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Abstract

We consider the reconstruction of a spatially-dependent scattering co-
efficient in a linear transport equation from diffusion-type measurements.
In this setup, the contribution to the measurement is an integral of the
scattering kernel against a product of harmonic functions, plus an addi-
tional term that is small when absorption and scattering are small. The
linearized problem is severely ill-posed. We construct a regularized inverse
that allows for reconstruction of the low frequency content of the scatter-
ing kernel, up to quadratic error, from the nonlinear map. An iterative
scheme is used to improve this error so that it is small when the high
frequency content of the scattering kernel is small.

1 Introduction

Linear transport equations are used in many applications such as the propa-
gation of the energy density of waves in heterogeneous media [5, 9, 19, 25],
neutrons in nuclear reactors [17], and more recently, near-infra-red photons in
tissues and its application in optical tomography, a medical imaging modality
[3, 8, 18].

Inverse transport theory consists of reconstructing the constitutive parame-
ters in the transport equation from various measurements. The typical optical
parameters one wants to reconstruct are the total absorption coefficient o and
the scattering coefficient k. Several theories have been developed on the recon-
struction of such parameters in various settings; see [11, 15, 16, 20, 21]. All
rigorous theoretical results of uniqueness and stability [20] are based on full
phase-space measurements. What we mean by this is the following. Particle
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densities depend on their position x and their direction v, which in this paper we
assume is normalized to |v| = 1. Phase space measurements mean that u(z,v)
can be arbitrarily chosen and measured at the domain’s boundary as a function
of its phase-space variables (z,v) in n + (n — 1) dimensions for n—dimensional
problems. This means having 4(n — 1) dimensions of available data to recon-
struct the optical parameters. Such data are usually not available in practice [3],
although minimization-based reconstructions from smaller data sets still are of
reasonable quality [18]. The reconstruction of optical parameters from angularly
averaged measurements, but still with phase-space incoming source radiations,
was recently addressed in [14]. The purpose of this paper is to consider the
reconstruction of optical parameters from isotropic sources and angularly aver-
aged measurements, i.e., from 2(n — 1) dimensional data. In dimension n = 2,
this corresponds to 2-dimensional data sets. The optical parameters therefore
realistically need be 2-dimensional as well, i.e., may only depend on the spatial
variable x.

The problem thus resembles that of electrical impedance tomography and
of the reconstruction of diffusion coefficients from Cauchy data [7, 10, 22]. Dif-
fusion equations may also be used to model solutions of transport equations
in highly scattering media [12]. This explains why diffusion models are very
popular in optical tomography [3]. In this paper, we are interested in cases
where the diffusion approximation does not hold, and yet only diffusion-type
measurements are available.

Our results require somewhat non-practical simplifications. We know in the
diffusive regime that only one of the optical parameters k and ¢ may be re-
constructed from Cauchy data; see e.g. [4]. In this paper, we are interested
in reconstructing the scattering coefficient. The first simplification is thus to
assume that o(x) has already been obtained, for instance by angularly depen-
dent measurements of Radon transform type; see [20]. We also assume that the
scattering coefficient k = k(z) is independent of the direction of scattering. Our
techniques do not allow for the reconstruction of scattering coefficients of the
form f(v,v")k(z) (see [20]), even when the phase function f(v,v’) is known. The
second simplification is that both the known o(z) and the unknown k(z) are
sufficiently small. How small they have to be will be made more explicit in the
next section. Smallness is required because our inversion formula is based on
a linearization of the inverse transport problem, which we can invert explicitly
only in the limit ¢ = 0. The nonlinear reconstruction is then based on applying
standard fixed point arguments.

Surprisingly enough, the solution of the linearized inverse transport problem
is performed by using the same complex geometrical optics (CGO) solutions
as in the inverse diffusion problem treated in its linearized form in [7] and in
its full non-linear form in [22]; see also [24]. As in [7], the main tool used in
this inversion is the construction of harmonic CGOs, which allow us to have
access to the Fourier transform of k(z) thanks to the density of products of
harmonic functions. As a result, as in [7], the linearized inverse generates a
severely ill-posed problem with exponential-type stability. These very negative
results should be contrasted with the situation where phase space measurements



are available, which allow us in many settings to obtain much better behaved
Holder-type stability estimates [14, 20, 26].

The rest of the paper is structured as follows. We state our main hypotheses
and main results in section 2. In section 3 we describe the forward problem, in
particular the measurements (5) and isotropic sources in section 3.1. In section
3.2, the so-called half-adjoint operator is introduced. This emerges as a result
of our measurements, and is the reason we are able to use harmonic solutions.
In section 4, we use the half-adjoint operator to solve the linearized inverse
problem. In section 5 we define a regularized inverse and use it to obtain our
main results. Some conclusions are offered in section 6.

2 Statement of the Main Results

Let X C R"®,n > 2 be an open bounded strictly convex set with C? boundary
0X. Denote I'y = {(z,v) € 0X x S"~!: v, - v > 0}, where v, is the outer
normal to 0X at x € 0X. The stationary linear transport equation for the
density u(z,v) we consider in this paper is defined as:

v Vau(z,v) + o(z)u(z,v) — k(z) /Sni1 u(z,v")dS(v') =0, )

ulr. =u_.

