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Abstract

This paper concerns the reconstruction of possibly complex-valued coefficients
in a second-order scalar elliptic equation posed on a bounded domain from knowl-
edge of several solutions of that equation. We show that for a sufficiently large
number of solutions and for an open set of corresponding boundary conditions, all
coefficients can be uniquely and stably reconstructed up to a well characterized
gauge transformation. We also show that in some specific situations, a minimum
number of such available solutions equal to In = 1

2n(n+3) is sufficient to uniquely
and globally reconstruct the unknown coefficients. This theory finds applications
in several coupled-physics medical imaging modalities including photo-acoustic
tomography, transient elastography, and magnetic resonance elastography.

1 Introduction

We consider the general second-order elliptic equation:

∇ · a∇u+ b · ∇u+ cu = 0 in X, u = f on ∂X, (1)

with complex-valued coefficients such that a is a symmetric, complex-valued tensor
verifying the ellipticity condition for α0 > 0:

α0|ξ|2 ≤ ξ · <aξ ≤ α−10 |ξ|2, (2)

and with (b, c) such that the above equation admits a unique solution in H1(X) for

f ∈ H 1
2 (∂X). Here X is an open bounded domain in Rn with smooth boundary ∂X.

We assume throughout this paper that b, c and ∇·a are of class C0,α(X̄) for some α > 0
and that a is of class C0,1(X̄). Elliptic regularity results [20, Theorem 6.3.7] then ensure
that the solution u is a strong solution of class C2,α(X̄) when the boundary condition
is of class C2,α(∂X).
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We assume knowledge of internal functionals given by the complex valued solutions
uj(x) of (1) for a given set of boundary conditions f = fj for 1 ≤ j ≤ I. The main
objective of this paper is to show that the coefficients (a, b, c) can be uniquely and stably
reconstructed up to a natural gauge transformation from knowledge of the corresponding
(uj)1≤j≤I , provided that the gradients and Hessians of the latter satisfy some rank
maximality conditions. We show that the latter conditions are satisfied provided that
I is sufficiently large and the (fj)1≤j≤I belong to an appropriate open set.

In some specific situations, for instance when (a, b, c) is close to (a0, 0, 0) for a0 a
constant complex-valued matrix satisfying (2), we can guaranty that the reconstructions
can be achieved with I = In = 1

2
n(n+3), which corresponds to the (complex) dimension

of the unknown coefficients (a, b, c) up to the (one parameter) gauge transformation,
provided that the (fj)1≤j≤In belong to an appropriate open set.

The mathematical description of the measurement operator considered here and the
main results of the paper are presented in section 2. Each solution uj in (1) generates
a linear constraint on (a, b, c). When these constraints are of maximal rank, an explicit
inversion procedure provides a global, unique and stable reconstruction of (a, b, c) up
to a natural gauge transformation. The main technical work of the paper is to show
that these maximal rank conditions are satisfied uniformly on the domain X under
the sufficient (but by no means necessary) conditions that I is sufficiently large and
(fj)1≤j≤I are chosen in an appropriate, but often poorly characterized, open set, which
may depend on the unknown coefficients. The proofs of the main results are detailed in
sections 3 and 4. Their salient features are summarized in Remark 4.9.

The theory presented in this paper finds applications in several recent coupled-
physics (also called hybrid or multi-wave) imaging modalities that are extensively stud-
ied in the bio-engineering community. These methods arose as an attempt to devise
new imaging modalities that combine high resolution with high contrast. In section
5, we consider three such modalities: Photo-Acoustic Tomography (PAT), Transient
Elastography (TE) and Magnetic Resonance Elastography (MRE).

Our results show that for some models, all the medium parameters can be recon-
structed uniquely and stably for these imaging modalities. The reason is that these
coefficients have a structure that allows us to uniquely reconstruct the gauge as well. In
PAT, the main novelty of our result is that general anisotropic diffusion coefficients can
be reconstructed. In a scalar model for TE and MRE, the main novelty is that we can
not only reconstruct anisotropic coefficients but also complex-valued coefficients that
account for possible dispersion and attenuation effects. An extension of our analysis to
more general models of PAT, TE, and MRE may be found in [5, 10].

The reconstruction of anisotropic coefficients a from boundary value measurements
of u (as in, e.g., the Calderón problem) can be performed only up to a very large
class of changes of variables [28]. Moreover, the corresponding stability estimates are
of logarithmic type, which corresponds to drastic amplifications of measurement noise
during the reconstruction. The availability of internal functionals such as those in
PAT, TE, and MRE, allows one to reconstruct a larger class of coefficients and with
significantly better stability estimates. General real-valued anisotropic tensors were
reconstructed in the context of ultrasound modulation, another hybrid modality, in
dimension n = 2 in [19].

For additional information on quantitative PAT and TE and MRE, we refer the
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reader to e.g. [7, 8, 9, 12, 13, 29] and [3, 16, 18, 21] and their lists of references,
respectively. For general references to the theory of hybrid inverse problems devoted to
the mathematical analysis of similar coupled-physics imaging modalities, we refer the
reader to e.g. [2, 6, 26].

2 Main results

Gauge transform. The elliptic equation (1) may be recast as

a : ∇⊗2u+ (∇ · a+ b) · ∇u+ cu = 0. (3)

Upon multiplying through by the scalar function τ 6= 0, we get

aτ : ∇⊗2u+ (∇ · aτ + bτ ) · ∇u+ cτu = 0, (4)

with
aτ = τa, bτ = τb− a∇τ, cτ = τc. (5)

This shows that the coefficients (a, b, c) can be reconstructed at most up to the above
gauge transformation. We say that (a, b, c) ∼ (aτ , bτ , cτ ) belong to the same equivalence
class if there exists a non vanishing (sufficiently smooth with smoothness depending on
context) function τ such that (5) holds. Then we say that (a, b, c) ∈ c the equivalence
class.

Measurement operator. For f ∈ H 1
2 (∂X), we obtain a solution u ∈ H1(X) and we

can define the solution operator

Sc :
H

1
2 (∂X) → H1(X)

f 7→ u = Scf.
(6)

Note that the solution operator is independent of the element (a, b, c) ∈ c.
The main measurement operator we consider in this paper is defined as follows. Let

I ∈ N∗ and fi ∈ H
1
2 (∂X) for 1 ≤ i ≤ I be a given set of I boundary conditions. Define

f = (f1, . . . , fI). The measurement operator Mf

Mf :
X → YI

c 7→ Mf(c) = (Scf1, . . . ,ScfI).
(7)

Here, X is a subset of a Banach space in which the unknown coefficients are defined.
That space will depend on the context. Also Y is a subset of H1(X) where the solutions
to (1) are defined. The main objective of this paper is to consider settings in which Mf(c)
for an appropriate choice of f uniquely and stably determines c.

Main results. Since coefficients in c are determined up to an arbitrary multiplicative
constant, the latter must be normalized to obtain stability estimates in the reconstruc-
tion. We denote by ac the unique element such that (ac, bc, cc) ∈ c and normalized so
that Tr(aca

∗
c ) = 1.

The main results of this paper are summarized in the following Theorem:
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Theorem 2.1 Let c and c̃ be two classes of coefficients with (a, b, c,∇ · a) of class
Cm,α(X̄) for α > 0 and m = 0 or m = 1, and a of class C0,1(X̄). We assume that (1)
is well posed for the coefficients c.

