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Abstract

This paper concerns the reconstruction of the absorption and scattering parameters in
a time-dependent linear transport equation from knowledge of angularly averaged mea-
surements performed at the boundary of a domain of interest. Such measurement settings
find applications in medical and geophysical imaging. We show that the absorption coef-
ficient and the spatial component of the scattering coefficient are uniquely determined by
such measurements. We obtain stability results on the reconstruction of the absorption
and scattering parameters with respect to the measured albedo operator. The stability
results are obtained by a precise decomposition of the measurements into components
with different singular behavior in the time domain.

1 Introduction

Inverse transport theory has many applications in e.g. medical and geophysical imaging. It
consists of reconstructing optical parameters in a domain of interest from measurements of
the transport solution at the boundary of that domain. The optical parameters are the total
absorption (extinction) parameter σ(x) and the scattering parameter k(x, v′, v), which measures
the probability of a particle at position x ∈ X ⊂ Rn to scatter from direction v′ ∈ Sn−1 to
direction v ∈ Sn−1, where Sn−1 is the unit sphere in Rn.

The domain of interest is probed as follows. A known flux of particles enters the domain
and the flux of outgoing particles is measured at the domain’s boundary. Several inverse theories
may then be envisioned based on available data. In this paper, we assume availability of time
dependent measurements that are angularly averaged. Also the source term used to probe
the domain is not resolved angularly in order to e.g. save time in the acquisition of data.
More precisely, the incoming density of particles φ(t, x, v) as a function of time t, at position
x ∈ ∂X at the boundary of the domain of interest, and for incoming directions v, is of the
form φS(t, x, v) = φ(t, x)S(x, v), where φ(t, x) is arbitrary but S(x, v) is fixed. This paper is
concerned with the reconstruction of the optical parameters from such measurements. We show
that the attenuation coefficient is uniquely determined and that the spatial structure of the
scattering coefficient can be reconstructed provided that scattering vanishes in the vicinity of
the domain’s boundary (except in dimension n = 2 and when X is a disc, where our theory
does not require k to vanish in the vicinity of ∂X). For instance, when k(x, v′, v) = k0(x)g(v

′, v)
with g(v′, v) known a priori, then k0(x) is uniquely determined by the measurements. Similar
results were announced in [1] when measurements are available in the modulation frequency
variable, which is the dual (Fourier) variable to the time variable.
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Several other regimes have been considered in the literature. The uniqueness of the recon-
struction of the optical parameters from knowledge of angularly resolved measurements both
in the time-dependent and time-independent settings was proved in [7, 8]; see also [15] for a
review. Stability in the time-independent case has been analyzed in dimension n = 2, 3 under
smallness assumptions for the optical parameters in [12, 13] and in dimension n = 2 in [16].
Stability results in the presence of full, angularly resolved, measurements have been obtained
in [3, 4, 17]. The intermediate case of angularly averaged measurements with angularly resolved
sources was considered in [11]. The lack of stability of the reconstruction in the time indepen-
dent setting with angularly averaged measurements and isotropic sources is treated in [6]. See
also [2] for a recent review of results in inverse transport theory.

The rest of the paper is structured as follows. In section 2, we recall known results on the
transport equation, present our measurement setting and a decomposition of the resulting mea-
surement operator (the averaged albedo operator) in Proposition 2.1, and study the temporal
behavior of the averaged albedo operator when the scattering coefficient vanishes in the vicinity
of the boundary of the (convex) domain X. Our main results on uniqueness and stability are
presented in section 3. We show that the absorption coefficient and the spatial structure of the
scattering coefficient (the phase function describing scattering from v to v′ has to be known
in advance) can be reconstructed stably from angularly averaged time dependent data. The
reconstruction of the scattering coefficient requires inversion of a weighted Radon transform in
the general case. When X is a sphere, i.e., when measurements are performed at the bound-
ary of a sphere, then the scattering coefficient may be obtained by inverting a classical Radon
transform. In section 4, we show that the results are significantly modified when k does not
vanish at the boundary of the domain X.

The mathematical derivation of the results is fairly technical and is based on a careful
analysis of the temporal behavior of the decomposition of the albedo operator into components
that are multi-linear in the scattering coefficient. We show that the ballistic and single scattering
components can be separated from the rest of the data. These two components are then used to
obtain the uniqueness and stability results. It turns out that the structure of single scattering
is very different depending on whether k vanishes on ∂X or not. When k does not vanish on
∂X, the main singularities of the single scattering component do not allow us to “see inside”
the domain as they only depend on values of k at the domain’s boundary in dimension n ≥ 3.
The singular structure of single scattering and the resulting stability estimates are presented in
detail both when k vanishes on ∂X and when it does not. Since the case of non-vanishing k on
∂X is practically interesting mostly as a negative result (for then we are not able to reconstruct
k inside the domain from such singularities in dimension n ≥ 3), we have presented the results
without proofs in section 4 and refer the reader to [5] for the mathematical details. The proof of
the results when k vanishes in the vicinity of ∂X are presented in detail in sections 5 and 6. In
Appendix A, we give the proof of elementary lemmas, which appear in section 5. In Appendix
B, we complete the proof of the technical but central Proposition 2.1.

2 Forward problem and albedo operator

2.1 The linear Boltzmann transport equation

We now introduce notation and recall some known results on the linear transport equation. Let
X be a bounded convex open subset of Rn, n ≥ 2, with a C1 boundary ∂X. Let ν(x) denote the
outward normal unit vector to ∂X at x ∈ ∂X. Let Γ± = {(x, v) ∈ ∂X × Sn−1 | ± ν(x) · v > 0}
be the sets of incoming and outgoing conditions. For (x, v) ∈ X̄ × Sn−1, we define τ±(x, v) and
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τ(x, v) by τ±(x, v) := inf{s ∈ (0,+∞) | x ± sv 6∈ X} and τ(x, v) := τ−(x, v) + τ+(x, v). For
x ∈ ∂X, we define Sn−1

x,± := {v ∈ Sn−1 | ± ν(x) · v > 0}.
We consider two nonnegative (measurable) functions σ : X×Sn−1 → R and k : X×Sn−1×

Sn−1 → R and two convex open subsets Y and Z of Rn with C1 boundary such that:

Z ⊆ Y ⊆ X;σ is bounded and continuous on Y × Sn−1and supported on Ȳ × Sn−1;
k is bounded and continuous on Z × Sn−1 × Sn−1 and supported on Z̄ × Sn−1 × Sn−1.

(2.1)

We consider also the real δ defined by δ := inf(x,z)∈∂X×Z |x− z| and we assume throughout this
paper except in section 4 that

δ > 0. (2.2)

In other words, except in section 4, k vanishes in the δ−vicinity of the boundary ∂X. In practice,
this simply means that the array of detectors has to be located some distance away from the
scattering region, which is not too restrictive an assumption.

Let T > η > 0. We consider the following linear Boltzmann transport equation

∂u

∂t
(t, x, v) + v · ∇xu(t, x, v) + σ(x, v)u(t, x, v)

=

∫
Sn−1

k(x, v′, v)u(t, x, v′)dv′, (t, x, v) ∈ (0, T )×X × Sn−1,

u|(0,T )×Γ−(t, x, v) = φ(t, x, v),

u(0, x, v) = 0, (x, v) ∈ X × Sn−1,

(2.3)

where φ ∈ L1((0, T ), L1(Γ−, dξ)) and suppφ ⊆ [0, η]. Signals are then emitted for a maximal
duration η and are recorded at the domain’s boundary for a duration T that will be chosen
sufficiently large so that information can travel through the domain X and be measured. Here,
dξ(x, v) = |v · ν(x)|dvdµ(x), where dµ is the surface measure on ∂X and dv is the surface
measure on Sn−1.

The theory for (2.3) is well-developed; we refer the reader to [4, 7, 9]. For our purpose, it
is sufficient to recall that the solution may be decomposed as

u(t) = G−(t)φ+

∫ t

0

∞∑
m=1

Hm−1(t− s)A2G−(s)φds, (2.4)

where we have defined the following operators:

A2f =

∫
Sn−1

k(x, v′, v)f(x, v′)dv′, Hm(t) =

∫ t

0

Hm−1(t− s)A2U1(s)ds, m ≥ 1

U1(t) = H0(t)f = e−
∫ t
0 σ(x−sv,v)dsf(x− tv, v)χ[0,τ−(x,v))(t), (x, v) ∈ X × Sn−1,

G−(t)φ(x, v) = e−
∫ τ−(x,v)

0 σ(x−sv,v)dsφ−(t− τ−(x, v), x− τ−(x, v)v, v), (t, x, v) ∈ (0, T )×X × Sn−1,

with χ[0,τ−(x,v)) defined on R such that χ[0,τ−(x,v))(t) = 1 when 0 ≤ t < τ−(x, v) and χ[0,τ−(x,v))(t) =
0 otherwise. Functions φ ∈ L1((0, η), L1(Γ−, dξ)) are extended to t ∈ R by 0 outside of the in-
terval (0, η). The first term G−(t)φ in the above series is the ballistic part of u(t) while the
term corresponding to m ≥ 1 is m-linear in the scattering kernel k. The term corresponding to
m = 1 is the single scattering term.

The albedo operator A given by the formula

Aφ = u|(0,T )×Γ+ , for φ ∈ L1((0, η), L1(Γ−, dξ)) where u solves (2.3), (2.5)

is also well-defined and bounded; see [4, 7] for a derivation of the albedo operator and for the
reconstruction of the optical parameters when the full albedo operator is known. We assume
here that only partial knowledge of the albedo operator is available from measurements.
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2.2 The operator AS,W and its distributional kernel

We now define more precisely the type of measurements we consider in this paper. The direc-
tional behavior of the source term is determined by a fixed function S(x, v), which is bounded
and continuous on Γ−. We assume that the incoming conditions have the following structure

φS(t′, x′, v′) = S(x′, v′)φ(t′, x′), t′ ∈ (0, η), (x′, v′) ∈ Γ−, (2.6)

where φ(t, x) is an arbitrary function in L1((0, η)× ∂X). We model the detectors by the kernel
W (x, v), which we assume is a continuous and bounded function on Γ+. The available mea-
surements are therefore modeled by the availability of the averaged albedo operator AS,W from
L1((0, η)× ∂X, dtdµ(x)) to L1((0, T )× ∂X, dtdµ(x)) and defined by

AS,Wφ(t, x) =

∫
Sn−1

x,+

A(φS)(t, x, v)W (x, v)(ν(x) · v)dv, for a.e. (t, x) ∈ (0, T )× ∂X. (2.7)

The functions S and W are fixed throughout the paper. The case W ≡ 1 corresponds to
measurements of the current of exiting particles at the domain’s boundary.

The decomposition of the transport solution (2.4) translates into a similar decomposition
of the albedo operator of the form

AS,Wφ(t, x) =
+∞∑
m=0

Am,S,Wφ(t, x), (2.8)

for (t, x) ∈ (0, T )× ∂X, where we have defined

A0,S,Wφ(t, x) =

∫
Sn−1

x,+

(ν(x) · v)W (x, v) (G−(.)φS)|(0,T )×Γ+
(t, x, v)dv, (2.9)

Am,S,Wφ(t, x) =

∫
Sn−1

x,+

(ν(x) · v)W (x, v)

(∫ t

−∞
Hm−1(t− s)A2G−(s)φSds

)
|(0,T )×Γ+

(t, x, v)dv, (2.10)

for a.e. (t, x) ∈ (0, T )×∂X where φS is defined by (2.6). The kernels of the operators Am,S,W can
be written explicitly. Consider the nonnegative (measurable) function E from ∂X × ∂X → R
defined by

E(x1, x2) = exp
(
−
∫ |x1−x2|

0

σ(x1 − s
x1 − x2

|x1 − x2|
,
x1 − x2

|x1 − x2|
)ds
)

(2.11)

for (x1, x2) ∈ ∂X × ∂X. We use the same notation E(x1, x2) when x1 and x2 are either in X
or on ∂X. For m ≥ 3, we also define the nonnegative (measurable) function E(x1, . . . , xm) by
induction:

E(x1, . . . , xm) = E(x1, . . . , xm−1)E(xm−1, xm), m ≥ 3,

which measures the total attenuation along the broken path (x1, . . . , xm) ∈ ∂X ×Xm−2 × ∂X.
For m ∈ N, m ≥ 1 and for any subset U of Rm we denote by χU the characteristic function

from Rm to R defined by χU(y) = 1 when y ∈ U and χU(y) = 0 otherwise. We then obtain the
following result on the structure of the kernels of the albedo operator.

Proposition 2.1. We have

Am,S,W (φ)(t, x) =

∫
(0,η)×∂X

γm(t− t′, x, x′)φ(t′, x′)dt′dµ(x′), (2.12)
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for m ≥ 0 and for a.e. (t, x) ∈ (0, T )× ∂X, where

γ0(τ, x, x
′) :=

E(x, x′)

|x− x′|n−1
[W (x, v)S(x′, v)(ν(x) · v)|ν(x′) · v|]

v= x−x′
|x−x′|

δ(τ − |x− x′|), (2.13)

γ1(τ, x, x
′) := χ(0,+∞)(τ − |x′ − x|)

∫
Sn−1

x,+

(ν(x) · v)W (x, v) [E(x, x− sv, x′)k(x− sv, v′, v)

× χ(0,τ−(x,v))(s)S(x′, v′)|ν(x′) · v′|
]∣∣v′= x−x′−sv

|x−x′−sv| ; s=
τ2−|x−x′|2

2(τ−v·(x−x′))

2n−2(τ − (x− x′) · v)n−3

|x− x′ − τv|2n−4
dv, (2.14)

for (τ, x, x′) ∈ R×∂X×∂X and where γm for m ≥ 2 admits a similar, more complex, expression
given in section 5 (see (5.21)–(5.22)).

Proposition 2.1 is proved in detail in Appendix B. As in (2.4), γ0 is the kernel of the
ballistic contribution to AS,W , γ1 that of the single scattering contribution and γm that of the
contribution that is m−linear in k.