Following our discussion in the introduction, we consider the simplified setting
of isotropic scattering k = k(z). An existence theory for (1) is recalled in the
next section.

We assume that k,o € L°°(X) are bounded functions, extended by 0 outside
of X. Smallness assumptions on k(x) are necessary for (1) to admit a solution.
Indeed creation of particles need be compensated by absorption and leakage of
particles at the domain’s boundary in order for (1) to admit a physical solution
[12, 17]. Our inversion algorithm requires that we make additional smallness
assumptions on k(z) and o(z).

Let us define the operator L, j as:

e 0\m—y| o(z+s \Z:2| )ds

Loah(a) = | e —k)h(o) dy. @

Existence of a solution to (1) is guaranteed provided that the spectral radius
p(Lyx) < 1 [17], which is always satisfied provided that k is sufficiently small.
We also define L, = L,,1, where k = 1. We then verify that

HL ” e~ I o (ztsv)ds p [1 ] (3)
ollp < sup/ - Yy, p€|l,00],
b ze€X JX “T - y|n !

where || ||, denotes the norm in £(L?, LP). The above bound is straightforward
to verify for p = 1 and p = oo and comes for other values of p by the Riesz-
Thorin interpolation theorem [6] (see also lemma 3.2 below for a simple proof).



Our first smallness assumption on k is that
|kl o< | Lo || < 1, (4)

where we denote by ||Ly|| = ||Ls|l2- This assumption, which is less optimal
than the condition p(L, ) < 1, will allow us to write the transport solution as
an infinite series corresponding to increasing orders of scattering and to con-
veniently estimate the influence of high orders of scattering. This is the only
necessary assumption in our first result, theorem 2.1. Additional assumptions
will be made explicit in order to prove our non-linear inversion result in theorem
2.2.

Our measurements are constructed as follows. For each isotropic source
u_ = f(z) at the domain’s boundary, we measure the current at point x € 90X
given by:

/ u(z,v)vy - vdS(v), (5)
Ve >0

where v is outward the unit normal, and w solves (1). After integrating the
current over 0X with weight function g(z), we obtain the following type of
measurements:

M= [ o) [ w0 ds@ute) ©)

The crux of the inversion is to reconstruct k(x) from the contribution in (6)
that is linear in k, which corresponds to the single scattering term. When
o = 0, we show that this contribution to our measurement is equivalent to the
integral of k against the product of two harmonic functions. Under suitable
regularity conditions, these harmonic functions are arbitrary. Borrowing then
techniques from the problem of electrical impedance tomography, we are able
to solve this problem with the classical harmonic solutions of Calderén [7]. As
in the Calderén problem, however, this inversion is severely ill-posed.

Specifically, the recovery of higher frequencies comes with an error growing
exponentially with frequency. We therefore propose a regularized inverse, which
attempts to recover P,k with:

Pek = | k(€)x(£)e ™ de.

R

Here x must decay sufficiently fast for large £. In particular, we require
L1dj n
x()e s B € L1 (Rm), (7)

Our error will depend on the bound ||TX|| := [|TX| r2(9x)2)—L(x), for an
operator TX that will be introduced in (43) below. If x is the characteristic
function of the ball of radius M, the result (44) gives us

oy [ s g
|€l<M



with C'x depending only on X. In this case, P, is the orthogonal projection of
an L? function onto its low frequency content (|¢| < M). When computing the
Fourier transform of k, we extend it to be zero outside of X. Since then the
support of k is compact, k always has some high frequency content.

Our main results are the following:

Theorem 2.1 (Recovery of Py k). Suppose that (4) holds. Then there exists a

constant Cx > 0, depending only on X and ||L,|| such that for all x satisfying
(7), the measurements {M(f,q9),(f,q) : f € L*(0X),g € L*(0X)} determine
P,k up to an error, bounded in L™ by

CxTX[IEllze (lollze + l[Ellze) -

Using an iterative scheme, and a smallness assumption on k and o, we are
able to improve this result as follows.

Theorem 2.2 (Iterative improvement). Given x satisfying (7), ¢c1 € (0,1), and
o such that ||o||L~ < ox there exists € > 0 such that for 1Bl Lo (x) < €,
the measurements {M(f,9),(f,g) : f € L'(0X),g € L'(0X)} determine Pk
up to an error bounded in L™ by

C1

U = PRl -

Our iterative method requires a certain constant of contraction in order to
converge. Hence the ¢; constant. The constant ¢ depends on ¢1,0, Cx, ||TX|,
though when |o||p~ < T[T We can approximate this constant with the
following expression independent of ||o||:

Cl(l — Cl)

ER .
2| Lo [[(Cx TX]))? + ea (1 = e1)

The general expression of this constant can be established with equations (50)
and (52). These constants are not necessarily optimal since, while proving the
theorem, we look for sufficient conditions.

3 The Forward Problem

We now return to the forward model (1) and present well-known properties that
will be useful in subsequent sections.

We begin with some notation. For (x,v) € X x S"~! let 74 (x,v) be the
distance from z to 90X traveling in the direction of +v, and x4 (z,v) = = £
7+ (x,v)v be the boundary point encountered when we travel from z in the
direction of +v. We also define 7 = 7. +7_. We give I'y the measure d¢(x,v) =
|V - v|dp(x)dS (v), where du, dS are the volume forms on 90X, S"~! respectively.