Then for I sufficiently large and for an open set (for instance in the topology of
C2,α(X̄)) of boundary conditions f = (fj)1≤j≤I , then Mf(c) uniquely determines c. More-
over, for any other c̃ as given above, we have the stability results

‖(ac, bc +∇ · ac, cc)− (ac̃, bc̃ +∇ · ac̃, cc̃)‖Wm,∞(X) ≤ C‖Mf(c)−Mf(c̃)‖Wm+2,∞(X),

‖bc − bc̃‖L∞(X) ≤ C‖Mf(c)−Mf(c̃)‖W 3,∞(X),
(8)

for m = 0, 1.
We say that c is in the vicinity of c̃ if (ac, bc, cc,∇ · ac) is in the C0,α(X̄) vicinity of

(ac̃, bc̃, cc̃,∇ · ac̃). Let us assume that c in the vicinity of either:

(i) (a0, 0, 0) for some constant diffusion tensor a0;

(ii) (γ(x)Idn, 0, c(x)) for some scalar coefficients γ ∈ H n
2
+4+ε(X̄) and c ∈ H n

2
+2+ε(X̄)

for ε > 0 (with Idn the n× n identity matrix);

(iii) (γ(x), 0, c(x)) for an arbitrary diffusion tensor of class H5+ε(X) and c of class
H3+ε(X) in dimension n = 2.

Then for I = In = 1
2
n(n + 3) and an open set of boundary conditions f, we have that

Mf(c) uniquely determines c. Moreover, (8) holds.

The proof of the different results described in the above theorem is presented in detail
in sections 3 and 4.

Reconstruction of the gauge. In some situations the gauge in c can be uniquely
and stably determined. Let us for instance consider the specific, practically important,
case of coefficients (a, b, c) = (γ, 0, c). Then we have the following result:

Corollary 2.2 Under the hypotheses of the preceding theorem, and in the setting where
b = 0, we have that Mf(c) uniquely determines (γ, 0, c). Then we have the following
stability result:

‖γ − γ̃‖L∞(X) ≤ C‖Mf(c)−Mf(c̃)‖W 2,∞(X). (9)

The proof of the corollary from the results stated in Theorem 2.1 may be found in
section 3.2.

3 Local reconstruction

3.1 Reconstruction of equivalence classes

Let n be the spatial dimension and define In = 1
2
n(n + 3). We wish to reconstruct

an element in the class c = (aτ , bτ , cτ ) for τ an arbitrary non-vanishing function from
knowledge of ui for 1 ≤ i ≤ In. We perform the reconstruction locally in the vicinity
of a point x0. We assume that we have constructed a solution u1 such that w.l.o.g.
u1(x0) = 1 and by continuity u1 6= 0 in the vicinity of x0. We then define

vj =
uj+1

u1
, 1 ≤ j ≤ In − 1, α = u21a, β = ∇ · (au21) + u21b (10)
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and find after some algebra that

α : ∇⊗2vj + β · ∇vj = 0, (11)

in the vicinity of x0.
We assume that (∇v1, . . . ,∇vn) forms a frame in the vicinity of x0. Then H =

(Hij)1≤i,j≤n with Hij = ∇vi · ∇vj is a boundedly invertible symmetric matrix with H ij

the coefficients of H−1. Let us define Mn := 1
2
n(n+ 1)− 1. Note that In = 1 + n+Mn.

We then write for 1 ≤ m ≤Mn:

−∇vm+n = Θm
j ∇vj, Θm

j = −Hjk∇vm+n · ∇vk. (12)

Here, we use the convention of summation over repeated indices. We then define

θmj =


Θm
j 1 ≤ j ≤ n

1 j = m+ n

0 otherwise

, 1 ≤ j ≤ In − 1, 1 ≤ m ≤Mn. (13)

Note that we have constructed the complex-valued coefficients θmj in such a way that

In−1∑
j=1

θmj ∇vj = 0, 1 ≤ m ≤Mn. (14)

We next construct the symmetric matrices

Mm =
In−1∑
j=1

θmj ∇⊗2vj, 1 ≤ m ≤Mn. (15)

We assume that the matrices Mm are linearly independent. Since the (complex) di-
mension of symmetric matrices equals Mn + 1, this implies the existence of a unique
symmetric, complex-valued, matrix M0 such that

M0 : Mm = Tr(M0Mm) = 0, 1 ≤ m ≤Mn, (16)

normalized so that Tr(M0(M0)∗) = 1. In other words, there exists a unique normalized
matrix (M0)∗ that is orthogonal to the constructed Mm matrices for the inner product
(A,B) = Tr(A∗B). The construction of M0 can be obtained as follows. We anticipate
the fact that the identity matrix Idn cannot be in the span of the matrices Mm. We
can thus use the Gram Schmidt procedure to orthogonalize (Idn, (M

m)1≤m≤Mn) and
construct the matrix M0.

Multiplying (11) by θmj and summing over j yields the Mn constraints

α : Mm = 0, 1 ≤ m ≤Mn.

This shows that α is proportional to the now known matrix M0(x). Since the real part
of a is positive definite, the matrix α cannot be orthogonal to Idn for the inner product
(·, ·). This justifies the fact that (Idn, (M

m)1≤m≤Mn) form a free family. Let us define

α(x) := M0(x). (17)
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Since the matrix α can be reconstructed up to the gauge transformation corresponding
to the multiplication by an arbitrary complex-valued function, we choose the gauge as
prescribed above, i.e., such that Tr(α∗α) = 1.

The vector field β is then uniquely determined using (11) by the explicit formula:

β = −H ij(M0 : ∇⊗2vj)∇vi. (18)

Once (α, β) are known (up to the gauge transformation), we define

a =
1

u21
α, b =

1

u21
(β −∇ · α), c = − 1

u1
(∇ · a∇u1 + b · ∇u1). (19)

This provides an explicit reconstruction of (a, b, c) ∈ c, the equivalence class, which is
therefore now known. The above results may be recast as follows

a =
1

u21
α, ∇ · a+ b =

1

u21
(β − a∇u21), c = − 1

u1

(
(∇ · a+ b) · ∇u1 + a : ∇⊗2u1

)
. (20)

We summarize the above results in the following lemma.

Lemma 3.1 Let ui for 1 ≤ i ≤ In be solutions of the elliptic equation with boundary
conditions ui = fi on ∂X. Let us define vi = u−11 ui+1 for 1 ≤ i ≤ In − 1 and assume
that:

(i) in the vicinity X0 of a point x0, we have that u1 6= 0 on X and u1(x0) = 1,

(ii) the vectors (∇v1, . . . ,∇vn) form a frame on X0 with a matrix Hij = ∇vi · ∇vj with
uniform bounded inverse on X0;

(iii) the matrices Mm for 1 ≤ m ≤ Mn constructed above in (12)-(15) are linearly
independent.

Then the class of gauge equivalence c is uniquely determined by Mf(c) = (ui)1≤i≤In
on X0 in the sense that ui = ũi for 1 ≤ i ≤ I implies that c = c̃ where ũi are the internal
functionals obtained by replacing one element in c by one element in c̃.