2.3 Regularity of the albedo kernels

The reconstruction of the optical parameters is based on an analysis of the behavior in time of
the kernels of the albedo operator. We define the scattering kernels

Γ0 =
+∞∑
m=0

γm, Γ1 = Γ0 − γ1, Γ2 = Γ1 − γ2. (2.15)

Thus, Γk accounts for scattering of order at least k in the albedo operator. Our first result is
the following.

Theorem 2.2. Under the assumption k ∈ L∞(X × Sn−1 × Sn−1) and under assumption (2.2),
which implies that the scattering coefficient vanishes in the vicinity of ∂X, we have

(τ − |x− x′|)
3−n

2 γ1(τ, x, x
′) ∈ L∞((0, T )× ∂X × ∂X) when n ≥ 2; (2.16)

Γ2(τ, x, x
′) ∈ L∞((0, T )× ∂X × ∂X), when n = 2; (2.17)(

1 + ln

(
τ + |x− x′|
τ − |x− x′|

))−1
Γ2(τ, x, x

′)

(τ − |x− x′|)
∈ L∞((0, T )× ∂X × ∂X), when n = 3; (2.18)

(τ − |x− x′|)
1−n

2 Γ2(τ, x, x
′) ∈ L∞((0, T )× ∂X × ∂X), when n ≥ 4. (2.19)

Theorem 2.2 is proved in section 5. The results in (2.17)–(2.19) quantify how “smoother”
multiple scattering is compared to the single scattering contribution considered in (2.16).

2.4 Single scattering contribution and weighted X-ray transform

We want to analyze the behavior of the function γ1(τ, x, x
′) given by the right hand side of (2.14)

for all (τ, x, x′) ∈ R × ∂X × ∂X. Under hypothesis (2.2), i.e., when the scattering coefficient
vanishes in the vicinity of where measurements are collected, Theorem 2.3 below describes the
behavior in time of the single scattering term as a function of E(x, x′) for (x, x′) ∈ ∂X2, (which
is uniquely determined by the ballistic term; see (2.13)) and the weighted X-ray transform Pϑ0

of x 7→ k(x, v0, v0) (for a fixed v0 ∈ Sn−1), where Pϑ0 is defined by

Pϑ0f(v, x) =

∫ τ+(x,v)

τ−(x,v)

ϑ0(v, tv + x)f(tv + x)dt, (2.20)
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for a.e. (v, x) ∈ Sn−1 × ∂X and f ∈ L2(X, supv∈Sn−1 ϑ0(v, x)dx), and where the weight ϑ0 :
Sn−1 ×X → R is the function defined by

ϑ0(v, x) =
(
τ−(x, v)τ+(x, v)

)−n−1
2 , (v, x) ∈ Sn−1 ×X. (2.21)

Theorem 2.3. Let (x, x′0) ∈ ∂X2 be such that x′0 + s(x − x′0) ∈ Z for some s ∈ (0, 1). Define

v0 =
x−x′0
|x−x′0|

and t0 = |x−x′0| and let kv0(y) := k(y, v0, v0) for y ∈ X. Then we have the following.

γ1(τ, x, x
′
0) =

1√
τ − t0

√
2W (x, v0)S(x′0, v0)(ν(x) · v0)|ν(x′0) · v0|E(x, x′0)√

t0
(2.22)

×Pϑ0kv0(v0, x) + o
( 1√

τ − t0

)
, as τ → t+0 , when n = 2

γ1(τ, x, x
′
0) = (τ − t0)

n−3
2 (2t0)

1−n
2 Voln−2(Sn−2)S(x′0, v0)W (x, v0)|ν(x′0) · v0|(ν(x) · v0) (2.23)

×E(x, x′0)Pϑ0kv0(v0, x) + o((τ − t0)
n−3

2 ), as τ → t+0 when n ≥ 3.

Theorem 2.3 is proved in section 6. Theorem 2.3 may remain valid under more general
assumptions. For instance, when σ is bounded and continuous on X, k is continuous on X ×
Sn−1 × Sn−1 and k(x, ., .) decays sufficiently rapidly as x approaches the boundary ∂X for any
x ∈ X, then the same asymptotic expansion holds for γ1.

3 Uniqueness and stability results under condition (2.2)

We recall that Γ0 =
∑+∞

m=0 γm the distributional kernel of AS,W and that Γ0−γ0 = Γ1 denotes the
distributional kernel of the multiple scattering of AS,W . For the rest of the paper, we assume that
the duration of measurement T > diam(X) := sup(x,y)∈X2 |x−y| so that the singularities of the
ballistic and single scattering contributions are indeed captured by the available measurements.

Let (σ̃, k̃) be a pair of absorption and scattering coefficients that also satisfy (2.1) and
(2.2) for the same (Y, Z) related to (σ, k). We denote by a superscript˜any object (such as the
albedo operator Ã or the distributional kernels Γ̃0 and γ̃0) associated to (σ̃, k̃). Let ‖.‖η,T :=
‖.‖L(L1((0,η)×∂X)),L1((0,T )×∂X)).

3.1 Stability estimates in integral form

The following theorem presents stability results for the reconstruction of the attenuation coef-
ficient and of the scattering coefficient when the latter vanishes in the vicinity of the boundary
∂X.

Theorem 3.1. Assume mS,W = min
(
infΓ− S, infΓ+ W

)
> 0. Let (σ, k) and (σ̃, k̃) satisfy

conditions (2.1)–(2.2). Let x′0 ∈ ∂X. Then there exist constants C1 = C1(mS,W , X, Y ) and
C2 = C2(mS,W , X, Z) such that∫

Sn−1

x′0,−

|E − Ẽ|(x′0 + τ+(x′0, v0)v0, x
′
0)|ν(x′0) · v0|dv0 ≤ C1‖AS,W − ÃS,W‖η,T , (3.1)

∣∣∣E(x, x′0)Pϑ0kv′0
(v′0, x

′
0)− Ẽ(x, x′0)Pϑ0 k̃v′0

(v′0, x
′
0)
∣∣∣ ≤ C2

∥∥∥(τ − |z − z′|)
3−n

2 (Γ1 − Γ̃1)(τ, z, z
′)
∥∥∥

L∞
,

(3.2)

for x ∈ ∂X such that px′0 + (1− p)x ∈ Z for some p ∈ (0, 1) where v′0 =
x−x′0
|x−x′0|

, Pϑ0 is defined

in (2.20), and kv′0
(y) := k(y, v′0, v

′
0) for y ∈ X (k̃v′0

is defined similarly).
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Theorem 3.1 is the main result of the paper. The first estimate (3.1) shows that integrals of
the attenuation coefficients are stably determined by the measurements AS,W . The attenuation
coefficient may then stably be reconstructed by inverse Radon transform as we will see in (3.7)
below. The second inequality shows that a weighted integral of the scattering coefficient is
stably determined by an appropriate measure of the multiple scattering coefficient Γ1. What
may then be stably reconstructed in the scattering kernel will be made explicit in Theorems
3.3 and 3.4 below. Theorem 3.1 is proved in section 6.

3.2 Uniqueness and stability when X is a ball of Rn

When X is an open Euclidean ball of Rn, which is important from the practical point of
view in medical imaging as it is relatively straightforward to place sources and detectors on
a sphere, we are able to invert the weighted X-ray transform Pϑ0f for functions of the form
f(x) ∈ L2(X, supv∈Sn−1 ϑ0(v, x)dx) using the classical inverse X-ray transform (inverse Radon
transform in dimension n = 2). More general convex domains X, which require one to solve
more complex weighted X-ray transforms, are considered in the next subsection.

Up to rescaling, we assume X = Bn(0, 1), the ball in Rn centered at 0 of radius 1. Consider
the X-ray transform P defined by

Pf(v, x) =

∫ τ+(x,v)

τ−(x,v)

f(sv + x)ds for a.e. (v, x) ∈ Sn−1 × ∂X, (3.3)

for f ∈ L2(X) (we extend f by 0 outside X). We have the following result:

Proposition 3.2. When X = Bn(0, 1) we have

Pϑ0f(v, x) = P (%f)(v, x), for a.e. (v, x) ∈ Sn−1 × ∂X, (3.4)

for f ∈ L2(X, supv∈Sn−1 ϑ0(v, x)dx) where %(y) := (1− |y|2)−n−1
2 , y ∈ X.

Proof of Proposition 3.2. It is easy to see that

τ±(tv + qv⊥, v) =
√

1− q2 ∓ t, (3.5)

ϑ0(v, x) = (1− q2 − t2)−
n−1

2 = (1− |x|2)−
n−1

2 , (3.6)

for (t, q) ∈ R2, t2 + q2 ≤ 1 and for (v, v⊥) ∈ Sn−1 × Sn−1, v · v⊥ = 0, where x = tv + qv⊥ (we
recall that ϑ0 is defined by (2.21)). Then Proposition 3.2 follows from the definition (2.20).

Assume that (σ, k) satisfies (2.1) and (2.2). Assume also that k(x, v, v′) = k0(x)g(v, v
′)

for a.e. (x, v, v′) ∈ X × Sn−1 × Sn−1 where g is a given continuous function on Sn−1 × Sn−1,
infv∈Sn−1 g(v, v) > 0, and where k0 ∈ L∞(X). Then from the decomposition of the angularly
averaged albedo operator AS,W (Proposition 2.1) and from Theorems 2.2, 2.3, and from Propo-
sition 3.2 and methods of reconstruction of a function from its X-ray transform, it follows
that (σ, k0) can be reconstructed from the asymptotic expansion in time of AS,W provided that
σ = σ(x) and min(infΓ− S, infΓ+ W ) > 0. In addition we have the following stability estimates.

Theorem 3.3. Assume X = Bn(0, 1) and mS,W = min
(
infΓ− S, infΓ+ W

)
> 0. Let (σ, k) and

(σ̃, k̃) satisfy conditions (2.1) and (2.2). Assume that σ, σ̃ do not depend on the velocity variable
(σ(x, v) = σ(x)) and let M = max(‖σ‖L∞(Y ), ‖σ̃‖L∞(Y )). Assume k(x, v, v′) = k0(x)g(v, v

′) and

k̃(x, v, v′) = k̃0(x)g(v, v
′), g(v, v) > 0, for (x, v, v′) ∈ X × Sn−1 × Sn−1 where g is an a priori

known continuous function on Sn−1 × Sn−1.
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Then there exists C3 = C3(mS,W , X, Y,M) and C4 = C4(mS,W , X, Y, Z,M, g) such that

‖σ − σ̃‖
H− 1

2 (Y )
≤ C3‖σ − σ̃‖

1
2

L∞(Y )‖AS,W − ÃS,W‖
1
2
η,T ; (3.7)

‖k0 − k̃0‖H− 1
2 (Z)

≤ C4‖k0 − k̃0‖
1
2

L∞(Z)

(
‖k̃0‖L∞(Z)‖AS,W − ÃS,W‖η,T (3.8)

+
∥∥∥(τ − |z − z′|)

3−n
2 (Γ1 − Γ̃1)(τ, z, z

′)
∥∥∥

L∞

) 1
2
.

Theorem 3.3 is proved as Theorem 3.4 given below for a larger class of domains X. Under
the assumptions of Theorem 3.3 and additional regularity assumptions on (σ, k), we obtain
stability estimates similar to those given in Corollary 3.5 below for a larger class of domains
X. Note that ‖σ − σ̃‖L∞(Y ) and ‖k0 − k̃0‖L∞(Z) are bounded a priori by positive constants.
These and similar estimates below show how measurement errors translate into reconstruction
errors. These are Hölder-type estimates in the sense that measurement errors of size δ generate
reconstruction errors of size δα for some α > 0. Such estimates should be compared to those
obtained for other measurement settings in inverse transport theory; see e.g. [2].

3.3 Uniqueness and stability estimates for more general domains X

Theorem 3.4. Assume that the open subset X of Rn is convex with a real analytic boundary
and that min

(
infΓ− S, infΓ+ W

)
> 0. Let (σ, k) and (σ̃, k̃) satisfy conditions (2.1) and (2.2).

Assume also that σ, σ̃ do not depend on the velocity variable (σ(x, v) = σ(x)) and k(x, v, v′) =
k0(x)g(x, v, v

′) and k̃(x, v, v′) = k̃0(x)g(x, v, v
′), g(x, v, v′) > 0, for (x, v, v′) ∈ X × Sn−1 × Sn−1

where g is an a priori known real analytic function on X × Sn−1 × Sn−1 and where suppk0 ∪
suppk̃0 ⊆ Z̄, (k0, k̃0) ∈ L∞(Z). Then estimates (3.7)–(3.8) still hold.