Existence of a unique solution to the forward problem (1) is well-established;
see e.g. [12, 17]. Let the incoming boundary condition u_ be in LY(I'_, 7d¢).
With u|r_ = u_, we recast the transport equation as

(I -Ku=Ju_,

where we have defined

Ju_(y,v) = E@_(y,v),y)u(z_(y,v),v), (8)
T—(z,v)
Kf(z,v) = /0 E(z,z —tv) Snjf(x —tv) f(z — tv,v") dS(v")dt, (9)

E(x,y)

exp (— /Olyﬂ? a(a: + |§j : is)ds) . (10)

For future reference, we also define iteratively:
E(ay,...,ai41) = E(ay,...,a;))E(a;, ai+1). (11)

The operator J is bounded from LY(T'_,7d€) to LY(X x S"~1) [12]. With
the following two smallness assumptions

H k(z)

wpo(x) HLoo(X)

<p <1, (12)

where w,, is the measure of S»~1, and

[B(@)wn Ty (2, 0) || Lo (x xsm-1) < B <1, (13)

we obtain [12, 17] that K has norm less than 3 < 1in L}(X x S"~!) and L*(X x
Sn=1 r=ldxdS(v)), respectively. As a consequence, we have by a Neumann
series, existence and uniqueness of the solution to the transport equation, and

moreover:
o)

uw=(I-K)"Ju_=> K"Ju_. (14)

m=0

Note that the restriction of u on T'y is well defined in L*(T'y, 7d¢).

3.1 The Surface Distribution Model

Suppose our incoming flux u_(x,v) = f(z) is independent of the angular vari-
able v. Then, the contribution due to flux at point y € X due to incoming flux
coming directly from 0X is given by

Jf(x,v) = E(x_(x,v),z) f(x_(z,v)).

We will often need to integrate this flux over all directions v € S*~! and change
variables from v € S"~! to the boundary point zo = z_(z,v) € X (at x fixed).



The change of variables from the sphere to the convex boundary 90X is given

formally by
|V zo * U|

dS(v) |n_1du(mo). (15)

B |z — g

The above change of variables is justified in the following result, whose proof is
postponed to the appendix:

Proposition 3.1 (Change of variables from S"~! to 9X). Let S be a C? surface
in R™.

1. Pick any y enclosed by S. Then for f € L*(S),

/ F@= Y i@y = [ fe_(yo)dSw). (1)

|z —y|" gn—1

Here v, is the outward unit normal to S at x, and dS, dS are the volume
forms on S, S*™! respectively.

2. Moreover, if S is the boundary of a strictly convex domain, we have, for
any y € S and f € L>=(S),

[t as@) = [, |, fe-opase,  an
S Y

P
|z —y v

with the same notation as in (16).

Recall that our averaged measurements at point x € 90X are given by
/ u(x,v)vy - vdS(v),
Vg >0

where v is outward the unit normal, and u solves (1). We take measurements all
along 0.X, and compute the weighted average of them with weighting function
g. This gives:

/ o(2) / u(,v) (v - v) dS(v)dp(x). (18)
o0X Vg v>0

Suppose now that u_(zg,v9) = f(xg), i.e., our incoming flux is the same in
every direction. We then obtain the following type of measurement:

M= [ o) [ a0 ds(@)aute).

where u solves (1) and u(z,v) = f(z) on T'_.
The contribution to the outgoing flux density at position x, in direction v,
that has not scattered (a.k.a the ballistic contribution) will be

Ju_(z,v) = Jf(z,v) = E(x_(z,v),z) f(x_(x,v)).



The ballistic contribution to M(f, g) is therefore,
/ o(x) / T (2, ) s - 0] dS(0)du(z)
0X Ve v>0
- / o(2) / E(r_(2,0),2) f (@ (z,0)) s - v] dS(0)du(z)
o0X Vge-v>0
= [ o) [ ) (E““’w)”“"'”'”“"“ '”') dy(o)du(z)
o0X 0X

|$0 _ x‘n—l

(19)

T—xq

v=
[z—zq]

E(zg,2)|ve - ||Va, - V|

= (To, f ® 9)r2(ox)2),  To(wo, @) := |z — x|nt

)

where Tj is known since o is. Tj is integrable due to the fact that [13, Lemma
3.15]

(@ —y) vyl < clz—yl, (20)
so that the ballistic contribution to M(f, g) is defined. The second equality is
due to the change of variables (15) or equation (17) in proposition 3.1.

The contribution to the outgoing flux density at position x, in direction v,

that has scattered once will be KJf(x,v). The single scattering contribution
to (5) at point x is then:

/ / OKJf(BC,m)(Vm -v1) dS(vy)

T (z,v1)
z/ /E(a:,x—tlvl) k(z — t1v1)J f(x — tyv1,v9) dS(vo)dt(vy - v1) dS(v1)
Vg-v1>0 J0 sn—1

T (1)
= / / / k(lE — tlﬂl)E(ZL',l' — tl’Ul,.’E — tl’Ul — t()'Uo)
Vg 01 >0 J0 Sn—1
X f(x —tyv1 — tove)dS(vg)dt(vy - v) dS(vy)
Vg -
= [ [ ke e Bl o) o) ds (e
X Jgn-t |1

