regularization parameter 4.
Asymptotic expansions.. We introduce the two-scale version of W,

Wg(t,X,k) = Wg(t,X, §7k)a

and with y = ¢~}

X, the expansion
W.(t,x,y,k) = WO (t,x, k) + VeW'(t,x,y, k) +eW?(t,x,y, k). (A.6)

We start with the term W [ul, A2u?| involving the potentials V2. Thanks to (A.3), W [u}, V2K u?]
can be written as

W[u;,VEQKug]z—ACQW[ 6,Xu}K*—I—\/_VV[ (1 —x )Vug}K

and x°(x + ey/2) can be expanded as

X x+ey/2) = X000 + 53 Vo (%) + 17 (x, ),

where R° is a function such that [r°(x,y)| < C% £ for every y in a bounded set and whose support in
x is of order O(9): Meas(suppycrar®(x,y)) < Cé( ) for y bounded. Owing to the fact that

1 ey ey 1
1 2 _ zky = 2\ * J i
W utyt] = i [ e yuls T ) o T)ay = $Rs),
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we expand W [u;, V2K ug} as follows. Let ¢(x,k) be a test function such that its Fourier transform
with respect to the second variable ((x,y) is compactly supported and of class C5°(R?¢). Denote by
Wi, i =1,2, j =1,2 the entries of the matrix W [u;, VEQKug] and by W27 that of W.. Then, for W,
regular enough, we have

—AG(W™ [ul,x*u2s], @) = (AW, @) + e(BEWE, ) + O(%/?),

where A° = —Ac?x? and B is the operator —%ACQ V«X® - Vk. The error of order £3/2 is obtained
after the following computation:

<Wl’j [ul, 7" u?], ¢

(2m)d /R /R /R eV (x5, y)u (x - zy)( u?)*(x + %)@(X,k)dxdydk,
- / / (%, y)ue (x — %)(uﬁ)*(w ) ¢, y)dxdy,

]Rd R4

gy * gy .
S [ e e L) sw oty laxdy,
Suppx Supp %} X

< 052 [l 2o U]l L2 (o),

where C° are sets of measure of order § = /z. Thus, if u! and u? are smooth enough so that
luf]lr2(coy = O(V/4), we obtain an error of order £3/2,
In the same way,

(Wi [ul, (1= ()V(2),u2], 0) = (Wi [ul, MO C}l d(l—vx‘s)s0>+(’)(5)7
:/ ¢ (1= (x))V (p) Wi (x, k — p) p(x, k) ot 4 O (e) ,
)

R3d - (2m)d
= (1= O)KWE ) + O (e),

where

(W) (k) = [ e V() Wik k—p) B0,

The equation on W, is thus locally in x and k given by:

. oW,
ot

V(TE+TF + T5) W +O( 3/2) —0, (A7)

where 77 is the transport part, 75 the collisional part, and 75 the “inclusion” part given by

5D N D €Dy
W kWP (k= 5 = ),

D,
TEW, = P(ik + =
7—2EW5 = \/g (ICEKWE + (1 — X )’CZWE K* ) ’
TEW. = AW.K* + eBEW.K*,

where

Po =~ ("4 o)

We now expand W. as in (A.6) and equate like powers of € in (A.7), using P = Py + eP; + O(g?),
A = A%+ \/eA' + €A% + o(e) and B® = BY +o(e), with A = —Ac?y. We do not give the expressions
of A, A% and B' since we do not need them in the sequel. The term involving BEW, is O(ed~!) locally
in x but O(e) in a weak sense. We thus consider it as a term of order O(¢) in the expansion.
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Leading order.. The leading term is given by:
Po(ik)W° + WOP; (ik) — A*XWOK* = 0. (A.8)
Introducing

= . 0 2+ Ac?x(x
P()(X,Zk) = — ( _|k|2 00 ( ) ,

we recast (A.8) as
LW = Po(ik)W° + WO(Py)*(x, ik) = 0. (A.9)

Defining ¢o(ik) = |k|, the diagonalization of the matrix Py gives

A5 1) = icani8), bl = = () ey - (9

In the same way, concerning the matrix Py, we have:

. 1. . .
At (%, K) = ie(x)go (ik), b (x, k) = % ( j;i‘fgc ))(flf) ),Ei(x, k) = % ( ichégk) )

where ¢?(x) = ¢§ + Ac®x(x). We now decompose W on the basis deduced from the tensorial product
of eigenvectors of the matrices Py and P,

WOt x, k) = > a;i;(t,x,K)b;(k)(b;(x, k)",
ij=%

where a; ; = ¢! Wy¢;. Injecting this decomposition in (A.9), direct calculations yield
i (6%, K) (A () + X (x,K) ) = ias (¢, %, k) qo(ik) (co + /2 + A02x(x)> ~0.