Theorem 3.4 is proved in section 6. Now we give stability estimates under additional reg-
ularity assumptions on the optical parameters and on X. Assume that X is convex with a real
analytic boundary and that min

(
infΓ− S, infΓ+ W

)
> 0. Let Y and Z be open convex subsets

of X, Z̄ ⊂ X, Z ⊆ Y ⊆ X, with a C1 boundary. Let g be an a priori known real analytic
function on X × Sn−1× Sn−1, g(x, v, v′) > 0 for (x, v, v′) ∈ X × Sn−1× Sn−1. Let r1 > 0, r2 > 0.
Consider the class

N :=
{

(σ, k) ∈ H
n
2
+r1(Y )× L∞(Z × Sn−1 × Sn−1) | ‖σ‖

H
n
2 +r1 (Y )

≤M1,

k = k0g, suppk0 ⊆ Z̄, ‖k0‖H
n
2 +r2 (Z)

≤M2

}
. (3.9)

Note that there exists a function D1 : N× (0,+∞) → (0,+∞) such that

‖σ‖L∞(Y ) ≤ D1(n, r1)‖σ‖H
n
2 +r1 (Y )

≤ D1(n, r1)M1,

‖k0‖L∞(Z) ≤ D1(n, r2)‖k0‖H
n
2 +r2 (Z)

≤ D1(n, r2)M2,

‖k‖L∞(Z) ≤ ‖g‖L∞(Z)‖k0‖L∞(Z) ≤ D1(n, r2)M2‖g‖L∞(Z),

(3.10)

for (σ, k) ∈ N . We also use the classical interpolation formula

‖f‖Hs(O) ≤ ‖f‖
s2−s

s2−s1

Hs1 (O)‖f‖
s−s1

s2−s1

Hs2 (O), (3.11)

for s1 < s < s2 and for (O, s1, s2) ∈ {(Y,−1
2
, n

2
+ r1), (Z,−1

2
, n

2
+ r2)}. Using Theorem 3.4 and

(3.10), and applying (3.11) on f = σ − σ̃ and f = k0 − k̃0 we obtain the following result.
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Corollary 3.5. Let (σ, k), (σ̃, k̃) ∈ N . Then, for −1
2
≤ s ≤ n

2
+ r1 and for 0 < r < r1, there

exists C5 = C5(mS,W , X, Y,M1, r1, s) such that

‖σ − σ̃‖Hs(Y ) ≤ C5‖σ − σ̃‖
κ
2

L∞(Y )‖AS,W − ÃS,W‖
κ
2
η,T , (3.12)

‖σ − σ̃‖
H

n
2 +r(Y )

≤ C6‖AS,W − ÃS,W‖
κ′

2−κ′
η,T , (3.13)

where (κ, κ′) =
(

n+2(r1−s)
n+1+2r1

, 2(r1−r)
n+1+2r1

)
and C6 = C

2
2−κ′
5 D1(n, r)

κ′
2−κ′ (D1(n, r) is defined by (3.10)).

In addition, there exists C7 = C7(mS,W , X, Y, Z, g,M1, r1,M2, r2, s) such that

‖k0 − k̃0‖Hs(Z) ≤ C7‖k0 − k̃0‖
κ
2

L∞(Z)

(
‖AS,W − ÃS,W‖η,T (3.14)

+
∥∥∥(τ − |z − z′|)

3−n
2 (Γ1 − Γ̃1)(τ, z, z

′)
∥∥∥

L∞

)κ
2
,

‖k0 − k̃0‖H
n
2 +r(Z)

≤ C8

(
‖AS,W − ÃS,W‖η,T +

∥∥∥(τ − |z − z′|)
3−n

2 (Γ1 − Γ̃1)(τ, z, z
′)
∥∥∥

L∞

) κ′
2−κ′

,

(3.15)

for −1
2
≤ s ≤ n

2
+ r2 and 0 < r < r2, where (κ, κ′) =

(
n+2(r2−s)
n+1+2r2

, 2(r2−r)
n+1+2r2

)
and C8 =

C
2

2−κ′
7 D1(n, r)

κ′
2−κ′ (D1(n, r) is defined by (3.10)).

Remark 3.6. (i.) Theorem 3.4 and Corollary 3.5 remain valid when: X is only assumed to be
convex with C2 boundary; the weight ϑo defined by (2.21) (resp. the function g which appears
in the assumptions of Theorem 3.4 and Corollary 3.5) is sufficiently close (in the C2 norm) to
an analytic weight θ0,a on the vicinity of Z̄×Sn−1 (resp. an analytic function ga on the vicinity
of Z̄ × Sn−1 × Sn−1); see proof of Theorem 3.4 and [10, Theorem 2.3].

(ii.) When n = 3 then under hypothesis (2.2), we have

∥∥∥(τ − |z − z′|)
3−n

2 (Γ1 − Γ̃1)(τ, z, z
′)
∥∥∥

L∞
=

∥∥∥∥∥
∞∑

m=1

(Am,S,W − Ãm,S,W )

∥∥∥∥∥
L(L1((0,η)×∂X),L∞((0,T )×∂X))

.

where the distributional kernel of the bounded operator
∑+∞

m=1(Am,S,W−Ãm,S,W ) from L1((0, η)×
∂X) to L1((0, T )× ∂X) is given by Γ1 − Γ̃1. Therefore when n = 3 and under condition (2.2),
the right-hand side of the stability estimates (3.8) and (3.14) can be expressed with operator
norms only (instead of using a norm on the distributional kernel of the multiple scattering).

4 Non-vanishing scattering on ∂X

Throughout this section, we consider the class of optical parameters (σ, k) such that (σ, k)
satisfies (2.1) with

X = Y = Z (thus δ = 0); the function k is continuous on X̄ × Sn−1 × Sn−1. (4.1)

Under assumptions (2.1) and (4.1), the albedo operator AS,W is defined as in section 2 and the
decomposition given in Proposition 2.1 still holds. The behavior in time of the measurement
operator AS,W is however significantly modified when k does not vanish on ∂X. Because they
appear to be less interesting practically, the results of this section are given without proofs. We
refer the reader to [5] for the details.
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4.1 Behavior in time of the averaged albedo operator

The analog of Theorem 2.2 is given by the following Theorems 4.1 and 4.2.

Theorem 4.1. Under the conditions k ∈ L∞(X × Sn−1 × Sn−1), the following holds:√
τ 2 − |x− x′|2γ1(τ, x, x

′) ∈ L∞((0, T )× ∂X × ∂X) when n = 2; (4.2)

τ |x− x′|

ln
(

τ+|x−x′|
τ−|x−x′|

)γ1(τ, x, x
′) ∈ L∞((0, T )× ∂X × ∂X) when n = 3; (4.3)

τ |x− x′|n−2γ1(τ, x, x
′) ∈ L∞((0, T )× ∂X × ∂X) when n ≥ 4; (4.4)

The results in the following Theorem 4.2 quantify how “smoother” multiple scattering is
compared to single scattering contribution considered in (4.2)–(4.4).

Theorem 4.2. Assume that k ∈ L∞(X × Sn−1 × Sn−1). Then we have:

statement (2.17) still holds, when n = 2; (4.5)

τ |x− x′|Γ2(τ, x, x
′)

(τ − |x− x′|)
(
1 + ln

(
τ+|x−x′|
τ−|x−x′|

))2 ∈ L
∞((0, T )× ∂X × ∂X), when n = 3; (4.6)

τ |x− x′|n−2

τ − |x− x′|
Γ2(τ, x, x

′) ∈ L∞((0, T )× ∂X × ∂X), when n ≥ 4. (4.7)

The analog of the single scattering asymptotic expansion in time given in Theorem 2.3 is:

Theorem 4.3. Let (x, x′0) ∈ ∂X2 be such that x + s(x − x′0) ∈ X for some s ∈ (0, 1). Set

v0 =
x−x′0
|x−x′0|

and t0 = |x− x′0|. Then under condition (4.1), we have the following results.

(2.22) still holds when n = 2,

γ1(τ, x, x
′
0) = ln(

1

τ − t0
)
π

t20
W (x, v0)S(x′0, v0)(ν(x) · v0)|ν(x′0) · v0|E(x, x′0) (4.8)

× (k(x, v0, v0) + k(x′0, v0, v0)) + o
(

ln(
1

τ − t0
)
)
, as τ → t+0 , when n = 3,

γ1(τ, x, x
′
0) = t1−n

0 E(x, x′0)
[
S(x′0, v0)|ν(x′0) · v0|

∫
Sn−1

x,+

W (x, v)(ν(x) · v)k(x, v0, v)

1− v · v0

dv

+W (x, v0)(ν(x) · v0)

∫
Sn−1

x′0,−

k(x′0, v
′, v0)S(x′0, v

′)|ν(x′0) · v′|
1− v′ · v0

dv′
]

(4.9)

+o(1), as τ → t+0 , when n ≥ 4.

Note that the asymptotic expansion in time of γ1 depends on the values of k on ∂X in
dimension n ≥ 3, and no longer on k inside X. Such singularities are thus useless in the
reconstruction of the scattering coefficient inside X. The proof of these results can be found in
[5].

4.2 Stability results

The singularities exhibited in the preceding results still allow us to perform stable reconstruc-
tions when k does not vanish on ∂X. The analog of Theorem 3.1 is as follows.

10



Theorem 4.4. Let (σ, k) and (σ̃, k̃) satisfy (2.1) and (4.1). Let x′0 ∈ ∂X. Then we have:∫
∂X

[
|E − Ẽ|(x, x′0)
|x− x′0|n−1

W (x, v0)S(x′, v0)(ν(x) · v0)|ν(x′0) · v0|

]
t0=|x−x′0|

v0=
x−x′0
|x−x′0|

dµ(x) ≤ ‖AS,W − ÃS,W‖η,T .

(4.10)

Let x ∈ ∂X be such that px′0+(1−p)x ∈ X for some p ∈ (0, 1). Set v0 =
x−x′0
|x−x′0|

and t0 = |x−x′0|.
When n = 2, we have

W (x, v0)S(x′0, v0)(ν(x) · v0)|ν(x′0) · v0|
∣∣∣E(x, x′0)Pϑ0kv0(v0, x)− Ẽ(x, x′0)Pϑ0 k̃v0(v0, x)

∣∣∣
≤ 1

2

∥∥∥√τ 2 − |z − z′|2(Γ1 − Γ̃1)(τ, z, z
′)
∥∥∥

L∞
, (4.11)

where ‖ · ‖L∞ := ‖ · ‖L∞((0,T )×∂X×∂X). When n = 3, then∣∣∣E(x, x′0)(k(x, v0, v0) + k(x′0, v0, v0))− Ẽ(x, x′0)(k̃(x, v0, v0) + k̃(x′0, v0, v0))
∣∣∣ (4.12)

×W (x, v0)S(x′0, v0)(ν(x) · v0)|ν(x′0) · v0| ≤
1

π

∥∥∥∥∥∥ τ |z − z′|

ln
(

τ+|z−z′|
τ−|z−z′|

)(Γ1 − Γ̃1)(τ, z, z
′)

∥∥∥∥∥∥
L∞

.

When n ≥ 4, then

S(x′0, v0)|ν(x′0) · v0|

∣∣∣∣∣
∫

Sn−1
x,+

W (x, v)(ν(x) · v)
1− v · v0

(
E(x, x′0)k(x, v0, v)− Ẽ(x, x′0)k̃(x, v0, v)

)
dv

+W (x, v0)(ν(x) · v0)

∫
Sn−1

x′0,−

S(x′0, v
′)|ν(x′0) · v′|

1− v′ · v0

(
E(x, x′0)k(x

′
0, v

′, v0)− Ẽ(x, x′0)k̃(x
′
0, v

′, v0)
)
dv′

∣∣∣∣∣∣
≤
∥∥∥τ |z − z′|n−2(Γ1 − Γ̃1)(τ, z, z

′)
∥∥∥

L∞
. (4.13)

Note that if we assume that infΓ− S > 0 and infΓ+ W > 0, then (4.10) and (3.1) are

equivalent by performing the change of variables “v0 =
x−x′0
|x−x′0|

” in (4.10). Note also that (4.11)

is similar to but different from (3.2) in dimension n = 2. Results in (4.12) and (4.13) show
that the spatial structure of k may be stably reconstructed at the domain’s boundary in n ≥ 3.
They do not imply stable reconstruction of k inside the domain.

4.3 Improved results when X is a ball

First consider the case n = 2 and X = B2(0, 1). Let (σ, k) satisfy (2.1) and (4.1). Assume that
k(x, v, v′) = k0(x)g(v, v

′) for a.e. (x, v, v′) ∈ X × Sn−1 × Sn−1 where g is a given continuous
function on Sn−1 × Sn−1, infv∈Sn−1 g(v, v) > 0, and where k0 ∈ L∞(X). Then from the decom-
position of the angularly averaged albedo operator AS,W (Proposition 2.1) and from Theorems
4.1, 4.2, 4.3, and from Proposition 3.2 and methods of reconstruction of a function from its
X-ray transform, it follows that (σ, k0) can be reconstructed from the asymptotic expansion in
time of AS,W provided that σ = σ(x) and inf(x′,v′)∈Γ− S(x′, v′) > 0 and inf(x,v)∈Γ+ W (x, v) > 0.
In addition we have the following stability estimates.

Theorem 4.5. Assume X = Bn(0, 1), and min
(
infΓ− S, infΓ+ W

)
> 0. Let (σ, k) and (σ̃, k̃)

satisfy conditions (2.1) and (4.1). Assume that σ, σ̃ do not depend on the velocity variable
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(σ(x, v) = σ(x)) and let M = max(‖σ‖L∞(Y ), ‖σ̃‖L∞(Y )). Assume k(x, v, v′) = k0(x)g(v, v
′) and

k̃(x, v, v′) = k̃0(x)g(v, v
′), g(v, v) > 0, for (x, v, v′) ∈ X × Sn−1 × Sn−1 where g is an a priori

known continuous function on Sn−1 × Sn−1. Then we have :
(i) (3.7) still holds;
(ii) when n = 2, there exists C8 = C8(S,W,X, Y, Z,M, g) such that

‖ρ(k0 − k̃0)‖H− 1
2 (X)

≤ C8‖k0 − k̃0‖
3
4∞

(
‖k̃0‖∞‖AS,W − ÃS,W‖η,T (4.14)

+
∥∥∥√τ 2 − |z − z′|2(Γ1 − Γ̃1)(τ, z, z

′)
∥∥∥

L∞

) 1
4
.

Theorem 4.5 can be proved as Theorem 3.4. Under the assumptions of Theorem 4.5 and
additional regularity assumptions on (σ, k) one obtains stability estimates similar to those given
in Corollary 3.5.