Vg - Vol|ve - v
[ [ soBG. w0k o - olle 01l g ),
X Jox

|3§‘0 _ xlln—l|x1 _ x‘n—l

The third equality comes from the change of variables z1 = = — tyvy, dx, =
7~ 1dt1dS(vy). The last equality is due to equation (16) of proposition 3.1.
The total single scattering contribution to M(f, g) is therefore

/ g() f(on)/ E(x0, 21, 2)k(x1) (tot1)' ™" (Ve - v0) (Ve - 01) daydp(o) dpu()
oX o0X X

= [kt ([ stonZte ol ) ) ([ g P gy(0)) o,

2y — zfr 1

(22)

where vy = (21 — xo)|r1 — 20|}, and v1 = (x — x1)|z — 21| 7L



An inductive argument shows that for m > 2,

T (z,v)
K™h(z,v) = / / E(z,x —tmv, Tm—1, Tm—2,. .., 21)k(x — t,,0)
0 Xm—1 Sn—l
X k(Tm—1) ... k(x1)(t1,. .. ,tm,l)l_"h(xl, vo) dS(vg)dxy ... dxy—1dly,.

Following a procedure similar to (21), we are able to represent the contribution
to our measurements due to m scattering events in a compact form. We have
the contribution to M(f,g) due to m scattering events equal to

(T (K), f @ 9)12((0x)2)>
where we define T, as follows.
Definition 3.1 (m'" scattering kernel).

E(zo, ..., T,y @) |Vag * Vol|Va - U]

d.%‘l N dLL'm.

T () (20, 7) ::/ k(1) - - B(am)

m |zg —xq [P L |y — x|t

This leads to

M(f,9) = (To, f ® 9)r2((9x)2) + Z (T (k), f ® g)L2((0x)2)- (23)

m=1

Note that Ty and T, (k), taken at points x and x¢, are the measurements given
source f = dy,,}, and weight g = (..

The measurement viewpoint (23) will play the dominant role from now on.
We will attempt to find suitable boundary functions f and g to extract the
necessary information on the unknown parameter k(z).

3.2 The Half-Adjoint Operator

In this section we introduce the “half-adjoint” operator along with some of its
basic properties. We first recall that the Newton potential, the fundamental
solution of Ay N(z,y) = d,(y) is given by

1

Cn|aj _y‘n72

N(z,y) = (n > 2); élogm—m (n=2),  (24)

where
eni=02-—n)w, (n>3); c2:=271 (n=2), wy, = Vol(S"1).

Given x € 90X, y € R™, one can check that

Vg - (.CL' - y)



Since the above kernel is central to the following calculations, we recall that:

0, yeR"-X
ON(x,y)dr =4 1, yeX , (25)
ox 3, yeox

so that care must be taken with boundary values; see the sections on “double
layer potentials” in e.g. [2, 13].
We are now ready to define the following.

Definition 3.2 (Half-Adjoint Operator). For y € X,

Af(y) = Wn ox f(x)E(x,y)a,,N(x,y) dﬂ(x) (26)

When E = 1, w;'A is a harmonic function called the “double layer po-
tential.” w,'Af is a “moment” of the “double layer potential.” For y ¢ 90X,
w,LAf(y) is equal to the potential at y due to a distribution f of dipoles on

0X.
‘We now note that:

T (k) (xo, x) ::/ k(xz1)

X w0 — @1 [ oy — 2|t

E(‘T07$17x)‘yro : UOHV.’E : 'Ul‘

With our definitions of A, T} we may re-write our single-scattering measurement
(22) as

(T1(k), f @ g)r2(0x)2) = (k, Af Ag)r2(x)- (28)

We also have that the resultant contribution to M(f,g) due to two scattering
events is:

k), f ®9)r2(ax)2)
E(xy,x
/ / (w1)k(x2) Iz (_1302|,2L) 1Af(951)A9(502)d501dI27 (29)

— [ @) A @) LosAg(o)ds
X
and from m scattering events,

k), f ®9>L2((0X)2)
mm)E(x ey Tm)
/ / |931 _ JC2|” 1. : Af(xl)Ag(xm) dzy---drm, (30)

|xm 1_xm|n !

_ / k(2) Af(2) L7 Ag(a)da
X

The relation (28) suggests an inversion based on finding boundary values f and
g such that their products AfAg are dense. As it turns out, this is possible

10



when o = 0 because the product of harmonic functions is dense. Proving this
requires some facts about double-layer potentials.

Let Ag be the half-adjoint operator A defined in (26) when E = 1. Now,
when f € L'(0X), the defining property of the Newton potential shows that
Aof € C(X) is harmonic. The main question now is whether any harmonic
function in X may be prescribed as Agf for a suitable boundary term f. That
this is possible is based on the following classical result on the jump conditions
of the double layer potential:

Xax/liigeax w, M Ao f(2') = %f(y) +w, A f(y), (31)
where
A f(y) = wn o f(@)0y, N(z,y) du(z), (32)

where the integral is defined in the usual sense; see [13], (20), and the proof of
Lemma 3.3 below. When X has boundary X of class C', the operator <7 is
compact on L?(9X) and does not admit —3 as an eigenvalue [2, §2.2]. This
shows that

f— %f +wleh f, is an isomorphism  L*(0X) — L?*(9X). (33)

We have thus obtained that the L?(9X)-valued trace of any harmonic function
in, say Hz (X), may be written as limxs,/—ycax Aof(z') for some f € L?(09).
More formally, we have:

Lemma 3.1 (Pseudo-inverse for the Ay operator). The operator defined by
i HY(X) — I(0X)
1l w e A= BT+ er ) T (wptulox)
is continuous and such that AoAgu = u|x for all harmonic functionu € H2 (X).