Moreover the reconstruction is stable in the sense that

‖(ac, bc +∇ · ac, cc)− (ac̃, bc̃ +∇ · ac̃, cc̃)‖L∞(X0) ≤ C‖Mf(c)−Mf(c̃)‖W 2,∞(X0). (21)

The stability result is clear by inspection of the reconstruction procedure: two derivatives
on v are taken in the reconstruction of the matrices Mm and hence of M0 for instance
by the Gram-Schmidt procedure, a multi-linear operation that preserves errors in the
uniform norm. The same loss of derivatives is observed in the reconstruction of (α, β),
and hence in a, ∇·a+ b and c as can be seen in (20). Note that we similarly reconstruct
the above coefficients in the W 1,∞ sense, and hence b in the L∞ sense, when errors are
bounded in the W 3,∞ sense as indicated in Theorem 2.1.

Remark 3.2 Note that the procedure described in Lemma 3.1 allows one to reconstruct
In = 1

2
n(n + 3) complex-valued coefficients from In complex-valued internal functionals

of the form uj above or to reconstruct In real-valued coefficients from In real-valued
functionals of the same form.
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3.2 Reconstruction of the gauge

Let us assume that we can reconstruct (a0, b0, c0) ∈ c on a domain X, which may be a
part of the domain such as X0 above or the whole domain if local reconstructions of c
are patched together to provide a global reconstruction. Let us then define

(aτ , bτ , cτ ) = (τa0, τb0 − a0∇τ, τc0) ∈ c

an other element of the equivalence class. In this section, we show that prior information
about the unknown coefficient allows us to uniquely determine the unknown gauge τ .

Note that another way to represent the gauge transform is to realize that

(aτ , a
−1
τ bτ , cτ ) = (τa0, a

−1
0 b0 −∇ ln τ, τc0).

In other words, a−1τ bτ − a−10 b0 is a gradient. If a−1τ bτ is seen as the 1-form (a−1τ )ijbjdxi,
then d(a−1τ bτ ) is independent of the element in c and characterizes the equivalence class
on a simply connected domain X.

Let us assume that ∇ · (a−1τ bτ ) = Φ is known. Then we observe that

−∆ ln τ = Φ−∇ · (a−10 b0),

so that τ is uniquely defined on X if it is known at the boundary ∂X.
As another practical assumption to reconstruct the gauge, let us assume that b = bτ

is divergence free so that ∇ · (τb0 − a0∇τ) = 0, or in other words

−∇ · (a0∇τ) +∇ · (τb0) = 0.

Note that a0 = u−21 M0. This is an elliptic equation. Provided that all coefficients are
real-valued and that a0 is uniformly elliptic, then this equation admits a unique solution
for τ when τ is known on ∂X. This is a consequence of the maximum principle [14] that
does not (always) apply in the case of complex-valued coefficients.

Let us assume the stronger constraint that b = bτ = 0. This corresponds to Φ = 0
above. In fact, this provides the redundant system of transport equations for τ :

∇τ = a−10 b0τ, or equivalently ∇ ln τ = a−10 b0,

which admits a unique solution (on a simply connected domain since d(a−10 b0) = 0 for
a−10 b0 seen as a 1-form) provided that τ is known at one point . This reconstruction
applies for arbitrary complex valued coefficients (a, b, c). In the PAT, TE, and MRE
applications considered in section 5, the natural setting is with b = 0 so that the gauge
can indeed be reconstructed.

Consider the specific example of

∇ · γ∇u = 0 in X, u = f on ∂X.

Define γ = τM0 so that

α : ∇⊗2u+ β · ∇u = 0, α = M0, β = τ−1∇ · (τM0),

with α and β reconstructed as in the preceding section. This shows that

∇ ln τ = α−1(β −∇ · α).
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This is a redundant system of first-order equations for ln τ , which is one derivative more
regular than the source α−1(β−∇·α). The reconstruction of β involves differentiating the
available functionals (uj) twice while the reconstruction of ∇ ·α involves differentiating
them thrice. We thus obtain the unique reconstruction of γ with the stability estimate

‖γ − γ̃‖L∞(X) ≤ C‖Mf(c)−Mf(c̃)‖W 2,∞(X). (22)

This proves Corollary 2.2. However, when the anisotropy α = M0 is known a priori,
then we obtain the better stability estimate

‖γ − γ̃‖W 1,∞(X) ≤ C‖Mf(c)−Mf(c̃)‖W 2,∞(X). (23)

The reconstruction of anisotropic tensors is less stable than that of the isotropic coef-
ficients. This is consistent with similar results obtained for the ultrasound modulation
problem; see [19].

3.3 Variations of the coefficients

The above procedure shows that reconstructions are stable with respect to fluctuations
in the measurements M(c) when the hypotheses of Lemma 3.1 are satisfied. We show
that such hypotheses are stable with respect to small changes in the parameters c.

Lemma 3.3 Let u and ũ be solutions of

∇ · a∇u+ b · ∇u+ cu = ∇ · ã∇ũ+ b̃ · ∇ũ+ c̃ũ = 0 on X0, (24)

with Dirichlet conditions u = ũ = f for f of class Cm,α(∂X0). Then

‖u− ũ‖Cm+2,α(X0) ≤ C‖(a, b, c,∇ · a)− (ã, b̃, c̃,∇ · ã)‖Cm,α(X0), (25)

for some positive constant C independent of (ã, b̃, c̃,∇·ã) sufficiently close to (a, b, c,∇·a)
in Cm,α.

Proof. Let w = ũ− u. We find

∇ · (a− ã)∇u+ (b− b̃) · ∇u+ (c− c̃)u = ∇ · ã∇w + b̃ · ∇w + c̃w.

The proof then follows from standard regularity results; see [14] for the case of real-
valued coefficients and [20, Theorem 6.3.7] for the case of complex-valued coefficients.

With m = 0, we deduce that when the hypotheses of Lemma 3.1 are verified for the
coefficients c, then they are verified with the same boundary conditions for all coefficients
c̃ that are sufficiently close to c in the sense given above.

4 Global reconstruction

We now consider several settings in which global reconstructions of c are possible. We
have seen in the preceding section that c was globally and uniquely reconstructed pro-
vided that the solutions (ui)1≤i≤I satisfied some rank maximality conditions. We provide
sufficient conditions on the choice of I and the boundary conditions (fi)1≤i≤I for the
rank maximality conditions to hold.
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4.1 Global reconstructions close to constant tensor

We start with reconstructions in the vicinity of a = Idn, b = 0, and c = 0, where
Idn is the identity matrix in dimension n. The main interest of this result is that the
boundary conditions fi are explicit and particularly simple. Moreover, the following
result shows that the In = 1

2
n(n+ 3) unknown complex-valued (real-valued) coefficients

may uniquely and stably be reconstructed from exactly In complex-valued (real-valued)
internal functionals; see remark 3.2.

Theorem 4.1 Let X be the space of c sufficiently close to (Idn, 0, 0) in the sense of
Lemma 3.3 with m = 0. Let In = 1

2
n(n+3) and fi be the traces on ∂X of In homogeneous

harmonic polynomials of degree equal to 1 or 2 (see the proof for the description of the
polynomials). Then Mf from X to YIn is injective. Moreover, the stability result (21)
holds for X0 = X.

This is a global (in space) stability result from knowledge of In functionals but only for
classes c that admit an element sufficiently close to (Idn, 0, 0). In fact, the reconstruction
works for c close to (a0, 0, 0) for a0 arbitrary elliptic as we observe in Theorem 4.2 below.