5 Proof of Theorem 2.2

For 0 < b < a, we recall that ∫ 2π

0

1

a− b sin(Ω)
dΩ =

2π√
a2 − b2

. (5.1)

5.1 Proof of (2.16)

First, we give an estimate on the single scattering term. From (2.14), it follows that

|γ1(τ, x, x
′)| ≤ 2n−2‖W‖∞‖S‖∞‖k‖∞G1(τ, x, x

′) (5.2)

for a.e. (τ, x, x′) ∈ R× ∂X × ∂X, where

G1(τ, x, x
′) = χ(0,+∞)(τ−|x−x′|)

∫
Sn−1

χsuppk(x−sv)|s= τ2−|x−x′|2
2(τ−v·(x−x′))

(τ − (x− x′) · v)n−3

|x− x′ − τv|2n−4
dv. (5.3)

Let (τ, x, x′) ∈ (0, T ) × ∂X × ∂X be such that x 6= x′ and τ > |x − x′|. Assume without loss

of generality x′ − x = |x′ − x|(1, 0 . . . 0). Let v ∈ Sn−1 and s := τ2−|x−x′|2
2(τ−(x−x′)·v)

. Straightforward

computations give s+ |x− x′ − sv| = τ . Using (2.2) we obtain that

if τ < δ or s > τ − δ, then x− sv 6∈ suppk. (5.4)

Let n = 2. From (5.3) and (5.1), it follows that

G1(τ, x, x
′) ≤

∫ 2π

0

1

τ − |x− x′| sin(Ω)
dΩ =

2π√
τ 2 − |x− x′|2

≤ 2π√
δ
√
τ − |x− x′|

, (5.5)

for τ ≥ δ. Using (5.3) and (5.4), we obtain

if τ < δ then G1(τ, x, x
′) = 0. (5.6)

Combining (5.2) with (5.5)–(5.6), we obtain (2.16) for n = 2.
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Let n ≥ 3 and τ ≥ δ (the case τ < δ is already considered in (5.6)). Performing the

change of variables “r = τ2−|x−x′|2
2(τ−|x−x′| sin(Ω))

− τ−|x−x′|
2

” with “v = Φ(Ω, ω) := (sin(Ω), cos(Ω)ω),

Ω ∈ (−π
2
, π

2
), ω ∈ Sn−2” on the right-hand side of (5.3), we obtain

G1(τ, x, x
′) = 22−n (τ 2 − |x− x′|2)n−3

2

|x− x′|n−2

∫ |x−x′|

0

√
r(|x− x′| − r)

n−3

( τ−|x−x′|
2

+ r)n−2( τ+|x−x′|
2

− r)n−2∫
Sn−2

[χsuppk(x− sv)]
Ω=arcsin(|x−x′|−1(τ− (τ2−|x−x′|2)

2(r+
τ−|x−x′|

2 )
))

s=r+
τ−|x−x′|

2 , v=Φ(Ω,ω)

dωdr. (5.7)

Now assume τ > δ
2

+ |x− x′|. Then

|x− x′|2−n

∫ |x−x′|

0

√
r(|x− x′| − r)

n−3

( τ−|x−x′|
2

+ r)n−2( τ+|x−x′|
2

− r)n−2
dr

≤
(
δ

4

)4−2n

|x− x′|2−n

∫ |x−x′|

0

√
r(|x− x′| − r)

n−3
dr =

(
δ

4

)4−2n ∫ 1

0

√
r(1− r)dr ≤

(
δ

4

)4−2n

.

Therefore using (5.7) we obtain

(τ − |x− x′|)−
n−3

2 G1(τ, x, x
′) ≤ 2n−2Voln−2(Sn−2)(T + diam(X))

n−3
2

(
δ

2

)4−2n

. (5.8)

Finally assume δ ≤ τ ≤ δ
2

+ |x− x′| and |x− x′| < τ ≤ T . From (5.7) and (5.4), it follows that

(τ−|x−x′|)−
n−3

2 G1(τ, x, x
′) ≤ Voln−2(Sn−2)(T + diam(X))

n−3
2

2n−2|x− x′|n−2

r+(τ,x,x′)∫
r−(τ,x,x′)

√
r(|x− x′| − r)

n−3

( τ−|x−x′|
2

+ r)n−2( τ+|x−x′|
2

− r)n−2
dr,

(5.9)

r−(τ, x, x′) :=
|x− x′|+ δ − τ

2
, r+(τ, x, x′) :=

τ − δ + |x− x′|
2

. (5.10)

Note that∫ r+(τ,x,x′)

r−(τ,x,x′)

√
r(|x− x′| − r)

n−3

( τ−|x−x′|
2

+ r)n−2( τ+|x−x′|
2

− r)n−2
dr = 2

∫ |x−x′|
2

r−(τ,x,x′)

√
r(|x− x′| − r)

n−3

( τ−|x−x′|
2

+ r)n−2( τ+|x−x′|
2

− r)n−2
dr

≤ 2
(τ

2

)2−n

|x−x′|n−3

∫ |x−x′|
2

r−(τ,x,x′)

1

( τ−|x−x′|
2

+ r)n−2
dr = 2n−1τ 2−n|x−x′|n−3

∫ |x−x′|
2

r−(τ,x,x′)

1

( τ−|x−x′|
2

+ r)n−2
dr.

(5.11)
Using (5.10) we obtain∫ |x−x′|

2

r−(τ,x,x′)

1

( τ−|x−x′|
2

+ r)n−2
dr = C(n, τ) :=

{
ln
(

τ
δ

)
, if n = 3,

1
n−3

((
δ
2

)3−n −
(

τ
2

)3−n
)

otherwise.
(5.12)

From (5.9), (5.11), (5.12) and the estimates δ ≤ τ < δ
2

+ |x− x′|, it follows that

(τ − |x− x′|)−
n−3

2 G1(τ, x, x
′) ≤ 2nVoln−2(Sn−2)δ−(n−1)(T + diam(X))

n−3
2 C(n, T ), (5.13)

where the constant C(n, T ) is defined in (5.12). Combining (5.2) with (5.6), (5.8) and (5.13),
we obtain (2.16) for n ≥ 3. �
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5.2 Preliminary results for the proof of (2.17), (2.18) and (2.19)

To prove Theorem 2.2 (2.17), (2.18) and (2.19), we need the explicit expressions for γm, m ≥ 2
given below and the following Lemmas 5.1–5.2, whose proof is given in Appendix A.

Let m ≥ 1 and z, z′ ∈ Rn such that z 6= z′. Let µ ≥ 0. We denote by Em,n(µ, z, z′) the
subset of (Rn)m defined by

Em,n(µ, z, z′) = {(y1, . . . , ym) ∈ (Rn)m | |y1|+ . . .+ |ym|+ |z − z′− y1 − . . .− ym| < µ}. (5.14)

When µ ≤ |z − z′|, then Em,n(µ, z, z′) = ∅.

Lemma 5.1. Let n ≥ 2. Let (µ, z, z′) ∈ R× Rn × Rn be such that µ > |z − z′| > 0. Then

Voln(E1,n(µ, z, z′)) ≤ Voln−2(Sn−2)π(µ+ |z − z′|)
4

(√
µ2 − |z − z′|2

2

)n−1

. (5.15)

Lemma 5.2. Let n ≥ 2 and δ > 0. Let N denote the nonnegative measurable function from
(0, T )× ∂X × Rn to [0,+∞[ defined by

N(µ, z, z′) = χ(0,+∞)(µ− |z − z′|)
∫

Sn−1

(µ− (z − z′) · v)n−3

|z − z′ − µv|2n−4
dv, (5.16)

for (µ, z, z′) ∈ (0, T )× ∂X × Rn. When n = 2, then

C(N, 2) := sup
(µ,z,z′)∈(0,T )×∂X×Rn

µ>|z−z′|

∫
y∈E1,n(µ,z,z′)

N(µ− |y|, z, z′ + y)

|y|
dy <∞. (5.17)

When n = 3, then

C1(N, 3) := sup
(µ,z,z′)∈(0,T )×∂X×Rn

µ>|z−z′|

(µ− |z − z′|)−1

(
1 + ln

(
µ+ |z − z′|
µ− |z − z′|

))−1

×
∫

y∈E1,n(µ,z,z′)
µ−|y|≥δ, |z−z′−y|≥δ, |y|≥δ

N(µ− |y|, z, z′ + y)dy <∞, (5.18)

C2(N, 3) := sup
(µ,z,z′)∈(0,T )×∂X×Rn

µ>|z−z′|

(µ− |z − z′|)−1µ|z − z′|
(

1 + ln

(
µ+ |z − z′|
µ− |z − z′|

))−2

×
∫

y∈E1,n(µ,z,z′)

N(µ− |y|, z, z′ + y)

|y|2
dy <∞, (5.19)

When n ≥ 4, then

C(N, n) := sup
(µ,z,z′)∈(0,T )×∂X×Rn

µ|z − z′|n−2N(µ, z, z′) <∞. (5.20)

The explicit expression for γm, m ≥ 2, is given by

γ2(τ, x, x
′) :=

∫
y∈E1,n(τ,x,x′)

x′+y∈X

∫
Sn−1

x,+

(ν(x) · v)W (x, v) [E(x, x− (τ − |y| − s1)v, x
′ + y, x′)

χ(0,τ−(x,v))(τ − |y| − s1)k(x− (τ − s1 − |y|)v, v1, v)k(x
′ + y, v′, v1)S(x′, v′)

|ν(x′) · v′|]
s1=

|x−x′−y−(τ−|y|)v|2
2(τ−|y|−(x−x′−y)·v)

v1=
x−x′−y−(τ−s1−|y|)v

s1
, v′= y

|y|

2n−2(τ − |y| − (x− x′ − y) · v)n−3

|x− x′ − y − (τ − |y|)v|2n−4|y|n−1
dydv, (5.21)
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and for τ ∈ R and a.e. (x, x′) ∈ ∂X × ∂X and for m ≥ 3:

γm(τ, x, x′) :=

∫
(y2,...,ym)∈Em−1,n(τ,x,x′)
x′+

∑m
j=i

yi∈X for i=2,...,m

∫
Sn−1

x,+

(ν(x) · v)W (x, v)

× 2n−2 (τ − |y2| − . . .− |ym| − (x− x′ − y2 − . . .− ym) · v)n−3

|y2|n−1 . . . |ym|n−1|x− x′ − y2 − . . .− ym − (τ − |y2| − . . .− |ym|)v|2n−4

×
[
χ(0,τ−(x,v))(τ − s1 − |y2| − . . .− |ym|)E(x, x− (τ − s1 − |y2| − . . .− |ym|)v,

x′ + ym . . .+ y2, . . . , x
′ + ym, x

′)k(x− (τ − s1 − |y2| − . . .− |ym|)v, v1, v)

×
m−2∏
i=1

k(x′ + ym + . . .+ yi+1, vi+1, vi)k(x
′ + ym, v

′, vm−1)S(x′, v′)

|ν(x′) · v′|]
v1=

x−x′−y2−...−ym−(τ−s1−|y2|−...−|ym|)v
s1

s1=
|x−x′−y2−...−ym−(τ−|y2|−...−|ym|)v|2

2(t−|y2|−...−|ym−1|−(x−x′−y2−...ym−1)·v)
, v′= ym

|ym| , vi=
yi
|yi|

, i=2...m−1

dy2 . . . dymdv. (5.22)

5.3 Proof of (2.17), (2.18) and (2.19)

Let τ > 0 and let x, x′ ∈ ∂X such that |x − x′| < τ and x 6= x′. We set t0 = |x − x′|. Using
spherical coordinates (“yi = siωi”, (si, ωi) ∈ (0,+∞)× Sn−1, i = 2 . . .m) and (5.14), we obtain∫

Em−1,n(τ,x,x′)

dy2 . . . dym

|y2|n−1 . . . |ym|n−1
≤ Vol(Sn−1)m−1

∫
s2+...+sm<τ

si≥0 for i=2...m

ds2 . . . dsm = Vol(Sn−1)m−1 τm−1

(m− 1)!
,

(5.23)
for all m ∈ N, m ≥ 2. Note that using (2.2) and (5.14), we obtain

x′ +
m∑

i=2

yi ∈ suppk ⇒ δ ≤ |x− x′ −
m∑

i=2

yi| < τ −
m∑

i=2

|yi|, (5.24)

x′ + ym ∈ suppk ⇒ δ ≤ |ym|, (5.25)

for (y2, . . . , ym) ∈ Em−1,n(τ, x, x′) (recall that (x′, x) ∈ ∂X2).
We first look for an upper bound on |γm(τ, x, x′)|, m ≥ 2. Using the explicit expression for

the multiple scattering kernels γm(τ, x, x′) (see (5.21)–(5.22)) and the fact that σ is a nonneg-
ative function, we obtain that

|γ2(τ, x, x
′)| ≤ 2n−2‖W‖∞‖S‖∞‖k‖2

∞G2(τ, x, x
′), (5.26)

where N , E1,n(τ, x, x′) and G2 are defined by (5.16), (5.14) and

G2(µ, z, z
′) :=

∫
y∈E1,n(µ,z,z′)

z′+y∈suppk

N(µ− |y|, z, z′ + y)

|y|n−1
dy, (5.27)

for (µ, z, z′) ∈ (0,+∞)× ∂X × Rn. We also obtain

|γm(τ, x, x′)| ≤ 2n−2‖W‖∞‖S‖∞‖k‖m
∞Gm(τ, x, x′), (5.28)

where

Gm(τ, x, x′) =

∫
(y3,...,ym)∈Em−2,n(τ,x,x′)
x′+

∑m
i=j

yi∈suppk, j=3...m

G2(τ −
∑m

i=3 |yi|, x, x′ +
∑m

i=3 yi)

|y3|n−1 . . . |ym|n−1
dy3 . . . dym, (5.29)
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and G2 (resp. Em−2,n(τ, x, x′)) is defined by (5.27) (resp. (5.14)).
We now prove (2.17). Assume n = 2. From (5.26) and (5.17) we obtain

|γ2(τ, x, x
′)| ≤ 2n−2‖W‖∞‖S‖∞‖k‖2

∞C(N, 2). (5.30)

Then using (5.29), (5.17) and (5.23), we obtain

Gm(τ, x, x′) ≤ C(N, 2)

∫
Em−2,n(τ,x,x′)

dy3 . . . dym

|y3| . . . |ym|
= C(N, 2)(2π)m−2 τm−2

(m− 2)!
, for m ≥ 3.