Proof. The above isomorphism (33) shows that A:g is a well-posed operator.

Now for u harmonic, for f = Agu, we have Agf harmonic and Ayf and u
having the same trace on 0X. Thus Ay f = u. O

When 0X = S!, we can find an explicit expression for Ag. First, the Poisson
kernel on {x € R™ : |z| < 1} is given by

1— |y

P ) = 0
(x y) wn‘x - y|n

r € S"! y € unit ball. (34)
If n = 2, we can show (using the fact |z| = 1) that

1
P(xvy) +o- = 26V1N(xay)7
27

11



which leads to
2 1
Aof(y 7r/Pscy dm+§/f(x)d$
Sl

©(f(y) + £(0)).

Where f satisfies Af = 0 in X, and f|aX = f. Here we have used the defin-
ing property of the Poisson kernel, and the mean value theorem for harmonic
functions. This analysis tells us that in this special geometry,

2u(x) — u(0)
2m

(35)

Alu(z) = , z€eS.

We close this section with some properties on the operators A and T; that
will be useful in later sections. First we state and prove the following lemma.

Lemma 3.2. Suppose that for every y € Y,
/ |k(z,y)| dx < C1, and for every x € X, / |k(z,y)| dy < Cs.
X Y

Then for 1/p+1/q =1, p € [1,050),

JRC
X

Proof. The proof is classical and may be found e.g. in [23] when X =Y. For
completeness, we recall it here. First consider the case p € (1,00). The identity
ab < aP/p + b?/q applied to f(x)g(y) shows that

p q
‘// (z,9)f dxdy‘ < ||prp +029(1|Lq_

1 1
< CPCy" o (x)-
Lr(Y)

Now the same computation with f replaced by tf, and g replaced by t g, t > 0,
and simple calculus minimization show that

[ ] s @) dedy| < €7 €3 1 flurco Lol

This proves the lemma for the case p € (1,00). The special cases p = 1 and
p = oo are easily checked. O

This allows us to prove the following

Lemma 3.3 (LP mapping property of half-adjoint operator). There exists Cx
depending on X such that for p € [1,00],

IAfllr(x) < Cx | fllLrox)-

12



Proof. Recall that the kernel of the integral operator A is (up to some constant)
Oy, N(z,y), with y € 90X, x € X. Since 0X is of class C?, lemma 3.20 from [13]
and (20) show that there exists C such that

/ |0y, N(z,y)|dy < C, Yz € X, and / |0y, N(z,y)|dx < C, y € 0X.
X X

The result therefore is a direct application of lemma 3.2. O

Lemma 3.4 (Mapping property of T.,). There ezists Cx, depending only on
X such that for m > 1, we have

T (K| L2 ((0)2) < Cx kIl o | Lol < Cx IRl e 1 Lo 153" (36)

Proof. When m = 1, the proof follows from (28) and lemma 3.3. For m > 2, we
find that

T (k), f @ g)r2(09x)2)]
< ||k||Loo/ / k(xq) - k(xm-1) Af(xl)f(lxl,...,xm)Ag(a:,») da; - - - dr
|1 — 22

o |xm71 - xm|n71

— Ik / Af(an) L7 Ag(w) day

5 AN [l Agll e

The proof then follows from lemma 3.3 and the obvious bound ||Lgkllz <
[1Ell o< | Lo [|2- O

< [I®l o< (| Lo,

4 The Linearized Inverse Problem

Lemma 3.1 and (28) motivate an attempt to invert the operator 77 by finding
dense products of harmonic functions. For the disk, one such choice would be (in
polar coordinates) 7¥¢?*?. This choice, along with its stability has been explored
in [1]. Here we opt for the more general, and familiar complex geometrical optics
(CGO) solutions of Calderén [7]. So let C" 5 p = 1/2(£ + in), where {,n € R",
§-n =i &n =0, and |§| |n|. Then the functions e”'*, and e’ are
harmonic, and e ®ei’'* = i@

Definition 4.1 (Oscillatory boundary values). With p as above, we define
fe(z) == Ale'® and ge(z) := Ale?”®, =z e dX.

Both functions are in L?(9X). Assuming that a coordinate system is chosen

such that |e7®| < elmdiam(x)/2 — clgidiam(x)/2 from the construction of Aj,
these functions satisfy the following estimate:

diamx)
= ,

(e7)] 1
I fellz2(ax), l9¢ll L2 x) < ;\3X|2€| (37)
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where ag = [|(3] + w,, ') || and [0X] is the (Lebesgue) measure of 9.X.
We have a pseudo-inverse for Ag. However for o # 0, (T1(k),f ® g) #
(k, AofAog). We therefore introduce the following notation to deal with non
vanishing absorption, which we treat as a perturbation.
Let us define:

Vo - vol|Ve - 1] day,

mWMmmz/um

X |zo — o1 | oy — 2|t

Vo - vol|Ve - 1]

[W%Mm@=LMMWMm%@—H dey,

|xg — 1|tz — z|nt

so that T1 (k) = TY (k) +T¢ (k). We can prove a mapping property of 77, similar
to lemma 3.4.