Proof. Let u1 = 1 be the constant solution. Let then vj = xj for 1 ≤ j ≤ n
be the homogeneous polynomials of degree 1. Finally, let us denote by vij = xixj
and wi(x) = 1

2
(x2i − x2i+1) the homogeneous harmonic polynomials of degree two for

1 ≤ i < j ≤ n. The other such polynomials, such as for instance 1
2
(x21 − x23) can be

constructed by linear combination of the polynomials wi. We have thus constructed
1 + n + 1

2
n(n − 1) + n − 1 = 1

2
n(n + 3) = In harmonic homogeneous polynomials of

degree less than or equal to 2.
We verify that

∇u1 = 0, ∇vi = ei, ∇vij = xjei + xiej, ∇wi = xiei − xi+1ei+1.

Moreover,

∇⊗2vij = ei ⊗ ej + ej ⊗ ei, ∇⊗2wi = ei ⊗ ei − ei+1 ⊗ ei+1.

Let us define Θij
k for 1 ≤ i < j ≤ n and 1 ≤ k ≤ n such that

−∇vij = Θij
k∇vk, i.e., Θij

k =


−xj when k = i

−xi when k = j

0 otherwise.

Then we find that the corresponding matrices Mm are defined by

M ij = ∇⊗2vij = ei ⊗ ej + ej ⊗ ei.

Let us now define Θi
k for 1 ≤ i ≤ n− 1 and 1 ≤ k ≤ n such that

−∇wi = Θi
k∇vk, i.e., Θi

k =


−xi when k = i

xi+1 when k = i+ 1

0 otherwise.
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Then we find that the corresponding matrices Mm are defined by

M i = ∇⊗2wi = ei ⊗ ei − ei+1 ⊗ ei+1.

The matrices M ij for 1 ≤ i < j ≤ n and M i for 1 ≤ i ≤ n − 1 form a free family of
dimension 1

2
n(n− 1) + n− 1 = 1

2
n(n+ 1)− 1 = Mn as can easily be verified. They are

orthogonal to the matrix M0 = Idn.
Let now c be close to (Idn, 0, 0) in the sense given in Lemma 3.3 and let the functions

ui for 1 ≤ i ≤ In be solutions of the equation (1) with boundary conditions fi that are
the traces of the harmonic polynomials constructed above. (This means that f1 = 1,
f2 = x1, and so on on ∂X.)

By continuity of the solution to (1) stated in Lemma 3.3, the linear independence
of the vectors ∇vj for 1 ≤ j ≤ n still holds. The linear combinations θmj in (13) and
the matrices Mm in (15) constructed by continuity from the case c = (Idn, 0, 0) still
satisfy (14) and the fact that the matrices Mm are linearly independent. This ensures
the existence of a matrix M0 close to the identity matrix such that α = τM0 for some
unknown scalar quantity τ . We may then apply Lemma 3.1. This concludes the proof
of the theorem.

We presented the above result for γ in the vicinity of Idn in order to obtain a simple
proof of a construction that satisfies the hypotheses of Lemma 3.1 and because the
construction also appears in a later section. In fact, the result may be generalized as
follows.

Theorem 4.2 The results of Theorem 4.1 hold for X the space of c sufficiently close to
(a0, 0, 0), where a0 is an arbitrary constant symmetric matrix satisfying (2).

Proof. The proof is very similar to that of the preceding theorem and is in some
sense included in the proof of Theorem 4.7 below, to which we refer for the details. The
construction of u1 = 1 and vj = xj is the same as that of Theorem 4.1. The solutions
vn+m are then constructed as

vn+m =
1

2
Qmx · x, 1 ≤ m ≤ 1

2
n(n+ 1)− 1,

with Qm forming a family of Mn = 1
2
n(n+ 1)− 1 linearly independent matrices that are

orthogonal to a∗0, or in other words, such that a0 : Qij = 0. The linear combinations θmj
are then constructed as in Theorem 4.1 with the matrices Mm = Qm since ∇⊗2vj = 0
for 1 ≤ j ≤ n. This allows us to verify the hypotheses of Lemma 3.1 globally on X = X0

for boundary conditions equal to the traces of the polynomials 1, xj,
1
2
Qmx · x, and by

continuity for an open set of boundary conditions and for all coefficients c sufficiently
close to (a0, 0, 0).

4.2 Global reconstructions close to isotropic tensor

Let us generalize the above result by assuming that a is in the vicinity of γ(x)Idn where
γ is a scalar real-valued (hence positive) diffusion coefficient. We still assume that b
is in the vicinity of 0. Also, c is an arbitrary complex-valued potential so that (1) is
uniquely solvable. Then we have the following result.
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Theorem 4.3 Let γ(x) ∈ H n
2
+4+ε(X) and c(x) ∈ H n

2
+2+ε(X) for ε > 0 with Sc in (6)

bounded. Let X be the space of c sufficiently close to (γ(x)Idn, 0, c(x)) in the sense of
Lemma 3.3 with m = 0. Let In = 1

2
n(n+ 3). There there exists an open set of (fi)1≤i≤In

(in any topology of sufficiently smooth functions on ∂X) such that Mf from X to YIn is
injective. Moreover, the stability result (21) holds for X0 = X.

Proof. The proof is based on the construction of complex geometrical optics solutions
of the form

u(x; ρ) =
1√
γ(x)

eρ·x(1 + ψρ(x)), (26)

with ρ a complex-valued vector such that ρ · ρ = 0. We know that for γ and c with
the aforementioned regularity and for |ρ| sufficiently large, then ψρ is of order |ρ|−1 in
C2(X̄) [9].

In the construction preceding Lemma 3.1, we need to consider derivatives of ratios
of solutions. We find that

u(x; ρ̃)

u(x; ρ)
∇u(x; ρ)

u(x; ρ̃)
= ρ− ρ̃+ ϕ,

u(x; ρ̃)

u(x; ρ)
∇⊗2u(x; ρ)

u(x; ρ̃)
= (ρ− ρ̃)⊗2 + φ, (27)

with the vector ϕ bounded independent of (ρ, ρ̃) and matrix φ of order max(|ρ|, |ρ̃|)
uniformly in x ∈ X.

Let us define ρij = k(ei+ iej) and define uij = u(·; ρij) as well as ũij = u(·; ρ∗ij). Note
that ũij is asymptotically close to u∗ij as |k| → ∞ but since c(x) may be complex valued,
is not necessarily equal to u∗ij.

We also define ρ̃ij = ερij as well as ρ1 = ε2ρ12 and u1 = u(·; ρ1), with ε2k sufficiently
large that contributions such as ϕ and φ above remain negligible for the forthcoming
constructions but ε sufficiently small that ρ̃ = ρ1 or ρ̃ = ρ̃ij in (27) is so small that it
does not modify the independence of the matrices Mm constructed below.

Let us define vj as follows

v1 =
u(·; ρ̃∗12)
u1

, vj =
u(·; ρ̃j−1,j)

u1
, j ≥ 2.

Since all solutions vj do not vanish for k sufficiently large, it is clear that (∇v1, . . . ,∇vn)
form a basis with Hij = ∇vi ·∇vj a matrix with a uniformly bounded inverse for x ∈ X
(with a bound that depends on k and ε). Moreover, we find that

1

v1
∇v1 ∼ ερ∗12,

1

v1
∇⊗2v1 ∼ ε2(ρ∗12)

⊗2,
1

vj
∇vj ∼ ερj−1,j,

1

vj
∇⊗2vj ∼ ε2ρ⊗2j−1,j, j ≥ 2.