(5.31)
Finally combining (5.31) and (5.28), we obtain

|γm(τ, x, x′)| ≤ 2n−2C(N, 2)(2π)m−2‖W‖∞‖S‖∞‖k‖m
∞

τm−2

(m− 2)!
, for m ≥ 3. (5.32)

Statement (2.17) follows from (5.30) and (5.32).
We prove (2.18). Assume n = 3. Using (5.24)–(5.25) (with “m = 2”) and (5.27), we obtain

G2(τ, x, x
′) ≤ δ−2

∫
y∈E1,3(τ,x,x′)

τ−|y|≥δ, |x−x′−y|≥δ, |y|≥δ

N(τ − |y|, x, x′ + y)dy. (5.33)

Therefore using (5.18) we obtain

sup
(s,z,z′)∈(0,T )×∂X×∂X

s>|z−z′|>0

(s− |z − z′|)−1

(
1 + ln

(
s+ |z − z′|
s− |z − z′|

))−1

G2(s, z, z
′) ≤ δ−2C1(N, 3) <∞.

(5.34)
Now assume n = 3 and m ≥ 3. Using (5.29) and using (5.19) and the estimate supr∈(0,1) r(1−
ln(r))2 <∞ we obtain

Gm(τ, x, x′) ≤ D

∫
(y3,...,ym)∈Em−2,n(τ,x,x′0)

(x′+
∑m

i=3
yi,x′+ym)∈(suppk)2

(|x− x′ − y3 − . . .− ym|+ τ −
∑m

i=3 |yi|)dym . . . dy3

|y3|n−1 . . . |ym|n−1(τ −
∑m

i=3 |yi|)|x− x′ − y3 − . . .− ym|
, (5.35)

whereD := supr∈(0,1) r(1−ln(r))2C2(N, 3). Ifm = 3, then using (5.24)–(5.25) with “(y2, . . . , ym)”
replaced by “(y3, . . . , ym)”, we obtain

G3(τ, x, x
′) ≤ 2τδ−4DVol(E1,3(τ, x, x

′)) (5.36)

(we also used the estimate |x − x′ − y3| + τ − |y3| ≤ 2τ for y3 ∈ E1,3(τ, x, x
′)). If m ≥ 4, then

using (5.24)–(5.25) with “(y2, . . . , ym)” replaced by “(y3, . . . , ym)”, we obtain

Gm(τ, x, x′) ≤ 2τδ−4DVol(E1,3(τ, x, x
′))

∫
(y3,...,ym−1)∈Em−3,3(τ,x,x′)

dy3 . . . dym−1

|y3|n−1 . . . |ym−1|n−1

= 2τδ−4DVol(Sn−1)m−3 τm−3

(m− 3)!
Vol(E1,3(τ, x, x

′)) (5.37)

(we also used the estimate |x− x′− y3− . . .− ym|+ τ − |y3| − . . .− |ym| ≤ 2τ for (y3, . . . , ym) ∈
Em−2,3(τ, x, x

′) and we used (5.23)). Statement (2.18) follows from (5.26), (5.28), (5.34) and
(5.36)–(5.37) and (5.15).
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We prove (2.19). Let n ≥ 4 and m ≥ 2. Using (5.27), (5.29) and (5.20), we obtain

Gm(τ, x, x′) ≤ C(N, n)

∫
(y2,...,ym)∈Em−1,n(τ,x,x′0)

x′+ym∈suppk
x′+

∑m
i=2

yi∈suppk

dy2 . . . dym

|y2|n−1 . . . |ym|n−1|x− x′ −
∑m

i=2 yi|n−2(τ −
∑m

i=2 |yi|)
. (5.38)

From (5.38) and (5.24)–(5.25), it follows that

Gm(τ, x, x′) ≤ δ−2n+2C(N, n)Vol(E1,n(τ, x, x′)) (5.39)

for m = 2, and

Gm(τ, x, x′) ≤ δ−2n+2C(N, n)

∫
(y2,...,ym)∈Em−1,n(τ,x,x′)

dy2 . . . dym

|y2|n−1 . . . |ym−1|n−1

= δ−2n+2C(N, n)Vol(Sn−1)m−2Vol(E1,n(τ, x, x′))
τm−2

(m− 2)!
(5.40)

for m ≥ 3 (we also use (5.23) to prove (5.40)). From (5.39), (5.40) and (5.15) it follows that

Gm(τ, x, x′) ≤ δ−2n+2C(N, n)Vol(Sn−1)m−2 Voln−2(Sn−2)π(µ+ |z − z′|)
4

(√
µ2 − |z − z′|2

2

)n−1
τm−2

(m− 2)!

(5.41)
for m ≥ 2. Statement (2.19) follows from (5.26), (5.28) and (5.41).

6 Proof of Theorems 2.3, 3.1 and 3.4

Proof of Theorem 2.3. For the sake of simplicity and without loss of generality we assume
v0 = (1, 0, . . . , 0). Assume that conditions (2.1)–(2.2) are satisfied. For n ≥ 2 consider the
following open subset of (0,+∞)× Sn−1 × Sn−1

D := {(s, v, v′) ∈ (0,+∞)× Sn−1
x,+ × Sn−1

x′0,− | s ∈ (0, τ−(x, v))}. (6.1)

Then we introduce the bounded function Ψn on D defined by

Ψn(s, v, v′) = 2n−2W (x, v)(ν(x) · v)E(x, x− sv, x′0)k(x− sv, v′, v)S(x′0, v
′)|ν(x′0) · v′|, (6.2)

for (s, v, v′) ∈ D. Note that from convexity of X it follows that τ± is continuous on Γ∓ and

E(x, x− sv, x′0) = e
−

∫ s
0 σ(x−pv,v)dp−

∫ |x−x′0−sv|
0 σ(x−sv−p

x−x′0−sv

|x−x′0−sv| ,
x−x′0−sv

|x−x′0−sv| )dp
for v ∈ Sn−1

x,+ and 0 < s <
τ−(x, v). Under (2.1)–(2.2) we obtain that

Ψn(s, v, v′) = 0 for (s, v, v′) ∈ (0,+∞)× Sn−1
x,+ × Sn−1

x′0,− such that x− sv 6∈ Z̄,
and the function Ψn is continuous at any point (s, v, v′) ∈ D such that x− sv ∈ Z. (6.3)

We first prove (2.22) for n = 2. Let τ > t0. From (6.2), (2.14), it follows that

γ1(τ, x, x
′
0) =

∫ π−α0

−α0

1

τ − t0 cos(Ω)

[
χ(0,τ−(x,v))(s)Ψ2(s, v, v

′)
]

v=(cos Ω,sin Ω)

v′= t0(1,0)−sv
τ−s

s=
τ2−t20

2(τ−t0 cos(Ω))

dΩ

= γ1,1(τ, x, x
′
0) + γ1,2(τ, x, x

′
0), (6.4)
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where Sn−1
x,+ = {(cos Ω, sin Ω) | − α0 < Ω < π − α0} (0 < α0 < π) and

γ1,1(τ, x, x
′
0) =

∫ π

0

χ(0,π−α0)(Ω)

τ − t0 cos(Ω)

[
χ(0,τ−(x,v))(s)Ψ2(s, v, v

′)
]

v=(cos Ω,sin Ω)

v′= t0(1,0)−sv
τ−s , s=

τ2−t20
2(τ−t0 cos(Ω))

dΩ, (6.5)

γ1,2(τ, x, x
′
0) =

∫ 0

−π

χ(−α0,0)(Ω)

τ − t0 cos(Ω)

[
χ(0,τ−(x,v))(s)Ψ2(s, v, v

′)
]

v=(cos Ω,sin Ω)

v′= t0(1,0)−sv
τ−s , s=

τ2−t20
2(τ−t0 cos(Ω))

dΩ. (6.6)

We now prove that

√
τ − t0γ1,i(τ, x, x

′
0) →

W (x, v0)S(x′0, v0)(ν(x) · v0)|ν(x′0) · v0|E(x′0, x)√
2t0

∫ t0

0

k(x− sv0, v0, v0)√
s(t0 − s)

ds,

as τ → t+0 , (6.7)

for i = 1, 2. Then adding (6.7) for i = 1 and i = 2, we obtain (2.22). We only prove (6.7)
for i = 1 since the proof for i = 2 is similar. Let τ > t0. Using the change of variables

s =
τ2−t20

2(τ−t0 cos(Ω))
− τ−t0

2
, we obtain

γ1,1(τ, x, x
′
0) =

1√
τ 2 − t20

∫ t0

0

χ(0,π−α0)(Ω(s, τ))
χ(0,τ−(x,v(s,τ)))(s+ τ−t0

2
)Ψ2(s, v(s, τ), v

′(s, τ))√
s(t0 − s)

dτ,

(6.8)
where

v(s, τ) = (cos Ω(s, τ), sin Ω(s, τ)), Ω(s, τ) = arccos
(τ − τ2−t20

2s+τ−t0

t0

)
,

v′(s, τ) =
t0(1, 0)−

(
s+ τ−t0

2

)
v(s, τ)

τ+t0
2
− s

.

(6.9)

Let s ∈ (0, t0). From (6.9), it follows that

v(s, τ) → (1, 0) as τ → t+0 , v
′(s, τ) → (1, 0) as τ → t+0 . (6.10)

Note that using the definition of v0 and using the assumption x′0 + ε(x − x′0) ∈ X for some
ε ∈ (0, 1) we obtain t0 = τ−(x, v0). Note also that the function s 7→ 1√

s(t0−s)
, s ∈ (0, t0), is

integrable in (0, t0). Therefore, using (6.3), the boundedness of Ψ2 on D and the Lebesgue
dominated convergence theorem, we obtain (6.7). This proves (2.22) when n = 2.

Let n ≥ 3 and prove (2.23). From (6.2) and (2.14), it follows that

γ1(τ, x, x
′
0) =

∫
Sn−1

(τ − t0v0 · v)n−3

|t0v0 − τv|2n−4
χ(0,+∞)(ν(x) · v)Ψn(s, v, v′)

v′= t0v0−sv
τ−s

s=
τ2−t20

2(τ−t0v·v0)

dv, (6.11)

for τ > |x− x′0|.
Let Φ(Ω, ω) = (sin Ω, cos(Ω)ω1, . . . , cos(Ω)ωn−1) for Ω ∈ (−π

2
, π

2
) and ω = (ω1, . . . , ωn−1) ∈

Sn−2. Using spherical coordinates we obtain

γ1(τ, x, x
′
0) =

∫ π/2

−π/2

cos(Ω)n−2 (τ − t0 sin(Ω))n−3

(t20 + τ 2 − 2t0τ sin(Ω))n−2
(6.12)∫

Sn−2

χ(0,+∞)(ν(x) · Φ(Ω, ω))Ψn(s,Φ(Ω, ω), v′)
v′= t0v0−sΦ(Ω,ω)

τ−s

s=
τ2−t20

2(τ−t0 sin(Ω))

dωdΩ,
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for τ > t0. Performing the change of variables “r =
τ2−t20

2(τ−t0 sin(Ω))
− τ−t0

2
” on the first integral on

the right-hand side of (6.12), we obtain

γ1(τ, x, x
′
0) = 22−nt2−n

0 (τ 2 − t20)
n−3

2

∫ t0

0

√
r(t0 − r)

n−3

( τ−t0
2

+ r)n−2( τ+t0
2
− r)n−2

(6.13)∫
Sn−2

[
χ(Φ(Ω, ω))Ψn(r +

τ − t0
2

,Φ(Ω, ω), v′)

]
Ω=arcsin

(
t−1
0

(
τ−

(τ2−t20)

2(r+
τ−t0

2 )

))
s=r+

τ−t0
2 , v′= t0v0−sΦ(Ω,ω)

τ−s

dωdr.

Therefore using (6.13), (6.3) and (6.2) and using Lebesgue dominated convergence theorem, we
obtain (2.23). This concludes the proof of Theorem 2.3.

Proof of Theorem 3.1. We now prove (3.1). Let x′0 ∈ ∂X. For ε = (ε1, ε2) ∈ (0,+∞)2 and
ε3 ∈ (0,+∞), let (fε1 , gε2) ∈ C1(∂X)× C1(R) satisfy

gε2 ≥ 0, fε1 ≥ 0, suppgε2 ⊆ (0,min(ε2, η)), (6.14)

suppfε1 ⊆ {x′ ∈ ∂X | |x′ − x′0| < ε1}, (6.15)∫ η

0

gε2(t
′)dt′ = 1,

∫
∂X

fε1(x
′)dµ(x′) = 1, (6.16)

for ε = (ε1, ε2) ∈ (0,+∞)2. Therefore, φε := gε2fε1 is an approximation of the delta function at
(0, x′0) ∈ R× ∂X for ε := (ε1, ε2) ∈ (0,+∞)2. Let ψε3 ∈ L∞((0, T )× ∂X) be defined by

ψε3(t, x) = χ(−ε3,ε3)(t− |x− x′0|)(2χ(0,+∞)((E − Ẽ)(x, x′0))− 1), (t, x) ∈ (0, T )× ∂X, (6.17)

for ε3 > 0. From (2.12) and (2.15) it follows that∫
(0,T )×∂X

ψε3(t, x)(AS,W − ÃS,W )φε(t, x)dtdµ(x) = I0(ψε3 , φε)

+

∫
(0,T )×∂X×(0,η)×∂X

ψε3(t, x)φε(t
′, x′)(Γ1 − Γ̃1)(t− t′, x, x′)dtdµ(x)dt′dµ(x′), (6.18)

for ε = (ε1, ε2) ∈ (0,+∞) and ε3 ∈ (0,+∞), where

I0(ψε3 , φε) =

∫
(0,T )t×∂Xx×∂Xx′

|x−x′|<t

ψε3(t, x)φε(t− |x− x′|, x′)E(x, x′)− Ẽ(x, x′)

|x− x′|n−1

× [W (x, v)S(x′, v)(ν(x) · v)|ν(x′) · v|]
v= x−x′

|x−x′|
dtdµ(x)dµ(x′). (6.19)

From (2.16), (2.17), (2.18) and (2.19) it follows that

(τ − |x− x′|)
3−n

2 (Γ1 − Γ̃1)(τ, x, x
′) ∈ L∞((0, T )× ∂X × ∂X). (6.20)