Lemma 4.1. There exists Cx, depending only on X such that
1T (k)| 2 ox)2) < Cx|lol|Le ||kl Lo (38)

Proof. The proof is identical to that of lemma 3.4, except that we use the
relation |e”® — 1| < a (valid for ¢ > 0) to show that |E(zg,z1,2) — 1] <
2diam(X)||o|| o O

This yields a refined version of (28):

(Ty(k), f @ g)r2((0x)2) = (TY (k) f ® g) 12((0x)2) + (T (k), f ® 9) 12((0x)2)

= (k, Ao fAog)L2(x) + (T7 (k), f ® g)L2(x)-
(39)

Now setting boundary values equal to fe and ge, (28) gives

(TP (K), fe ® ge) 12((ox)2) = (ks Aofe Aoge) r2(x) = (ks €'®)) 2 (x) = k().
Here we are using (§,y) to denote the dot product. This leads to:
k(x) = / MO de = | (TP (k), fe ® gehe' ™ de.
n RTL

We may also define the following operator, whose domain contains the range of
T:

(19) 'hia) = [ (@0 Th(e)e s dg

(40)
= / <h, fg X gg)Lz((ax)z)e’é’” df

This formal inverse operator to T} will be useful in the analysis of the nonlinear
inversion problem.
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5 The Nonlinear Problem

5.1 The Regularized Inverse
Inverting T? is a severely ill-posed problem. To show this, put
L4(X) :={h € L*(X) : dist (supp(h),0X) > D > 0}.

It is easy enough to see that 77 : L%(X) — H*((0X)?) is bounded for every
s. Therefore T} : L2, — H* is compact for every s. We may then construct a
sequence of unit vectors h,, € L?(X) such that TPh,, — 0 in H®.

We therefore look for some regularized version of (77)~! that is a bounded
operator from L2((0X)?) — L*°(X). To this end, using the bound (37), we
notice that

[(hs fe @ ge)| < Rllz2ox)2) | felln2ox) lgell L2 ox)

on 1€l 5
= |‘h||L2((8X)2)Jg|aX|e stdiam(x)
n

Our measurements and knowledge of o give us access to:

M(fe, g¢) = (To, fe @ ge) = Y (T (k), fe ® ge)

m=1
© 41
(TR fe @ ge) + Tk Je 0 ge) + S (Tuk), few g D
. m=2
= k(&) + R(©),
where i
IR(E)] < Oxad|oX| (o]l oe ||kl oo + [[k]3 ) 2 HAMEO, (42)

This bound was obtained by using lemmas 3.4 and 4.1. To deal with error that
will grow exponentially with frequency, we introduce a cutoff x and define the
following regularized version of ;" in (40):

Definition 5.1 (Regularized Inverse). We define:
(o) i= [ (e g vaoxm (e de, (13)
l&l<s
where we require that:

The cut-off x(§) should be seen as a function equal to 1 for small values of
& corresponding to frequencies that we wish to invert accurately, and equal to 0
for large values of £ corresponding to frequencies that cannot be reconstructed
because of noise in the data. The simplest example of such a function is the
indicatrix function xas equal to 1 for |£| < M and equal to 0 elsewhere.
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The following results are immediate:

TXTY(k) = Pyk, where Ph(z):= / ) h(€)x(€)e™ € de, )

iy
TR oo x) < @2|OX][[x(-)e 2 B 1y

Rl L2(ax)2)-

We now illustrate a step-by-step procedure for implementing the regularized
inverse. First, set the boundary values to f = f¢ and g = g¢, with £ € R®. Our
measurement is then

M(f£79€):<TO+ ZTm(k)’f§®g§>' (45)

Subtracting the known contribution (Tp, fe¢ ® g¢), and multiplying by x(§) we
have thereby computed

(T" > Tm(k)> (©)-

We do the same thing for all ¢ € supp(x). Then after multiplying by e*¢, and
integrating over supp(y) we have computed

X (i Tm(k)> = hy + TX (Tf(k) + i Tm(k)> :

where
ky = Pk.

(46)

We thus obtain from our measurements a reconstruction of P, k, the low-frequency
part of k, up to an error that is formally quadratic in (k, ). In the next section,
we make this statement more precise and prove our main theorems 2.1 and 2.2.

5.2 Proofs of Main Results
Using this framework, we may prove theorem 2.1.

Proof of theorem 2.1. (46) shows that our measurements determine k, up to
the error term TX(T7k + > > _, T, (k)). Using lemmas 3.4, 4.1, and (44) we
have

TXT? (k) + TX i T (k)

m=2

< Ox [T <U|L°°|k||L°° +> ||Lgm1||k||g”w> :

L>(X) m=2

Our smallness assumption on k that ||k||c||Ls|| < 1 ensures that the series
converges, and the theorem is proved. O

Our iterative scheme is motivated by (46), and allows us to improve our
estimate of k,.
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Proof of theorem 2.2. In this proof, C'x denotes the maximum of the constants
from lemma 3.4, and lemma 4.1. Each depends only on X. Defining D :=
TX(>.°_ | Ti(k)), we arrive at our iterative scheme.

m=1
k) =D,
kY =T (f} Tm<k>) - (Tf’ (ky) + i Tm<k;>> (47)

=D-F(k) v=0,1,2,...