Whence, when i # j, a;;(t,x,k) (co + i+ A02x(x)) = 0, and therefore ax + = 0. On the other
hand, when i = j, a; ;(¢,x, k) (co -3+ A02x(x)) = 0. Since x(x) is supported on the ball B(xg, R),
this implies that a; ;(¢,x,k) = 0, for x € B(xg,R). We thus have,

WO(t,x, k) =0, for x € B(xo,R). (A.10)

Thus (A.10) may be seen as the result of the incompatibility of the dispersion relations of the two
different fields ul and u? at the inclusion location.
First order corrector.. The equation for W' is

D - D
Py(ik + TY)W1 — WP (ik — TY) +OW K. KWO + (1 = )KWo K* 4+ ATWOK* = 0. (A.11)

Above, 0 is a regularization parameter needed to ensure causality [26]. The term A® is supported on
the ball B(xo,R), and so is A'. According to (A.10), we thus have A'W°K* = 0. We introduce the
Fourier transform W' of W' with respect to the fast variable y — p. Decomposing W' as

W(x,p,k) = Z a; (%, p, k)b;(k + g) (Bj(ka _ g)) 7
Gj—t

we find

with V1(p) = V(p), V2(p) = (1 — x)V(p) and therefore
Wi(t,x,k) =0, for x € B(xo,R). (A.12)
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Transport equation.. Finally, to find the equation satisfied by W, we use the expression (A.7) at
the order e:

8W0

+ Py (ik)WO + WOP; (ik) + AW + A2W° 4+ BOW?O
+ (KK W 4+ (1 —y)K: W K*) (A.13)
D - D
+Py(ik + Ty)WQ + W2P;(ik — TY) + AOW? = 0.

The terms involving AW, A?2WO and B°W? are equal to zero because of (A.10) and (A.12) and
the fact that A!, A% and B are supported on the ball B(xq,R). We still denote by E mathematical
expectation and keep the notation ay for E{as}. We assume as usual [4, 26] that

D - D
E [cj_ (Po(z'k + TY)W2 + W?2P} (ik — Ty) + AOW2> 54 —0.

Thus, multiplying (A.13) on the left by c%, on the right by ¢, and integrating against a test function
@, we find that

0 . X -
a<a‘+a 50> + C()<k ’ vxa’Jrv 50> +E [<C+E1W1 Ct, <)0>] =0, (A14)
where L;W!1 = K. KW + (1 — yx)K:W?! K*. According to [4], we have

E (¢} LW &) = (S(x,k) + ilI(x, k) as (k) - / ax (@ (xk,a)b(colal - e(x) k) da,

where
S, k) = ”COC / LI e — q)i(eolal — e(x) k) dy
| : A () (x, 1)
R / )2 )R- 3 A
7(x,kp) = “;f; ()R - p).

Since a; = 0 for x € B(xp,R), we only need to know the above quantities for x € B¢(xg,R). Then,
integrating by parts the second term of (A.14), using again the fact that a4y = 0 for x € B(x¢, R), and
keeping in mind that y(x) = 0 for x € B¢(x¢, R), we finally obtain that

Lo (5o coake Vg + 509 ase - Qla) ) sk =0,
Be(x0,R) JRd

with

2112
_7TCO|k|/ A B
(k) = 50 [ ik = @)itelal - colkl) da

mcd|k|?