Combining (6.18) and the equality ‖φε‖L1((0,η)×∂X) = 1 and the estimate ‖ψε3‖L∞((0,T )×∂X) ≤ 1
and (6.20) we obtain

I0(ψε3 , φε) ≤ ‖AS,W − ÃS,W‖η,T + C∆1(ψε3 , φε), (6.21)

for ε = (ε1, ε2) ∈ (0,+∞) and ε3 ∈ (0,+∞), where C = ‖(τ − |x − x′|) 3−n
2 (Γ1 − Γ̃1)(τ, x, x

′)
‖L∞((0,T )×∂Xx×∂Xx′ )

and

∆1(ψε3 , φε) =

∫
(0,T )t×∂Xx×(0,η)t′×∂Xx′

|x−x′|<t−t′

ψε3(t, x)φε(t
′, x′)(t−t′−|x−x′|)

n−3
2 dtdµ(x)dt′dµ(x′). (6.22)
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Note that the function Φ1,ε3 : [0, η)× ∂X → R defined by

Φ1,ε3(t
′, x′) :=

∫
(0,T )t×∂Xx
|x−x′|<t−t′

ψε3(t, x)(t− t′ − |x− x′|)
n−3

2 dtdµ(x), (t′, x′) ∈ [0, η)× ∂X, (6.23)

is continuous on [0, η) × ∂X for ε3 ∈ (0,+∞). Therefore, from (6.14)–(6.16) and the equality
∆1(ψε3 , φε) =

∫
(0,η)×∂X

φε(t
′, x′)Φ1,ε3(t

′, x′)dt′dµ(x′), it follows that

lim
ε3→0+

lim
ε2→0+

lim
ε1→0+

∆1(ψε3 , φε) = lim
ε3→0+

Φ1,ε3(0, x
′
0) = 0 (6.24)

(we also used (6.23), (6.17) and the Lebesgue dominated convergence theorem to prove that
limε3→0+ Φ1,ε3(0, x

′
0) = 0). Note that under condition (2.2) the function Φ0,ε2,ε3 : ∂X → R

defined by

Φ0,ε2,ε3(x
′) =

∫
(0,T )t×∂Xx
|x−x′|<t

ψε3(t, x)gε2(t− |x− x′|)E(x, x′)− Ẽ(x, x′)

|x− x′|n−1

× [W (x, v)S(x′, v)(ν(x) · v)|ν(x′) · v|]
v= x−x′

|x−x′|
dtdµ(x), (6.25)

is continuous on ∂X for (ε2, ε3) ∈ (0,+∞)2. Therefore, from the equality I0(ψε3 , φε) =
∫

∂X
Φ0,ε2,ε3(x

′)
×fε1(x

′)dµ(x′) (see (6.19)) it follows that

lim
ε1→0+

I0(ψε3 , φε) = Φ0,ε2,ε3(x
′
0), for (ε2, ε3) ∈ (0,+∞)2. (6.26)

Thus, using the Lebesgue dominated convergence theorem and (6.25) we obtain

lim
ε3→0+

lim
ε2→0+

lim
ε1→0+

I0(ψε3 , φε) =

∫
∂Xx

∣∣∣E(x, x′0)− Ẽ(x, x′0)
∣∣∣

|x− x′0|n−1
[W (x, v)S(x′0, v)(ν(x) · v)|ν(x′0) · v|]v=

x−x′0
|x−x′0|

dµ(x).

(6.27)
Combining (6.27), (6.24) and (6.21) we obtain the formula (4.10). Using (4.10) and the estimates

infΓ− S > 0 and infΓ+ W > 0 and the change of variables x = x′0+τ+(x′0, v0)v0 ( ν(x)·v0

|x−x′0|n−1dµ(x) =

dv0) we obtain (3.1) where the constant C1, which appears on the right-hand side of (3.1), is

given by C1 =
(
infΓ− S infΓ+ W

)−1
.

We now prove (3.2). Let x ∈ ∂X be such that px′0 + (1− p)x ∈ Z for some p ∈ (0, 1). We

set t0 = |x− x′0| and v0 =
x−x′0
|x−x′0|

. From (2.16), (2.17), (2.18) and (2.19) it follows that

(τ − |x− x′0|)
3−n

2 |γ1 − γ̃1|(τ, x, x′0) ≤ (τ − |x− x′0|)
3−n

2 |Γ2 − Γ̃2|(τ, z, z′) (6.28)

+‖(s− |z − z′|)
3−n

2 (Γ1 − Γ̃1)(s, z, z
′)‖L∞((0,T )s×∂Xz×∂Xz′ )

,

for τ > |x− x′0|. From (2.17), (2.18)–(2.19) it turns out that limτ→|x−x′0|+(τ − |x− x′0|)
3−n

2 |Γ2−
Γ̃2|(τ, z, z′) = 0. Therefore applying (2.22) and (2.23) on the left-hand side of (6.28) we obtain

2
1−n

2 |x− x′0|−
n−1

2 CnS(x′0, v0)W (x, v0)|ν(x′0) · v0|(ν(x) · v0)

×

∣∣∣∣∣
∫ t0

0

e−
∫ t0
0 σ(x′0+sv0,v0)dsk(x− pv0, v0, v0)− e−

∫ t0
0 σ̃(x′0+sv0,v0)dsk̃(x− pv0, v0, v0)

p
n−1

2 (t0 − p)
n−1

2

dp

∣∣∣∣∣
≤ ‖(s− |z − z′|)

3−n
2 (Γ1 − Γ̃1)(s, z, z

′))‖L∞((0,T )s×∂Xz×∂Xz′ )
, (6.29)

where Cn = 2 if n = 2 and Cn = Voln−2(Sn−2) if n ≥ 3. Then note that CX := infx1∈∂X, z∈Z̄ ν(x1)·
x1−z
|x1−z| > 0 since X is a bounded convex subset of Rn with C1 boundary and Z̄ ⊂ X. Therefore

(3.2) follows from (6.29) where the constant C2 which appears on the right-hand side of (3.2)

is given by C2 = 2
n−1

2 diam(X)
n−1

2

CnC2
X infΓ− S infΓ+

W
. Theorem 3.1 is proved.
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Proof of Theorem 3.4. We first prove (3.7). We extend σ and σ̃ by 0 outside Y . For a bounded
and continuous function f on Y consider the X-ray transform Pf : Sn−1 × Rn → R defined by
(3.3) (we extend f by 0 outside Y ). We recall the following estimate

‖f‖
H− 1

2 (Y )
≤
(∫

Sn−1

∫
Πv

|Pf(v, x)|2dxdv
) 1

2

, (6.30)

where Πv := {x ∈ Rn | v · x = 0} for v ∈ Sn−1. Note that using the estimate ‖σ‖∞ ≤ M , we
obtain ∫ τ+(x′0,v)

0

σ(x′0 + sv, v)ds ≤Mτ+(x′0, v) ≤Mdiam(X), for (x′0, v) ∈ Γ−. (6.31)

Replacing σ by σ̃ on the left-hand side of (6.31) we obtain an estimate similar to (6.31) for σ̃.
Therefore using the estimate |et1−et2 | ≥ e−Mdiam(X)|t1−t2| for (t1, t2) ∈ [0,+∞)2, max(t1, t2) ≤
Mdiam(X), we obtain∣∣∣∣e− ∫ τ+(x′0,v)

0 σ(x′0+sv,v)ds − e−
∫ τ+(x′0,v)

0 σ̃(x′0+sv,v)ds

∣∣∣∣ ≥ e−Mdiam(X) |P (σ − σ̃)(v, x′0)| , (6.32)

for (x′0, v) ∈ Γ−. Integrating the left-hand side of (3.1) over ∂X and using (6.32), we obtain∫
Γ−

|P (σ − σ̃)(v, x′0)| dξ(v, x′0) ≤ eMdiam(X)Vol(∂X)C1‖AS,W − ÃS,W‖η,T , (6.33)

where C1 is the constant that appears on the right-hand side of (3.1). Note that using that X
is a convex open subset of Rn with C1 boundary we obtain

∫
Γ−
|P (σ − σ̃)(v, x′0)| dξ(v, x′0) =∫

Sn−1

∫
Πv
|P (σ − σ̃)(v, x)|dxdv. Therefore using (6.33) and the estimate |P (σ − σ̃)(v, x)|2 ≤

‖σ − σ̃‖L∞(Y )diam(X)|P (σ − σ̃)(v, x)| for (v, x) ∈ TSn−1 (see (6.31) and the estimates σ ≥ 0,
σ̃ ≥ 0) we obtain(∫

Sn−1

∫
Πv

|P (σ − σ̃)(v, x)|2dxdv
) 1

2

≤ C3‖σ − σ̃‖
1
2∞‖AS,W − ÃS,W‖

1
2
η,T . (6.34)

where C3 =
(
diam(X)eMdiam(X)Vol(∂X)C1

) 1
2 . Combining (6.34) and (6.30), we obtain (3.7).

We now prove (3.8). Let f ∈ L2(X), suppf ⊆ Z̄. We consider the weighted X-ray transform
of f , Pϑf , defined by

Pϑf(x, v) =

∫ τ+(v,x)

0

f(pv + x)ϑ(pv + x, v)dp, for a.e. (x, v) ∈ Γ−, (6.35)

where ϑ : X × Sn−1 → (0,+∞) is the analytic function given by

ϑ(x, v) = (τ−(x, v)τ+(x, v))−
n−1

2 g(x, v, v), for (x, v) ∈ X × Sn−1. (6.36)

From [10, theorem 2.2] and from [14, theorem 4] we obtain

‖f‖
H− 1

2 (Z)
≤ C‖Pϑf‖L2(Γ−,dξ), (6.37)

where C = C(X,Z, g) is a constant that does not depend on f . Let x′0 ∈ ∂X and let x ∈ ∂X

such that px′0 + (1− p)x ∈ Z for some p ∈ (0, 1) where v0 =
x−x′0
|x−x′0|

and t0 = |x− x′0|. Note that

using (2.2) (since k̃ ∈ L∞(Z) and suppk̃ ⊆ Z̄ ⊆ {x ∈ X | infx′∈∂X |x− x′| ≥ δ}), we obtain∫ τ+(x0,v′0)

0

k̃(x′0 + pv′0, v
′
0, v

′
0)

p
n−1

2 (τ+(x′0, v
′
0)− p)

n−1
2

dp ≤ ‖k̃‖L∞(Z)

∫ τ+(x0,v′0)−δ

δ

1

p
n−1

2 (τ+(x′0, v
′
0)− p)

n−1
2

dp

≤ ‖k̃‖L∞(Z)δ
−(n−1)τ+(x′0, v

′
0) ≤ ‖k̃‖L∞(Z)δ

−(n−1)diam(X). (6.38)
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We use the estimate

|Pϑ(k0 − k̃0)(x
′
0, v

′
0)| ≤ ePσ(v′0,x′0)|Pϑk̃0(x

′
0, v

′
0)|
∣∣∣e−Pσ(v′0,x′0) − e−P σ̃(v′0,x′0)

∣∣∣ (6.39)

+ePσ(v′0,x′0)
∣∣∣e−Pσ(v′0,x′0)Pϑk0(x

′
0, v

′
0)− e−P σ̃(v′0,x′0)Pϑk̃0(x

′
0, v

′
0)
∣∣∣ .

Integrating both sides of inequality (6.39) over v′0 ∈ Sn−1
x′0,− and using the estimate ePσ(v′0,x′0) ≤

eMdiam(X), and using (6.38), (3.1)–(3.2), we obtain∫
Sn−1

x′0,−

|Pϑ(k0 − k̃0)|(x′0, v′0)|ν(x′0) · v|dv ≤ δ−(n−1)diam(X)eMdiam(X)C1‖k̃‖∞‖AS,W − ÃS,W‖η,T

+
Vol(Sn−1)eMdiam(X)C2

2

∥∥∥(τ − |z − z′|)
n−3

2 (Γ1 − Γ̃1)(τ, z, z
′)
∥∥∥

L∞((0,T )×∂X×∂X)
, (6.40)

where C1 and C2 are the constants that appear on the right-hand side of (3.1) and (3.2).
From the estimate |Pϑ(k0− k̃0)(v

′
0, x

′
0)| ≤ ‖k− k̃‖L∞(Z)δ

−(n−1)diam(X) for a.e. (x′0, v
′
0) ∈ Γ−

(see (6.38)), it follows that

‖Pϑ(k0−k̃0)‖2
L2(Γ−,dξ) ≤ ‖k−k̃‖L∞(Z)δ

−(n−1)diam(X)

∫
∂X

∫
Sn−1

x′0,−

|Pϑ(k0−k̃0)(x
′
0, v

′
0)||ν(x′0)·v|dvdµ(x′0).

(6.41)
Combining (6.40)–(6.41) and (6.37), we obtain (3.8).

A Proof of some lemmas

We recall the following change of variables for the proof of Lemmas 5.1, 5.2.

∫
E1,n(τ,t0v,0))

f(y)dy =



∫
(0,2π)×(t0,τ)

f
(t0 + s cos(ϕ)

2
,

√
s2 − t20

2
sinϕ

)
×(s2 − t20 cos2(ϕ))

4
√
s2 − t20

dsdϕ, if n = 2,∫
Sn−2×(0,π)×(t0,τ)

f
(t0 + s cos(ϕ)

2
,

√
s2 − t20

2
sinϕω

)
×
(sin(ϕ)

√
s2 − t20

2

)n−2 s2 − t20 cos2(ϕ)

4
√
s2 − t20

dωdsdϕ, if n ≥ 3,

(A.1)

for f ∈ L1(Rn) and (τ, t0, v) ∈ (0,+∞)× (0,+∞)× Sn−1 such that τ > t0.