The idea is that > _ T, (k) is our measured data, and F' is a mapping we are
able to compute since o is known. To show convergence of the scheme, we will
use the contraction mapping principle. To this end, we define the operator

G(ky) == D — F(ky),

and we will show that, under certain conditions on ||k||p~ and ||o||L=, we can
find a closed set B C L*°(X), such that G is a contraction mapping on B and
G(B) C B. Moreover, if ||k||p~ is sufficiently small so that D € B, then the
iterated scheme (47) will converge.

Step 1: Condition for G to be a contraction. We first prove the following
estimate:

Lemma 5.1. For all ky, ff)m o € L*>®(X), the following inequality holds:

i i ML |2 ML, )
1F(ky) = Flo)llim < IIT¥Cx [y — Byl <||U||L°° 1 MlLal( ”

(1= M| Ls|)?
(48)
where M = max(||ky|| L, ||]~fx||L°°)

Proof. We start with the inequality:

Z Tm(kx) - Tm(ifx)

m=2

1E (k) = PRyl < 1T (IITf’(/fx — k)= +

)

(49)

Repeated use of the relation ab — ab = (a — a)b+ a(b — b) shows that the term

T (k)y — T (ky) looks like T, (k), except that instead of k(x1) - - - k(zy,) it has
the term

Ry (1) - Ry (@) = kx(@1) - - ky(2m)

= Z ]%x(ml) Tt ];x(xj—l)[kx(xj) — ky (@) kx (@j41) - - by (Tm),

so we may use lemma 3.4 to see that

1T (k) = T (k) 2 < mCx || Lo | ™7 M™ [k, — k|
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Now since
o0

m  r2-—z
Z mr T = m, |J?‘ <1,

we can sum the last equation for m = 2... 00 provided that M||L,| < 1. The
result is the following inequality:

m=2

7. 7. iu”La”(Q_lMHLaH)
T (ky) — T (k 2 < CX ky, — ky||po
m§=2” ( X) ( X)HL || X X” (1_ n[HLU”)Q

We then use lemma 4.1 and sum the terms in (49) to obtain the desired result.
0

Since D is constant, we will have exactly the same estimate if we replace F’
by G. Let us fix now ¢; € (0,1). G will be a ¢;-contraction as soon as
M||Lo||(2 = M| Lq|) _ @

(1-M|Ls[[)* — TxCx’

loflze +

Now we fix ||o|| L~ < e1(||[TX||Cx)~!, and the previous condition becomes

1
1 C1 T2
M < pe,, where p., = Tzl (1 - (1 + ~cx ~ ||<T||L°c> ) . (50)

In other words, if we call B the || - || (x)-ball of radius p., and center 0, then
lemma 5.1 under the condition (50) ensures that G is a c¢j-contraction on B.
Let us find now the condition under which G(B) C B.

Step 2: condition for B to be G-stable. We look for a bound on ||D||p~ such
that B is G-stable. For any k, € B, provided that F' and G are c;-contractions
on B and F(0) = 0, we have

IG(kx) L < IDllzee + | F(ky)ll Lo < (| DL + c1pe, -
Thus in order to get ||G(ky)|/L= < p¢,, we need that
1Dl < (1 - e1)pen. (51)

Using lemma 3.4 and the fact that ||k||L~||Ls|| < 1, we have the following
estimate on D

£l
[Dllze < Cx | TX| -
1 — || Lo ||kl o
Thus (51) will hold if k satisfies
(1 — Cl)pcl

[l <

. 52
< CxIT + (- en)pa Lo (52)

As a result of the first two steps, lemma 5.1, and equation (50), we see that
the hypothesis (52) ensures G is a contraction mapping on B, and that D € B.
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Thus in virtue of the contraction mapping principle, the iterated scheme (47)
will converge to an element kY € B such that

k=D - F(k). (53)

Step 3: Error estimates We now show that the difference between £} and
ky is small if k- := k — ky is small. If we define Dy = TX Y2, Tj(k,), some
straightforward calculations show that

ky = Do — F(ky), (54)
which relies on the fact that
TXTYky = Pyky = k.
Subtracting (53) from (54) we have
[kx =kl < |1Do = Dllzee + callky — ki~

Since ¢; < 1, we may absorb the second term on the right hand side into the
left hand side, yielding

. 1 >
Ik = Kl < 3= [1Do = Dz = 3= ||TX Y (Tn(ky) = T (b + k5)
! 1 m=1 oo
1 o0
o Tx (Tl(kx) —Ti(ky + k) + D (T (ky) — Tk + ki—)))
m=2 Lo
1 . . o0
T1-4 ™ <T1 (kx) = T7 (kx + ki_) + Z(Tm(kx) — T (ky + ki‘)))
m=2 I,00
=Y By — ey + k)| e < =S [kt
= 7o 1P (k) = Pl + Bl < 7= - ikl

Here, the third equality comes from the decomposition 77 = TY + T¢ and the
property TXTVk = P,k (see 44). O

6 Conclusions

We have shown that the reconstruction of the smooth part of the scattering coef-
ficient in a transport equation could be obtained when arbitrary isotropic sources
are used and the corresponding angularly averaged outgoing currents are mea-
sured, i.e., in the setting of “diffusion-type” measurements. This corresponds to
the practical setting in many applications of inverse transport [3, 18, 27]. The
accuracy of the reconstruction is proportional to the size of the non-smooth part
of the scattering coefficient. However, we have assumed that the total absorp-
tion coeflicient o could be reconstructed by other means and was sufficiently
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small. These two hypotheses are very constraining from a practical viewpoint.
Nonetheless, the results we have presented give a realistic theoretical backbone
to practical reconstructions of optical parameters from diffusion-type measure-
ments.