Qo) = 5855 | Rk = apa(@)s(elal - colkl)da

The above equation is nothing but the weak formulation of

0
%+cok-vxa++2(k)a+ = Q(ay), x € B“(xo,R),

with boundary conditions

a+:O, XE@B(XQ,R).
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Particular case: no velocity jump Ac* = 0.. In this configuration, Wy does not vanish inside the
inclusion. The transport equation is simply
Oa . .
8—; + ook Vxay + (2(x, k) +ill(x,k)) ay = /d at(x,9)o(x,k,q)d(cola| — colk]) dq,
R
for all x € RY. -
Particular case: weak velocity jump Ac? = O(e).. Let Ac? = eAc?. Following what was previously
done in the general case, we obtain the transport equation

R i3
% +cok - Vyaq + (B(x, k) +ill(x,k)) ay + ilklxc—ca+
0

_ /da+(q)a(x,k, Q)d(colal — colk|)dq,  x € R%
R

When Ac2 — 00, we expect to recover the general case with ay = 0 for x € B(x,R). To see this, let
1= Ac? > 1 and let S(t,x,k) be the solution to

%+coﬁ-vx5+i|k|xc51 =0. (A.15)

. S(t,x,k)

Writing a4 as ay(t,x,k) = A(t,x,k)e’ 5 | we find that A solves

%—? + co k- VA + (3(x, k) 4 ill(x, k) A
_ Sk ;Stxa) d
=e 6 A(t,x,q)e" ¢ o(x,k,q)0(colq| — colk|) dq, x € R%.
Rd
According to (A.15), S(t,x,k) # 0, Vx € B(x0,R). Thus, as 8 — 0, a tends to 0 weakly in time for
any x € B(xp, R) which allows us to recover the general case. This concludes our analysis of the kinetic
models to describe the correlations C* and W22,

Appendix B. Small volume approximations in diffusive regime.
We sketch here the derivation of the asymptotic formula for Dirichlet boundary conditions on
the inclusion announced in Section 3.2. Let B(xp,R) be a ball of radius R located at x; and let

ur € H?(Q/B(xp,R)) be a solution to the following problem
—DoAur + wur = f, x €0, ur =0, x € IdB(xp,R)UIN,

where  is an open set in R? for d > 3, w € C with ®w > 0 and f € L?() such that its support does
not intersect B(xp, R). Then, ug can be extended by 0 within B(xp, R) so that it still verifies the above
equation with an additional jump condition of its normal derivative at the boundary. We denote by U
the unperturbed solution, that is to say the solution when R = 0; ur can then be expressed in terms of
U using a single layer potential and the jump condition

[&uR

UR(X) = U(X) + Do/ %

8B(Xb7R)

] (v)G(w,x,y)do(y),

where G is the Green function, solution to —DOAG(w, x,y) + wé(w, x,y) = 6(x —y) with vanishing

Jug
5 and

h

gy’: be the outer and inner values of the trace of the normal
9T

derivatives at the boundary, respectively. We have d;: = 0. Setting ugr = U + vr(*F*), the jump of

the normal derivative is given by

Our| _ [Owr] _ _Oug _ _OU 10vg
on| |on|

boundary conditions on 9f2. Let

on  on R on’

. _ . vy _ .
and is thus or order R™!. Tt remains to evaluate %. Now vy verifies:

Vg (x) = —U(Rx +x3) = —U(xp) + O(R), x € 0B(xp,1).
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Let @ be the solution to

—DoAD + wd =0, XEQ/B(Xb,l), O = -U(xp), XE@B(Xb,l),

augmented with vanishing boundary conditions on 92. Then ® can be expressed in terms of a single
layer potential so that the density 7 is the unique solution to

Do [ yGexyely) =-Ulx).  x€0B(x. D).
0B (xp,1)
. Ovg o0 .. . .
Since we have W(Y) = %(y) + O(R) = n(y) + O(R), this gives thus the asymptotic expansion

ur(x) = U(x) — DR ™2 M G(w,x,x3) + ORI,

where
NE(w) = /8 o T

The relation between the time-dependent diffusion equation and the above elliptic problem is formally
obtained via a Laplace transform, which yields the following time-dependent small volume expansion:

t
Ueor(t,x) = U(t,x) — DowRd_Q/ M (t — 5)G(s,x,xp)ds + ORI,
0

where M (resp. G) is the inverse Laplace transform of M (resp. G) with respect to the variable w.
This concludes our analysis of the influence of small volume inclusions in the diffusive regime.
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