Here and below, we denote by ∼ equalities up to terms such as ϕ and φ above that are
asymptotically negligible as |k| → ∞ as well as terms that are lower order in ε.

Now for 1 ≤ i < j ≤ n, we define

vij =
uij
u1
, so that

1

vij
∇vij ∼ ρij,

1

vij
∇⊗2vij ∼ ρ⊗2ij .

For 1 ≤ j ≤ n− 1, we construct

ṽj =
ũj,j+1

u1
, so that

1

ṽj
∇ṽj ∼ ρ∗j,j+1,

1

ṽj
∇⊗2ṽj ∼ (ρ∗j,j+1)

⊗2.

11



Each of the vectors ∇vij and ∇ṽj can uniquely be written in terms of the vectors ∇vj.
Let us define ρ̂1 = ρ∗12 and ρ̂j = ρj−1,j. Note that (ρ̂j)1≤j≤n form a basis of Cn. Let us
then introduce

−ρij = εΘ̃ij
k ρ̂k, −ρ∗j,j+1 = εΘ̃j

kρ̂k.

Here, the summation is over the index k. We find that all coefficients Θ̃ are of order
ε−1. Then we find that

−∇vij = Θij
k∇vk, −∇ṽj = Θj

k∇vk for Θij
k ∼

vij
vk

Θ̃ij
k , Θj

k ∼
ṽj
vk

Θ̃j
k.

Now for these choices, we find that

M ij := ∇⊗2vij + Θij
k∇

⊗2vk = vij

(
ρ⊗2ij − Θ̃ij

k ε
2ρ̂⊗2k

)
∼ vijρ

⊗2
ij .

Similarly, we have

M j := ∇⊗2ṽj + Θj
k∇
⊗2vk = ṽj

(
(ρ∗j,j+1)

⊗2 − Θ̃j
kε

2ρ̂⊗2k

)
∼ ṽj(ρ

∗
j,j+1)

⊗2.

Note that

ρ⊗2ij
|k|2

= i(ei⊗ej+ej⊗ei)+(ei⊗ei−ej⊗ej),
(ρ∗ij)

⊗2

|k|2
= −i(ei⊗ej+ej⊗ei)+(ei⊗ei−ej⊗ej).

Therefore the matrices M ij and M j constructed above are indeed linearly independent
and as in the proof of Theorem 4.1 span a subspace of the vector space of symmetric
matrices of dimension 1

2
n(n−1)+n−1 = 1

2
n(n+1)−1. The above result obtained in the

limit ε → 0 still holds for ε sufficiently small. Moreover, once ε is fixed, several terms
of the form φ and ϕ above become negligible when |k| is sufficiently large. Therefore,
for |k| sufficiently large, there exists an open set of boundary conditions (fi) such that
all the hypotheses of Lemma 3.1 are satisfied for all x ∈ X.

This proves the result for c̃ of the form (γ(x)Idn, 0, c(x)). Now by continuity and
Lemma 3.3, the same boundary conditions can be used to satisfy the requirements of
Lemma 3.1 for all c sufficiently close to c̃.

4.3 Global reconstructions in two dimensions

The above reconstruction procedure has been proved to hold in the vicinity of (Idn, 0, 0)
or (γ(x)Idn, 0, c(x)). In this section, we generalize the result to proving that global
reconstructions are possible for coefficients in the vicinity of (γ(x), 0, c(x)) where γ is
an arbitrary real-valued second-order elliptic tensor in dimension n = 2 and c(x) is a
complex-valued potential:

Theorem 4.4 Let X be the space of c sufficiently close to (γ, 0, c) in the sense of Lemma
3.3 with m = 0 with γ of class H5+ε(X̄) and c of class H3+ε(X̄) for ε > 0. Let I2 = 5.
Then there exists an open set of boundary conditions f = (fi)i such that Mf from X to
YI2 is injective. Moreover, the stability result (21) holds for X0 = X.

12



Proof. To simplify the notation, we set c ≡ 0 and leave the details to the reader to
consider the case c 6= 0 as was done in the proof of Theorem 4.3.

We prove that we can apply Lemma 3.1 for X0 = X and (a, b, c) = (γ, 0, 0) for an
open set of boundary conditions f. Then by continuity, the hypotheses of Lemma 3.1
still hold for c sufficiently close to (γ, 0, 0). As we did in the proof of the preceding
theorem, we can assume that γ is smooth since by an application of Lemma 3.3, the
result can be extended to any γ satisfying the regularity hypotheses of Lemma 3.3 with
m = 0.

The global reconstruction applies only in two dimensions of space and for real val-
ued tensors γ. The reason is that global complex geometrical optics solutions can be
constructed in two dimensions by means of an appropriate quasiconformal map, which
we now describe. Such results do not hold in general in dimension n ≥ 3.

We first extend γ to a smooth real-valued tensor on R2 ∼ C, which remains uniformly
positive definite and equal to I outside of a compact domain. For ϕ : R2 → R2 a
diffeomorphism of the plane with differential Dϕ, we denote by

ϕ∗γ(y) =
Dϕ(x)γ(x)(Dϕ)t(x)

|det(Dϕ)|

∣∣∣
x=ϕ−1(y)

,

the push-forward of γ by the diffeomorphism ϕ. A result of quasi-conformal theory [4]
implies the existence of a unique such diffeomorphism ϕ normalized such that ϕ(z) =
z +O(1

z
) as |z| → ∞ and such that

ϕ∗γ(x) =
(

detγ ◦ ϕ−1(x)
) 1

2
Id2. (28)

In other words, the tensor-valued conductivity γ is conformal to the Euclidean conduc-
tivity Id2, or equivalently the Riemannian metric g = (detγ)

1
2γ−1 is conformal to the

Euclidean metric. As we did in the proof of Theorem 4.3, we may thus construct CGO
solutions of the form

v(y) =
1√

ϕ∗γ(y)
eρ·y(1 + φρ(y)),

with |ρ|φρ bounded in the C2(ϕ(X)) sense. As a consequence, we construct

uρ(x) =
1√

ϕ∗γ ◦ ϕ(x)
eρ·ϕ(x)(1 + ψρ(x)), (29)

with |ρ|ψρ bounded in C2(X).
Let ρ1 = k(ie1 + e2) and ρ2 = k(ie2− e1). Let uj = uρj , j = 1, 2. As in the preceding

section, we also define ũj = uρ∗j for j = 1, 2. Then we find

k−1∇u1 = (i∇ϕ1 +∇ϕ2)u1 + ζ1, k−1∇u2 = i(i∇ϕ1 +∇ϕ2)u2 + ζ2,

with |ρ|u−1j ζj bounded for j = 1, 2. We thus find

k−1u−12 ∇u2 = ik−1u−11 ∇u1 + o(1) = −∇ϕ1 + i∇ϕ2 + o(1).