The measurements are similar to what is available in the reconstruction of
diffusion coefficients from boundary measurements, as in the application to elec-
trical impedance tomography. [7, 24]. They are thus of the same type as the
measurements available in the diffusion approximation to the transport equa-
tion, which arises in the limit of vanishing mean free path and is overwhelmingly
used in optical tomography [3, 12]. Our reconstructions, however, work for small
values of k and o, i.e., in a transport regime where the diffusion approximation is
not valid. It is therefore somewhat surprising that the same complex geometric
optics solutions may be used in both our context and that of the reconstruction
of diffusion coefficients.

We would like to stress that the reconstruction of optical parameters from
diffusion-type measurements is a severely ill-posed problem. More precisely,
whenever ¢ is smooth, the forward map k — Zfio T;k takes k supported inside
X to a C* function on (9X)?. This explains why the stability estimates we
have obtained are of exponential type, as in Calderén’s problem [7]. These
results are in sharp contrast to the results obtained when either the source or
the measurements (or both) are allowed to depend on the angular variable.
In such instances, better stability estimates of Holder type, which render the
reconstruction a mildly ill-posed problem, are available in many settings [14, 21,
26).

Acknowledgment

The authors would like to thank Plamen Stefanov for multiple discussions on
the inverse transport problem. The work was funded in part by NSF grants
DMS-0239097 and DMS-0554097. IL would like to acknowledge partial support
from NSF grant DMS-0554571.

A Appendix

Proof of Proposition 3.1. Proof of equation (16) :

First, assume f € C'(S), and extend it to f € C'(R?\ {y}), where f is constant
along rays originating at y. We can think of S”~! as a spherical surface SZ‘l C
R™, centered at y. We then show ‘

L= asw) = [ Fadsta)

|z —y[" sp1
The proposition then follows for C f since flg = f, and f(z) = f(z_(y,v))

when v = (z —y)|z —y|~!. We can extend the result to f € L! by density since
for fixed y,  + vy - (x — y)|z — y| ! is bounded.
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Proceeding, we note that
Vi(@)-(z—y)=0. (55)

We first prove that for any C' hypersurfaces S; and S, such that S; encloses y
and Sy encloses S, the following equality holds:

R

)
Py ds(z). (56)

/ Fo) =Y isay = [ )
Sh So

|z -yl

Indeed, if V' denotes the volume between S; and S, the divergence theorem
applied to the function f(x)VN(z,y) in the volume V yields

/ V- (F£)VN(z,y)) de = / (F(@)VN (2, y)) - ve dS(z)
Vv o

|4

=/, F(@)0,, N(z,y) dS(z) - : f(2)d,,N(z,y) dS(x).

We now show that the left-hand side of the previous equation is zero: After
writing

V- (f(2)VN(z,y)) = Vf(z) - VN(z,y) + (@) AN (2, y),

(all the operators apply on the x variable), we first notice that AN(z,y) = 0
for all z # y, in particular on V. Second, as N(z,y) is a radial function of x
with respect to y then its gradient is collinear to the vector  — y. Using (55),
we see that the scalar product Vf(z) - VN(z,y) is zero on V. Finally, since
wnBy, N(z,y) = 2229 the equality (56) holds.

lz—y[™

If S is either enclosing or enclosed in SZ’l, then the proof is done. Otherwise,
pick any hypersurface S” which encloses both S and Sg’l then applying the first
part of this proof to S and S’, then to S’ and S;fl, yields by transitivity

[ Dase) = [ o= Das@ = [ faasie)
s sn

|z —y|" |z —y|" sp-1

hence the result.

Proof of equation (17) : As in the proof of equation (16), we extend f € C!
to f , which is constant along rays originating at y, and zero on all rays 7 such
that 7+ v, > 0. The strict convexity of S allows us to do that. We then show
that

/ Fao) =T sy = [ fa)ds(a).

|z =yl sy
The corollary then follows for f € C1(S) by the same reasoning as in the proof

of equation (16). We may then extend the result for L f since for y € 90X,
vy (z—y)|lz—y|~t € L1(8X) as can be seen using (20).
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Let B. be the ball of radius ¢ centered at y, and S, =S — B.. S, is not a
closed surface, so we cannot directly apply proposition 3.1 to it. Form a new
closed C? surface S. closing S, in such a way that all but a small part (whose
volume is O(e™)) of S\ S, lies on the side of the tangent plane to S at y on
which f is identically zero. This is possible since the surface is C2. Call this
small part P.. Using the proof of equation (16)

|z —y|™

0 sy [ ) g
—/ngu ¢ dS()+/PEf() S dS()

|z —y| |z

= /s f(a?)iyx (@ —y) dS(z) + O(e).

|z —y|™

f(z) dS(x) = . f(z) dS(x)

n—1
Sy

Using (20), we see that the integral over S. becomes the integral over the entire
boundary S as e — 0. O
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