Proof of Lemma 5.1. Let n ≥ 2. Using a rotation and (5.14), we have

Voln(E1,n(τ, x, x′)) = Voln(E1,n(τ, t0e1, 0)), (A.2)

where t0 = |x− x′| and e1 = (0, . . . , 0) ∈ Rn. From (A.1), it follows that

Voln(E1,n(τ, t0e1, 0)) = Voln−2(Sn−2)

∫ τ

t0

∫ π

0

(sin(ϕ)
√
s2 − t20

2

)n−2 s2 − t20 cos2(ϕ)

4
√
s2 − t20

dsdϕ. (A.3)
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From (A.3) and the estimate sin(ϕ)
√
s2 − t20 ≤

√
τ 2 − t20 for s ∈ (t0, τ), we obtain

Voln(E1,n(τ, t0e1, 0)) ≤ Voln−2(Sn−2)
(√τ 2 − t20

2

)n−2
∫ τ

t0

∫ π

0

s2 − t20 cos2(φ)

4
√
s2 − t20

dsdϕ

≤ 1

2
Voln−2(Sn−2)

(√τ 2 − t20
2

)n−2

Vol(E1,2(τ, t0e1, 0)). (A.4)

We recall that Vol(E1,2(τ, t0e1, 0)) =
π(t0+τ)

√
τ2−t20

4
. Therefore (5.15) follows from (A.4). Lemma

5.1 is proved.

Proof of Lemma 5.2. We first prove (5.17). Let n = 2. Note that

N(µ, z, z′) =

∫ 2π

0

1

µ− |z − z′| sin(Ω)
dΩ.

for (µ, z, z′) ∈ (0, T )× ∂X × Rn, µ > |z − z′|. Therefore, using (5.1) we obtain

N(µ, z, z′) =
2π√

µ2 − |z − z′|2
, (A.5)

for (µ, z, z′) ∈ (0, T ) × ∂X × Rn, µ > |z − z′|. Now let (µ, z, z′) ∈ (0, T ) × ∂X × Rn be fixed
with µ > |z − z′|. Set t0 = |z − z′|. Using (A.1) (“τ = µ”, “t0v = z − z′”), we obtain∫
E1,2(µ,z,z′)

2π

|y|
√

(µ− |y|)2 − |z − z′ − y|2
dy =

∫
E1,2(µ,t0(1,0),0)

2π

|y|
√

(µ− |y|)2 − |t0(1, 0)− y|2
dy

= 4π

∫ µ

t0

∫ 2π

0

G2,2(µ, s, ϕ)dϕdε, (A.6)

where G2,2(µ, s, ϕ) :=
(s− t0 cos(ϕ))√

s2 − t20
√
µ− s

√
µ− t0 cos(ϕ)

, (A.7)

for ϕ ∈ (0, 2π) and s ∈ (t0, µ). From (A.7) and the estimates µ − t0 cos(ϕ) ≥ s − t0 cos(ϕ),
s+ t0 ≥ s− t0 cos(ϕ), it follows that

G2,2(µ, s, ϕ) ≤ 1√
s− t0

√
µ− s

, (A.8)

for ϕ ∈ (0, 2π) and s ∈ (t0, µ). Performing the change of variables s = t0 + ε(µ− t0) we have∫ µ

t0

1√
s− t0

√
µ− s

ds =

∫ 1

0

1√
ε(1− ε)

dε < +∞, (A.9)

for s ∈ (t0, µ). Combining (A.5), (A.6), (A.8), (A.9), we obtain

sup
(µ,z,z′)∈(0,T )×∂X×R2

µ>|z−z′|

∫
E1,2(µ,z,z′)

N(µ− |y|, z, z′ + y)

|y|
dy ≤ 8π2

∫ 1

0

1√
ε(1− ε)

dε <∞. (A.10)

Statement (5.17) follows from (A.10).

We prove (5.18). Let n = 3. Note that

N(µ, z, z′) = 2π

∫ π
2

−π
2

d

dΩ
ln
(
µ2 + |z − z′|2 − 2µ|z − z′| sin(Ω)

)
dΩ,
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for (µ, z, z′) ∈ (0, T )× ∂X × Rn, µ > |z − z′|. Therefore

N(µ, z, z′) =
2π

µ|z − z′|
ln

(
µ+ |z − z′|
µ− |z − z′|

)
, (A.11)

for (µ, z, z′) ∈ (0, T ) × ∂X × Rn, µ > |z − z′|. Now let (µ, z, z′) ∈ (0, T ) × ∂X × Rn be fixed
with µ > |z − z′|. Set t0 = |z − z′|. Using (A.11) and (A.1), we obtain∫

y∈E1,3(µ,z,z′)
µ−|y|≥δ, |z−z′−y|≥δ, |y|≥δ

N(µ− |y|, z, z′ + y)dy ≤ 2πδ−2

∫
y∈E1,3(µ,z,z′)

ln

(
µ− |y|+ |z − z′ − y|
µ− |y| − |z − z′ − y|

)
dy

=
π2

2δ2

∫ µ

t0

∫ π

0

G2,3,a(µ, s, ϕ)dϕds, (A.12)

where

G2,3,a(µ, s, ϕ) := (s2 − t20 cos2(ϕ)) sin(ϕ) ln

(
µ− t0 cos(ϕ)

µ− s

)
, (A.13)

for ϕ ∈ (0, π) and s ∈ (t0, µ). Using (A.13) and the estimates ln
(

µ−t0 cos(ϕ)
µ−s

)
≤ ln

(
µ+t0
µ−s

)
,

s2 − t20 cos2(ϕ) ≤ µ2, we obtain∫ π

0

G2,3,a(µ, s, ϕ)dϕ ≤ µ2

∫ π

0

sin(ϕ)dϕ ln

(
µ+ t0
µ− s

)
. (A.14)

We recall the following integral value∫ µ

t0

ln

(
µ+ t0
µ− s

)
ds = (µ− t0) ln

(
µ+ t0
µ− t0

)
+ µ− t0. (A.15)

Combining (A.12), (A.14) and (A.15) we obtain∫
y∈E1,3(µ,z,z′)

µ−|y|≥δ, |z−z′−y|≥δ, |y|≥δ

N(µ− |y|, z, z′ + y)dy ≤ π2µ2

δ2
(µ− t0)

(
ln

(
µ+ t0
µ− t0

)
+ 1

)
, (A.16)

which proves (5.18).
We next prove (5.19). Let n = 3. Let (µ, z, z′) ∈ (0, T ) × ∂X × Rn be fixed, µ > |z − z′|.

Set t0 = |z − z′|. Using (A.11) and (A.1), we obtain

∫
y∈E1,3(µ,z,z′)

N(µ− |y|, z, z′ + y)

|y|2
dy =

∫
y∈E1,3(µ,z,z′)

2π ln
(

µ−|y|+|z−z′−y|
µ−|y|−|z−z′−y|

)
|y|2(µ− |y|)|z − z′ − y|

dy

=

∫
E1,3(µ,t0(1,0,0),0)

2π ln
(

µ−|y|+|t0(1,0,0)−y|
µ−|y|−|t0(1,0,0)−y|

)
|y|2(µ− |y|)|t0(1, 0, 0)− y|

dy = 8π2

∫ µ

t0

∫ π

0

G2,3,b(µ, s, ϕ)dϕds, (A.17)

where

G2,3,b(µ, s, ϕ) :=
sin(ϕ) ln

(
µ−t0 cos(ϕ)

µ−s

)
(s+ t0 cos(ϕ))(2µ− s− t0 cos(ϕ))

= ln

(
µ− t0 cos(ϕ)

µ− s

)(
sin(ϕ)

2µ(s+ t0 cos(ϕ))
+

sin(ϕ)

2µ(2µ− s− t0 cos(ϕ))

)
(A.18)
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for ϕ ∈ (0, π) and s ∈ (t0, µ). From (A.18) and the estimates 2µ− s− t0 cos(ϕ) ≥ µ− t0 cos(ϕ),

0 ≤ ln
(

µ−t0 cos(ϕ)
µ−s

)
≤ ln

(
µ+t0
µ−s

)
, it follows that

G2,3,b(µ, s, ϕ) ≤ ln

(
µ+ t0
µ− s

)(
sin(ϕ)

2µ(s− t0 cos(ϕ))
+

sin(ϕ)

2µ(µ− t0 cos(ϕ))

)
,

for ϕ ∈ (0, π) and s ∈ (t0, µ). Therefore∫ π

0

G2,3,b(µ, s, ϕ)dϕ ≤
ln
(

µ+t0
µ−s

)
2µt0

(
ln

(
s+ t0
s− t0

)
+ ln

(
µ+ t0
µ− t0

))

≤
ln
(

µ+t0
µ−s

)
2µt0

(
ln

(
µ+ t0
s− t0

)
+ ln

(
µ+ t0
µ− t0

))
. (A.19)

Using the estimate ln
(

µ+t0
µ−s

)
≤ ln

(
2(µ+t0)

µ−t0

)
for s ∈ (t0,

t0+µ
2

), we obtain∫ µ

t0

ln

(
µ+ t0
s− t0

)
ln

(
µ+ t0
µ− s

)
ds = 2

∫ t0+µ
2

t0

ln

(
µ+ t0
s− t0

)
ln

(
µ+ t0
µ− s

)
ds (A.20)

≤ 2 ln

(
2(µ+ t0)

µ− t0

)∫ t0+µ
2

t0

ln

(
µ+ t0
s− t0

)
ds ≤ 2(µ− t0)

(
ln

(
µ+ t0
µ− t0

)
+ ln 2

)(
ln

(
µ+ t0
µ− t0

)
+ 1

)
.

Combining (A.17)–(A.20) and (A.15), we obtain∫
y∈E1,3(µ,z,z′)

N(µ− |y|, z, z′ + y)

|y|2
dy ≤ 4π2µ− t0

µt0

(
3 ln

(
µ+ t0
µ− t0

)
+ 2 ln 2

)(
ln

(
µ+ t0
µ− t0

)
+ 1

)
.

(A.21)
Statement (5.19) follows from (A.21).

We now prove (5.20). Let n ≥ 4 and let (µ, z, z′) ∈ (0, T )×∂X×Rn be such that µ > |z−z′|
(we recall that N(µ, z, z′) = 0 if µ ≤ |z − z′|). Using spherical coordinates, we obtain

N(µ, z, z′) = Voln−2(Sn−2)

∫ π
2

−π
2

(µ− |z − z′| sin(Ω))n−3

(|z − z′|2 + µ2 − 2µ|z − z′| sin(Ω))n−2 cos(Ω)n−2dΩ. (A.22)

Performing the change of variables “r = µ2−|z−z′|2
2(µ−|z−z′| sin(Ω))

− µ−|z−z′|
2

”, we obtain

N(µ, z, z′) =
Voln−2(Sn−2)(µ2 − |z − z′|2)n−3

2

|z − z′|n−2

∫ |z−z′|

0

√
r(|z − z′| − r)

n−3

(µ−|z−z′|
2

+ r)n−2(µ+|z−z′|
2

− r)n−2
dr

=
2Voln−2(Sn−2)(µ2 − |z − z′|2)n−3

2

|z − z′|n−2

∫ |z−z′|
2

0

√
r(|z − z′| − r)

n−3

(µ−|z−z′|
2

+ r)n−2(µ+|z−z′|
2

− r)n−2
dr

≤ 2Voln−2(Sn−2)|(µ2 − |z − z′|2)n−3
2

|z − z′|n−2

∫ |z−z′|
2

0

1

(µ−|z−z′|
2

+ r)
n−1

2 (µ+|z−z′|
2

− r)
n−1

2

dr

≤ 2Voln−2(Sn−2)(µ2 − |z − z′|2)n−3
2

|z − z′|n−2

µ

2

1−n
2

∫ |z−z′|
2

0

1

(µ−|z−z′|
2

+ r)
n−1

2

dr (A.23)

≤ 2n−1

n− 3
Voln−2(Sn−2)|z − z′|2−n

(
µ+ |z − z′|

2µ

)n−3
2

µ−1 ≤ 2n−1

n− 3
Voln−2(Sn−2)|z − z′|2−nµ−1.
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B Proof of Proposition 2.1

We start with the derivation of (2.13) and (2.14). From (2.9) and the definition of G−, we obtain
A0,S,Wφ(t, x) =

∫
Sn−1

x,+
(ν(x) · v)W (x, v)E(x, x − τ−(x, v)v)S(x − τ−(x, v)v, v)φ(t − τ−(x, v), x −

τ−(x, v)v)dv, (t, x) ∈ (0, T )×∂X and for φ ∈ L1((0, η)×∂X). Therefore, performing the change

of variables “x′”= x− τ(x, v)v (dv = |ν(x′)·v|
|x−x′|n−1dµ(x′) and τ(x, v) = |x− x′|), we obtain (2.13).

From the definition of A2 and G− we note that A2G−(s)φS(z, w) :=
∫

Sn−1 k(z, v
′, w)E(z, z−

τ−(z, v′)v′)S(z− τ−(z, v′)v′, v′)φ(s− τ−(z, v′), z− τ−(z, v′)v′)dv′, for a.e. (z, w) ∈ X × Sn−1 and
for φ ∈ L1((0, η) × ∂X). Performing the change of variables “x′ = z − τ−(z, v′)v′”, we obtain

the equality (A2G−(s)φS) (z, w) =
∫

∂X
[k(z, v′, w)S(x′, v′)|ν(x′) · v′|]

v′= z−x′
|z−x′|

E(z,x′)
|z−x′|n−1φ(s − |z −

x′|, x′)dµ(x′), for a.e. (z, w) ∈ X × Sn−1 and φ ∈ L1((0, η) × ∂X). Using also the definition of
A1,S,W (see (2.10) for m = 1) we obtain the following equality for any φ ∈ L1((0, η)× ∂X) and
for a.e. (t, x) ∈ (0, T )× ∂X

A1,S,W (φ)(t, x) =

∫
Sn−1

x,+

∫ t

−∞

∫
∂X

[k(x− (t− s)v, v′, v)S(x′, v′)|ν(x′) · v′|]
v′= x−(t−s)v−x′

|x−(t−s)v−x′|
(ν(x) · v)

×E(x, x− (t− s)v, x′)

|x− (t− s)v − x′|n−1
χ(0,τ−(x,v))(t− s)φ(s− |x− (t− s)v − x′|, x′)W (x, v)dµ(x′)dsdv. (B.1)

Then, performing the changes of variables “s”= t − s and “t′”= t − s − |x − sv − x′| (s =
(t−t′)2−|x−x′|2
2(t−t′−v·(x−x′))

, dt′

ds
= 2((t−t′)−(x−x′)·v)2

|x−x′−(t−t′)v|2 ), we obtain (2.14).