Here, we are decomposing ∇u2 over ∇u1 and ∇ũ1, which form a basis for k sufficiently
large. Then

M = ik−2u−11 ∇⊗∇u1 − k−2u−12 ∇⊗∇u2
∼ (i+ 1)

(
∇ϕ⊗22 −∇ϕ⊗21

)
+ (i− 1)

(
∇ϕ1 ⊗∇ϕ2 +∇ϕ2 ⊗∇ϕ1

)
,

13



in the limit k → ∞. In the same way that we have decomposed ∇u2 over ∇u1 and
∇ũ1 above, we can decompose ∇ũ2 over ∇u1 and ∇ũ1 as well. In the limit k →∞, the
matrix M∗ will thus be given by the complex conjugation of the above matrix. This
proves that in the limit k →∞, the matrices Mm defined in section 3 are given by the
real and imaginary parts of M :

M± =
(
∇ϕ⊗22 −∇ϕ⊗21

)
±
(
∇ϕ1 ⊗∇ϕ2 +∇ϕ2 ⊗∇ϕ1

)
.

After change of coordinates, we obtain the two matrices:

M1 = ∇ϕ⊗22 −∇ϕ⊗21 , M2 = ∇ϕ1 ⊗∇ϕ2 +∇ϕ2 ⊗∇ϕ1

which we want to be non trivial and linearly independent. The above matrices M1,2 are
those obtained in the limit k → ∞. This means that for k sufficiently large, the two
constructed matrices M1,2 from u1 and u2 will be close to their limits and hence satisfy
the same properties of linear independence.

Now we observe that a = ∇ϕ1 and b = ∇ϕ2 are linearly independent since ϕ is a
diffeomorphism. And a⊗a, b⊗b, a⊗b+b⊗a are basis elements for symmetric matrices.
Thus M1 has coordinates (−1, 1, 0) while M2 has coordinates (0, 0, 1) in that basis. As
a consequence, both matrices M1 and M2 are linearly independent, in the limit k →∞
as well as for k sufficiently large. Note that the independence is uniform in x ∈ X for
k sufficiently large.

This shows that the hypotheses of Lemma 3.1 are satisfied for X0 = X. Such a
calculation holds for any set of coefficients close to (γ, 0, 0). A very similar proof applies
to c in the vicinity of (γ, 0, c) as stated in the theorem. This proves the theorem.

4.4 Global reconstructions with redundant measurements

In this section, we show that reconstructions are possible for essentially arbitrary (suffi-
ciently smooth) coefficients c. However, the proof of linear independence of the matrices
Mm becomes (spatially) local. We thus need to use a number of internal functionals I
that is potentially much larger than In, although we do not expect this large number of
coefficients to be necessary in practical inversions.

As for the preceding results, the conditions of linear independence will be satisfied for
well-chosen illuminations fj on the boundary ∂X. The control of the linear independence
from the boundary is obtained by means of a Runge approximation; see Lemma 4.8
below. This step requires that the operator L = ∇ · a∇ + b · ∇ + c satisfy a unique
continuation principle, which we state as follows:

Property 4.5 (Unique Continuation) We say that L satisfies the unique continu-
ation principle when Lu = 0 on X\X0 with u = 0 on ∂X and n · ∇u = 0 on ∂X
implies that u = 0 on X\X0, where X0 is an arbitrary sufficiently smooth open domain
X0 ⊂⊂ X.

For unique continuation results, we refer the reader to [11, 23, 24, 30] and the theoretical
results we shall use here [15, Theorem 17.2.1]. The latter result states that L satisfies
the unique continuation principle 4.5 when the principal symbol of L given by p(x, ξ) =
a(x)ξ · ξ is such that:

14



(i) a(x) is Lipschitz continuous,

(ii) For ξ,N ∈ Rn\{0}, the quadratic equation p(x, ξ + τN) = 0 in the
variable τ ∈ C admits a double root τ if and only if ξ + τN = 0.

Then we have the following lemma:

Lemma 4.6 Let p(x, ξ) = a(x)ξ · ξ be the principal symbol of L, which we assume is
elliptic.
In dimension n ≥ 3, the quadratic equation p(x, ξ + τN) = 0 for ξ,N ∈ Rn\{0} never
admits a double root τ unless ξ + τN = 0.
In dimension n = 2, the same result holds when in addition (2) is satisfied.
In all these cases, L thus satisfies Property 4.5 when a is Lipschitz continuous.

Proof. The proof is essentially given in [15, Lemma 17.2.5]. In dimension n ≥ 3,
the equation p(x, ξ + τN) has one root with =τ > 0 and one root with <τ > 0. In
dimension n = 2, the equation p(x, ξ + τN) has a double root at a fixed point x ∈ X if
and only if we have p(x, ξ) = (l(x) · ξ)2 for some complex-valued vector l = lr + ili ∈ Cn

(with lr = <l and li = =l) to preserve ellipticity (note that such quadratic forms cannot
be elliptic in dimension n ≥ 3). But then p(x, ξ) = (lr · ξ)2− (li · ξ)2 + ilr · ξli · ξ so that
the real part of a is not elliptic. This proves the lemma.

With this result, we can now state the main theorem of the paper.

Theorem 4.7 Let X be the space of coefficients c such that (b, c,∇ · a) are of class
C0,α(X), a is of class C0,1(X), and such that (2) holds. Then there exists I ≥ In and
an open set (for the topology of C2,α(∂X)) of boundary conditions f = (fi)1≤i≤I such
that Mf from X to YI is injective. Moreover, the stability result (21) holds for X0 = X.

Proof. We decompose the proof into three steps: we first construct local solutions
assuming that the coefficients are constant. We then extend the local constructions
to the case of non-constant coefficients. We finally apply the Runge approximation to
obtain an open set of boundary conditions such that the hypotheses of Lemma 3.1 are
satisfied locally. Local constructions are then patched together to provide global stable
and unique reconstructions.

Problem with constant coefficients. Let first x0 be a point inside X, which by
change of coordinates we call 0. Let us define (a0, b0, c0) = (a(0), b(0) +∇ · a(0), c(0)).
We then look for solutions of the constant coefficient equation

L0u := a0 : ∇⊗2u + b0 · ∇u + c0u = 0. (30)

We look for solutions approximately of the form

p =
1

2
Qx · x+ ρ · x+ d, ∇p = Qx+ ρ, ∇⊗2p = Q.

In order for p to satisfy the equation at x = 0, we need to find (Q, ρ, d) such that

a0 : Q+ b0 · ρ+ c0d = 0.
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We construct In = 1 + n + 1
2
n(n + 1) − 1 such solutions below. We then realize that

L0p = O(x). Let r0 be sufficiently small and let us define

L0u = 0 in B(0, r0), u = p on ∂B(0, r0). (31)

For r0 sufficiently small, the derivatives up to order two of u and p are very close.
The linear independence of the structures constructed below with the polynomials p at
x = 0 therefore still holds for the corresponding structures constructed with the elliptic
solutions u in (31).

We call the first solution u0 obtained by defining

d = 1, ρ = 0, Q = − c0a
∗
0

a0 : a∗0
.

Note that u0 does not vanish in a sufficiently small neighborhood of 0 (and can be
normalized so that u0(0) = 1). We next define the solutions uj for 1 ≤ j ≤ n. The
vector b0 = b0r + ib0i is after a rotation if necessary in the span of e1 and e2. We thus
write b0 = µe1 + νe2 for µ and ν in C. For j = 1, 2, we define

dj = 0, ρj = ej, Q1 = − µa∗0
a0 : a∗0

, Q2 = − νa∗0
a0 : a∗0

.

For j ≥ 3, we define
d = 0, ρ = ej, Q = 0.

The solutions uj are therefore constructed such that ∇pj = ej at x = 0. Moreover, we
find that ∇ pj

p0
= ej at x = 0 as well since ∇p0 = 0 at x = 0. We thus obtain that ∇ uj

u0
form a basis of Rn in a sufficiently small neighborhood of 0.

Finally, for n+ 1 ≤ j ≤ n+ 1
2
n(n+ 1)− 1, we define d = 0 and ρ = 0 and choose the

matrices Qj such that they form a free family of symmetric matrices that are orthogonal
to a∗0, the complex conjugate of a0. This free family has dimension 1

2
n(n+ 1)− 1. This

implies that (a0 : Qj) = 0.
In the construction preceding Lemma 3.1, it is ∇⊗2vj+m for vj = u−10 uj that is used

to form a free family of symmetric matrices of dimension 1
2
n(n+ 1)− 1. We verify that

∇⊗2uj+m
u0

=
1

u0
∇⊗2uj+m +∇uj+m ⊗∇

1

u0
+∇ 1

u0
⊗∇uj+m + uj+m∇⊗2

1

u0
.

We verify that both sides equal Qj at x = 0 when uj is replaced by pj.
Let now θmj and Mm be defined as in the construction preceding Lemma 3.1. We

verify that Mm is close to Qj+m at x = 0. By continuity, the matrices Mm are therefore
linearly independent in a ball X0 = B(0, r0) for r0 > 0 sufficiently small. This shows
that on that ball, the matrices Mm satisfy the hypotheses of Lemma 3.1. All other
hypotheses of that Lemma are therefore satisfied for the family uj.

Problem with non-constant coefficients. We now return to the original problem
on X and look for solutions of the form:

a(x) : ∇⊗2u+ (b+∇ · a)(x) · ∇u+ c(x)u = 0 in X0, u = u on ∂X0, (32)
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where X0 = B(0, r0) ∩ X with B(0, r0) the ball whose radius r0 is equal to or smaller
than the value chosen in the construction of u. Let w = u− u. We find

a : ∇⊗2w + (b+∇ · a) · ∇w + cw = (a− a0) : ∇⊗2u + (b+∇ · a− b0) · ∇u + (c− c0)u

on X0 with w = 0 on ∂X0. By assumption on the coefficients and u, the above right-
hand side is bounded in C0,β(X0) by Cβr

α−β
0 for some 0 < β < α. We deduce from

elliptic regularity results for complex-valued coefficients [20, Chapter 6] that

‖w‖C2,β(X0) ≤ Crα−β0 ,

for some positive constant C. Thus the functions uj defined as solutions for (32) with
boundary conditions uj are arbitrarily close to uj in the C2 sense for r0 sufficiently small.
This proves that u0 remains non-vanishing and close to 1 on X0, that ∇uj

u0
for 1 ≤ j ≤ n

remain linearly independent, and that the matrices Mm constructed above Lemma 3.1
satisfy the independence properties stated in that lemma.

Continuation to the boundary. So far, we have constructed solutions u that are
defined on X0,k = B(xk, r0) ∩X for xk ∈ X with B(xk, r0) the open ball centered at xk
with radius r0. We find a sequence of points xk for 1 ≤ k ≤ K such that X ⊂ ∪Kk=1X0,k,

and such that either B(xk, r0) ⊂ X or xk 6∈ X. In other words, we cover X with balls
either strictly included in X or such that their center lies outside X. Such a covering is
possible for X bounded and smooth ∂X.

We also define Xµ,k = B(xk, µr0)∩X and find 0 < µ < 1 sufficiently close to 1 such
that X ⊂ ∪Kk=1Xµ,k. We need to construct solutions on the whole domain X such that
their restrictions on Xµ,k is a sufficiently accurate approximation of u constructed in
(32). We need the following Runge approximation property, following [22]; see also [17].

Lemma 4.8 (Runge approximation) Let L be an operator satisfying the unique con-
tinuation property of Cauchy data on X as described above.

Let u0 be a solution of Lu0 = 0 on X0,k with 1 ≤ k ≤ K fixed. Then for each ε > 0,

there is a function fε ∈ H
1
2 (∂X) such that the solution of Luε = 0 on X with uε = fε

on ∂X is such that
‖uε − u0‖C2,α(Xµ,k) ≤ ε. (33)

Proof. [Runge Lemma]. We drop the dependency in k and denote X0 = X0,k.
Let E = {u ∈ H1(X0), Lu = 0 in X0, u = 0 on ∂X ∩ ∂X0} and F = {u|X0 , u ∈
H1(X), Lu = 0 in X, u = 0 on ∂X ∩ ∂X0} be linear subspaces of L2(X0). Note that
∂X ∩ ∂X0 = ∅ when X0 is a ball. We wish to prove that F̄ = E for the strong L2

topology. By Hahn Banach, this means that for all φ ∈ L2(X0), then (φ, u) = 0 for all
u ∈ F implies that (φ, u) = 0 for all u ∈ E.

Let us extend φ by 0 outside X0 and still call φ the extension on X. Define then

L∗v = φ in X, v = 0 on ∂X.

Here L∗ = ∇ · a∗∇− b∗ · ∇ + c∗ is the formal adjoint to L. Note that v is well-defined
since Sc in (6) is assumed to be bounded. Integrations by parts show that

0 = (Lu, v)− (u, L∗v) =

∫
∂X

(an · ∇uv∗ − an · ∇v∗u− b · nuv∗)dσ =

∫
∂X

an · ∇v∗udσ.
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Since this holds for any function u ∈ H1(X) and hence for any u|∂X ∈ H
1
2 (∂X), we

deduce that a∗n · ∇v = 0 on ∂X. We thus find

L∗v = 0 in X1, v = 0 and a∗n · ∇v = 0 on ∂X1,

where X1 is the interior of X\X0. We use the unique continuation assumption to deduce

that v ≡ 0 in H1(X1) so that v = 0 in the H
1
2 (∂X1)-sense and a∗n · ∇v = 0 in the

H−
1
2 (∂X1)-sense. For any u ∈ E, we thus find that (φ, u) = 0, which thus proves that

F̄ = E. This shows that u− u0 is arbitrarily small in L2(X0).
Let us first assume that X0 is a ball, so that then, X0 ⊂ X. Then regularity results

as they are written for instance in [20, Theorem 6.2.5] for elliptic problems with complex
coefficients such that (a, b, c,∇ · a) are of class C0,α for α > 0 (see also [15, Theorem
17.2.7]), allow us to conclude that (33) holds. Indeed, we have an equation L(u0−uε) = 0
on X0. We then get the required interior regularity of u0 − uε in C2,α(Xµ) for µ < 1.

Let X0 be the intersection of a ball and X (which corresponds to points xk 6∈ X).
We separate ∂X0 = (∂X0 ∩ ∂X) ∪ Γ, with Γ a (closed) spherical cap whose interior lies
in X. Define f = u0|∂X0∩∂X on ∂X0 ∩ ∂X extended by 0 on the rest of ∂X and u1 the
solution of

Lu1 = 0 in X, u1 = f on ∂X.

Define now u2 = u0 − u1|X0
, which belongs to E. We find a sequence of solutions u2,ε

approximating u2 in L2(X0). Now uε = u2,ε+u1 has the proper boundary conditions on
∂X0 ∩ ∂X and approximates u in L2(X0). The same type of regularity results as above
with boundary conditions allow us to conclude that (33) holds.