In order to prove (5.21)–(5.22), we introduce and prove Proposition B.1 below, which
gives the distributional kernel of the operators Hm defined in section 2.1. Let Ē denotes the
nonnegative measurable function from Rn × Rn to R defined by

Ē(x1, x2) = e
−

∫ |x1−x2|
0 σ(x1−s

x1−x2
|x1−x2|

,
x1−x2
|x1−x2|

)ds
Θ(x1, x2), for a.e. (x1, x2) ∈ Rn × Rn, (B.2)

where Θ(x1, x2) = 1 if {px1 + (1 − p)x2 | p ∈ [0, 1]} ⊆ X and Θ(x1, x2) = 0 otherwise. For
m ≥ 3, we define recursively the nonnegative measurable real function Ē(x1, . . . , xm) by the
formula

Ē(x1, . . . , xm) = Ē(x1, . . . , xm−1)Ē(xm−1, xm), (B.3)

for (x1, . . . , xm) ∈ (Rn)m.

Proposition B.1. We have

Hm(t)φ(x, v) =

∫
X×Sn−1

βm(t, x, v, x′, v′)φ(x′, v′)dx′dv′, (B.4)

for t ∈ (0, T ) and a.e. (x, v) ∈ X × Sn−1 and for m ≥ 2, where

β2(t, x, v, x
′, v′) =

∫ t

0

χ(0,t−s2)(|x′ − (x− s2v
′)|)2

n−2 (t− s2 − (x− s2v
′ − x′) · v)n−3

|x− s2v′ − x′ − (t− s2)v|2n−4

×
[
Ē(x, x− (t− s1 − s2)v, x

′ + s2v
′, x′)k(x− (t− s1 − s2)v, v1, v)

×k(x′ + s2v
′, v′, v1)]v1=

x−s2v′−x′−(t−s1−s2)v
s1

, s1=
|x−s2v′−x′−(t−s2)v|2
2(t−s2−(x−x′−s2v′)·v)

ds2, (B.5)
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βm(t, x, v, x′, v′) =

∫
(Sn−1)m−2

∫
∑m

j=2
sj≤t

sj≥0, j=2...m

χ(0,t−
∑m

j=2 sj)(|x′ + smv
′ +

m−1∑
j=2

sjvj − x|)

×
2n−2

(
t−
∑m

j=2 sj − (x− x′ −
∑m−1

j=2 sjvj − smv
′) · v

)n−3

|x− x′ −
∑m−1

j=2 sjvj − smv′ − (t−
∑m

j=2 sj)v|2n−4

×

[
Ē(x, x− (t−

m∑
j=1

sj)v, x
′ + smv

′ +
m−1∑
j=2

sjvj, x
′ + smv

′ +
m−1∑
j=3

sjvj, . . . , x
′ + smv

′, x′)

×k(x− (t−
m∑

j=1

sj)v, v1, v)k(x
′ + smv

′ +
m−1∑
j=2

sjvj, v2, v1) . . . k(x
′ + smv

′ +
m−1∑

j=i+1

sjvj, vi+1, vi) . . .

k(x′ + smv
′, v′, vm−1)]

v1=
x−x′−

∑m−1
j=2

sjvj−smv′−(t−
∑m

j=1
sj)v

s1

s1=
|x−x′−

∑m−1
j=2

sjvj−smv′−(t−
∑m

j=2
sj)v|2

2(t−
∑m

j=2
sj−(x−x′−

∑m−1
j=2

sjvj−smv′)·v)

ds2 . . . dsmdv2 . . . dvm−1, m ≥ 3. (B.6)

Proof of Proposition B.1. Note that

H2(t)φ(x, v) =

(∫ t

0

∫ t−s1

0

U1(t− s1 − s2)A2U1(s1)A2U1(s2)φds2ds1

)
(x, v)

=

(∫ t

0

(∫ t−s2

0

U1(t− s1 − s2)A2U1(s1)A2ds1

)
U1(s2)φds2

)
(x, v)

=

∫ t

0

∫ t−s2

0

Ē(x, x− (t− s1 − s2)v)

∫
Sn−1

k(x− (t− s1 − s2)v, v1, v)

×Ē(x− (t− s1 − s2)v, x− (t− s1 − s2)v − s1v1)

×
∫

Sn−1

k(x− (t− s2 − s1)v − s1v1, v2, v1)

×Ē(x− (t− s1 − s2)v − s1v1, x− (t− s1 − s2)v − s1v1 − s2v2)

×φ(x− (t− s1 − s2)v − s1v1 − s2v2, v2)dv2dv1ds1ds2,

for t ∈ (0, T ) and (x, v) ∈ X × Sn−1, where the functions Ē are defined by (B.2)–(B.3).
Using the change of variables “y(s1, v1) = (t− s2 − s1)v + s1v1” we obtain

H2(t)φ(x, v) =

∫ t

0

∫
Sn−1

[
Ē(x, x− (t− s1 − s2)v, x− y, x− y − s2v2)k(x− (t− s1 − s2)v, v1, v)

× k(x− y, v2, v1)] v1=
y−(t−s1−s2)v

s1

s1=
|y−(t−s2)v|2
2(t−s2−y·v)

2n−2 ((t− s2)− y · v)n−3

|y − (t− s2)v|2n−4 φ(x− y − s2v2, v2)dydv2ds2.

Hence we obtain (B.4) for m = 2. Note that

(H3(t)φ)(x, v) =

∫ t

0

H2(t− s3)A2U1(s3)φds3

=

∫ t

0

∫
X×Sn−1

β2(t− s3, x, v, x2, v2)(A2U1(s3))φ(x2, v2)dx2dv2ds3

=

∫
X×Sn−1

∫ t

0

β2(t− s3, x, v, x2, v2)

∫
Sn−1

k(x2, v
′, v2)Ē(x2, x2 − s3v

′)

×φ(x2 − s3v
′, v′)dv′ds3dx2dv2.
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Hence performing the change of variables “x′ = x2 − s3v
′” (dx′ = dx2) and using definitions

(B.5) and (B.6) (for m = 3) we obtain

(H3(t)φ)(x, v) =

∫
X×Sn−1

β3(t, x, v, x
′, v′)φ(x′, v′)dx′dv′. (B.7)

The proof of (B.6) follows by induction from (B.7) and the recurrence formula Hm(t) =∫ t

0

Hm−1(t− s)A2U1(s)ds for t ≥ 0.

Proof of (5.21)–(5.22). We recall that

(A2G−(s)φS) (z, w) =

∫
∂X

[k(z, v′, w)S(x′, v′)|ν(x′) · v′|]
v′= z−x′

|z−x′|

E(z, x′)

|z − x′|n−1
φ(s−|z−x′|, x′)dµ(x′),

(B.8)
for a.e. (z, w) ∈ X × Sn−1 and φ ∈ L1((0, η)× ∂X).

Let m = 2. Then from (2.10) and the definition of the operator H1, it follows that

A2,S,W (φ)(t, x) =

∫
Sn−1

x,+

(ν(x) · v)W (x, v)

∫ t

−∞

∫ t−s

0

∫
Sn−1

∫
∂X

[k(x− (t− s− s1)v, v1, v)

× k(x− (t− s− s1)v − s1v1, v
′, v1)S(x′, v′)|ν(x′) · v′|]

v′=
x−(t−s−s1)v−s1v1−x′
|x−(t−s−s1)v−s1v1−x′|

E(x, x− (t− s− s1)v,

x− (t− s− s1)v − s1v1, x
′)
φ(s− |x− (t− s− s1)v − s1v1 − x′|, x′)

|x− (t− s− s1)v − s1v1 − x′|n−1

χX2(x− (t− s− s1)v, x− (t− s− s1)v − s1v1)dµ(x′)dv1ds1dsdv.

Performing the change of variables y(s1, v1) = (t− s− s1)v + s1v1, we obtain

A2,S,W (φ)(t, x) =

∫
Sn−1

x,+ ×∂X×Rn

(ν(x) · v)W (x, v)

∫ t

−∞
χ(0,t−s)(|y|)

× [E(x, x− (t− s− s1)v, x− y, x′)χX2(x− (t− s− s1)v, x− y)

× k(x− (t− s− s1)v, v1, v)k(x− y, v′, v1)S(x′, v′)|ν(x′) · v′|]
s1=

|(t−s)v−y|2
2(t−s−y·v)

, v1=
y−(t−s−s1)v

s1
, v′= x−y−x′

|x−y−x′|

×2n−2(t− s− y · v)n−3φ(s− |x− y − x′|, x′)
|(t− s)v − y|2n−4|x− y − x′|n−1

dsdydµ(x′)dv. (B.9)

Performing the change of variables “y”= x− x′ − y and t′ = s− |y| we obtain (5.21).
Let m = 3. Then from (2.10), (B.4) (for “m = 2”) and (B.8) it follows that

A3,S,W (φ)(t, x) =

∫
Sn−1

x,+

(ν(x) · v)W (x, v)

∫ t

−∞

∫
X×Sn−1

β2(t− s, x, v, x2, v2) (B.10)∫
∂X

[k(x2, v
′, v2)S(x′, v′)|ν(x′) · v′|]

v′=
x2−x′
|x2−x′|

E(x2, x
′)

|x2 − x′|n−1
φ(s− |x2 − x′|, x′)dµ(x′)dx2dv2dsdv,

for t ∈ (0, T ) and x ∈ ∂X. From (B.10) and (B.5) we obtain

A3,S,W (φ)(t, x) =

∫
Sn−1

x,+

(ν(x) · v)W (x, v)

∫
X×Sn−1×∂X

∫ t

−∞

∫ t−s

0

χ(0,t−s−s2)(|x2 − (x− s2v2)|)

2n−2 (t− s− s2 − (x− s2v2 − x2) · v)n−3

|x2 − x′|n−1 |x− s2v2 − x2 − (t− s− s2)v|2n−4 [E(x, x− (t− s1 − s2)v, x2 + s2v2, x2, x
′)
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×χX2(x− (t− s1 − s2)v, x2 + s2v2)k(x− (t− s1 − s2)v, v1, v)k(x2 + s2v2, v2, v1)k(x2, v
′, v2)

S(x′, v′)|ν(x′) · v′|]
v1=

x−s2v2−x2−(t−s−s1−s2)v
s1

s1=
|x−s2v2−x2−(t−s−s2)v|2
2(t−s−s2−(x−x2−s2v2)·v)

v′= x2−x′
|x2−x′|

φ(s− |x2 − x′|, x′)ds2dsdx2dv2dµ(x′)dv.

Performing the change of variables y2 = s2v2 and y3 = x2 − x′ we obtain (5.22) for “m = 3”.
Let m ≥ 3. From (2.10), (B.4) and (B.8) it follows that

Am+1,S,W (φ)(t, x) =

∫
Sn−1

x,+

∫
∂X

(ν(x) · v)W (x, v)

∫
X

∫
(−∞,t−|xm−x′|)×Sn−1

βm(t− t′ − |xm − x′|, x, v, xm, vm)

[k(xm, v
′, vm)S(x′, v′)|ν(x′) · v′|]

v′= xm−x′
|xm−x′|

E(xm, x
′)

|xm − x′|n−1
φ(t′, x′)dµ(x′)dt′dxmdvmdv

=

∫
(0,η)×∂X

γm+1(t− t′, x, x′)φ(t′, x′)dt′dµ(x′), (B.11)

where

γm+1(τ, x, x
′) :=

∫
Sn−1

x,+

(ν(x) · v)W (x, v)

∫
X×Sn−1

χ(0,+∞)(τ − |xm − x′|)∫
(Sn−1)m−2

∫
∑m

j=2
sj≤τ−|xm−x′|

sj≥0, j=2...m

χ(0,τ−|xm−x′|−
∑m

j=2 sj)(|xm +
m∑

j=2

sjvj − x|)

×
2n−2

(
τ − |xm − x′| −

∑m
j=2 sj − (x− xm −

∑m
j=2 sjvj) · v

)n−3

|xm − x′|n−1|x− xm −
∑m

j=2 sjvj − (τ − |xm − x′| −
∑m

j=2 sj)v|2n−4

×

[
E(x, x− (τ − |xm − x′| −

m∑
j=1

sj)v, xm +
m∑

j=2

sjvj, xm +
m∑

j=3

sjvj, . . . , xm + smvm, xm, x
′)

×χXm(x− (τ − |xm − x′| −
m∑

j=1

sj)v, xm + smvm, . . . , xm +
m∑

j=2

sjvj)

×k(x− (τ − |xm − x′| −
m∑

j=1

sj)v, v1, v)k(xm +
m∑

j=2

sjvj, v2, v1) . . . k(xm +
m∑

j=i+1

sjvj, vi+1, vi) . . .

k(xm + smvm, vm, vm−1)k(xm, v
′, vm)S(x′, v′)|ν(x′) · v′|]

v1=
x−xm−

∑m
j=2

sjvj−(τ−|xm−x′|−
∑m

j=1
sj)v

s1

s1=
|x−xm−

∑m
j=2

sjvj−(τ−|xm−x′|−
∑m

j=2
sj)v|2

2(t−
∑m

j=2
sj−(x−x′−

∑m
j=2

sjvj)·v)

v′= xm−x′
|xm−x′|

ds2 . . . dsmdv2 . . . dvm−1dxmdvmdv. (B.12)

Performing the change of variables yi = sivi, i = 2 . . .m, and ym+1 = xm+1 − x′, we obtain
(5.22) for “m ≥ 4”.
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