We now conclude the proof of Theorem 4.7. Uniqueness to the Cauchy problem
is guaranteed by Lemma 4.6. We have obtained, using the Runge approximation, the
construction of a family uj for an open set of boundary conditions fj such that the
hypotheses of Lemma 3.1 are satisfied on Xµ,k for each 1 ≤ k ≤ K. Since the open
domains Xµ,k cover X, we can then apply Lemma 3.1 and obtain a unique and stable
reconstruction of c on X.

Remark 4.9 The reconstruction of c using the procedure presented in section 3.1 is
global: provided that at every point x0 ∈ X, we can find solutions (uj)1≤j≤I such that
(after permutation of the indices if necessary) (i) u1 6= 0; (ii) (∇vj)1≤j≤n form a basis of
Rn for vj defined in (10); and (iii) Mm defined in (15) form a free family of symmetric
matrices, then c is globally uniquely reconstructed, i.e., Mf(c) = Mf(c̃) for any c̃ such
that (1) is well-posed, implies that c = c̃. Moreover, the reconstruction is stable as
indicated in Theorem 2.1.

Verifying (i)-(ii)-(iii) requires the control of gradients and Hessians of solutions to
second-order elliptic equations, which in this paper is performed by using (locally de-
fined) harmonic polynomials or (globally defined) complex geometric optics solutions
when they are available. Such a control is guaranteed for an open set F of boundary
conditions f ∈ F and I sufficiently large. Since F is open, we deduce for instance that
for (ϕn)n≥1 a basis of smooth functions in L2(∂X), and for fjk;N = j

N
ϕk, we are guar-

anteed that f = (fjk,N)−N≤j≤N,k≤N ∈ F for N sufficiently large, and hence that c will
be uniquely and stably reconstructed.

However, conditions (i)-(ii)-(iii) are likely to hold for a very large class of boundary
conditions f = (f1, . . . fI) for I ≥ In. In numerical simulations in the setting of scalar
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(isotropic) coefficients, it seems that good reconstructions are obtained for I (or N
above) chosen quite small [8, 7]. Note that the reconstruction of anisotropic coefficients
in a slightly different context in [19] is less stable than the reconstruction of scalar
coefficients. This is consistent with the theoretical predictions in this paper; see (23)
compared to (22).

The reconstruction of c from Mf(c) requires that available data be differentiated
twice even when (i)-(ii)-(iii) are satisfied. This differentiation is inherent to the hybrid
inverse problem considered in this paper and cannot be avoided. This will undoubtedly
limit the resolution on the reconstructed coefficients we can expect in the presence of
significant noise in the acquisition of Mf(c). Nonetheless, the stability estimates obtained
in Theorem 2.1 are much more favorable than estimates obtained for reconstructions
from boundary measurements; see [28].

5 Applications to coupled-physics inverse problems

The salient feature of coupled-physics inverse problems (also known as hybrid inverse
problems) is that they involve a high resolution modality and a high contrast modality
to obtain a coupled (hybrid) modality imaging combining both high contrast with high
resolution. We consider three such families of coupled physics inverse problems that
may be modeled by the theory developed in the preceding sections; quantitative photo-
acoustic tomography (QPAT), transient elastography (TE), and the mathematically
similar modality called magnetic resonance elastography (MRE); see [6] for a review on
hybrid inverse problems.

5.1 Quantitative Photo-Acoustic Tomography

The first modality we consider is called quantitative photo-acoustic tomography (QPAT).
The high contrast modality is optical tomography. The ultimate objective of QPAT is
the reconstruction of the optical coefficients in an elliptic equation.

Radiation propagation is modeled by the following equation

−∇ · γ∇uj + σuj = 0 in X, uj = fj on ∂X. (34)

Here, γ is the real-valued diffusion tensor and σ the real-valued absorption coefficient.
The high resolution modality is ultrasound. A first well posed inverse wave (ultra-

sound) problem is solved to reconstruct internal functionals of the unknown coefficients.
This first step of QPAT provides access to the following internal functionals [8, 7, 9, 27]

Hj(x) = Γ(x)σ(x)uj(x) in X. (35)

Here Γ(x) is the Grüneisen coefficient, which is assumed to be known in this paper and,
therefore, without loss of generality assumed to equal 1. We assume that 1 ≤ j ≤ I,
with I the number considered in the preceding sections. We assume that all coefficients
are known on ∂X and that f1 > 0 on ∂X so that u1 > 0 by the maximum principle.
Then multiplying the above equation for u1 by uj and for uj by u1 and subtracting the
results, we get

−∇ · (γu21)∇
uj
u1

= −∇ · (γu21)∇
Hj

H1

= 0.

19



Therefore if the I − 1 boundary conditions (f2, . . . , fI) are chosen as in the preceding
section, we obtain that γu21 can be uniquely and stably reconstructed. Indeed, we are
here in the setting where b = 0, which allows one to reconstruct the gauge and hence
the whole diffusion tensor γ as indicated in Corollary 2.2.

Now the equation for u1 may be recast as

−∇ · (γu21)∇
1

u1
= H1 in X,

1

u1
=

1

f1
on ∂X. (36)

This uniquely determines u1 and hence γ1 in a stable fashion. Since H1 = σu1, this
also determines σ uniquely and stably. This concludes the derivation of the unique and
stable reconstruction of (γ, σ) from QPAT measurements when the Grüneisen coefficient
is known.

Note that the same elliptic equation (34) with σ = 0 has been used to reconstruct a
scalar diffusion coefficient from knowledge of u by solving the transport equation (34)
for γ with applications in underground water flows [1, 25].

5.2 Coupled-physics methods based on Elastography

In this section, the high contrast modality is elastography; see [18] and reference there
for more details. The elastic (stiffness) properties of tissues are to be reconstructed.
We assume here that the elastic displacements are modeled by a time-harmonic scalar
equation of the form

∇ · γ(x)∇uj + ω2ρ(x)uj = 0 in X, uj = fj on ∂X. (37)

Here, γ is a tensor-valued, possibly complex-valued, Lamé parameter and ρ is a density
that may also be complex-valued in full generality. The reason for these coefficients
to be complex-valued is that elastic waves are attenuated by various dispersion effects.
In the frequency domain, such attenuation effects take the form of complex-valued co-
efficients. Elastographic tomography was one of the main motivations to consider the
reconstruction of complex-valued coefficients in the preceding section.

In transient elastography (TE), the high resolution modality is again ultrasound.
As comparatively slow elastic waves propagate through the domain X of interest, ul-
trasound measurements are used to infer the internal displacements, i.e., the solution
of the Helmholtz equation (37). In Magnetic resonance elastography (MRE), the high
resolution modality is magnetic resonance. Along with elastic displacements, proton
displacements occur that can be measured by an MRI machinery.

In both modalities, the internal functionals obtained by ultrasound in TE and by
magnetic resonance imaging in MRE are given by the displacements:

Hj(x) = uj(x) in X. (38)

This is exactly the setting considered in Theorem 2.1. Note, however, that in many
applications of elastography, the scalar model considered here is not sufficiently accurate.
Generalizations to more precise models of linear or nonlinear elasticity then need to be
developed.
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1983.

22


