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Abstract. We consider the perturbation of elliptic pseudo-differential operators P (x,D) with
more than square integrable Green’s functions by random, rapidly varying, sufficiently mixing, poten-
tials of the form q(x

ε
, ω). We analyze the source and spectral problems associated to such operators

and show that the rescaled difference between the perturbed and unperturbed solutions may be writ-
ten asymptotically as ε→ 0 as explicit Gaussian processes. Such results may be seen as central limit
corrections to homogenization (law of large numbers). Similar results are derived for more general
elliptic equations with random coefficients in one dimension of space. The results are based on the
availability of a rapidly converging integral formulation for the perturbed solutions and on the use
of classical central limit results for random processes with appropriate mixing conditions.

Key words. Homogenization, central limit, differential equations with random coefficients.

AMS subject classifications. 35R60, 35J05, 35P20, 60H05.

1. Introduction. There are many practical applications of partial differential
equations with coefficients that oscillate at a faster scale than the scale of the domain
on which the equation is solved. In such settings, it is often necessary to model the
coefficients as random processes, whose properties are known only at a statistical level.

Since numerical simulations of the resulting partial differential equation become
a daunting task, two simplifications are typically considered. The first simplification
consists in assuming that the coefficients oscillate very rapidly and replacing the equa-
tion with random coefficients by a homogenized equation with deterministic (effective
medium) coefficients; for homogenization in the periodic and random settings, see e.g.
[8, 39] and [12, 17, 30, 34, 36, 37, 42], respectively.

The solution to the equation with random equations may also be interpreted
as a functional of an infinite number of random variables and may be expanded in
polynomial chaoses [18, 46]. A second simplification consists then in discretizing the
randomness in the coefficients over sufficiently low dimensional subspaces; see e.g.
[3, 27, 28, 29, 38, 48] for references on this active area of research. Such problems,
which are posed in domains of dimension d + Q, where d is spatial dimension and Q
the dimension of the random space, are often computationally very intensive.

In several practical settings such as e.g. the analysis of geological basins or the
manufacturing of composite materials, one may be interested in an intermediate situ-
ation, where random fluctuations are observed and yet the random environment is so
rich that full solutions of the equation with random coefficients may not be feasible.
In this paper, we are interested in characterizing the random fluctuations about the
homogenized limit, which arise as an application of the central limit theory.

In many cases of practical interest, such as those involving the elliptic operator
∇ · aε(x, ω)∇, with x ∈ D ⊂ Rd and ω ∈ Ω the space of random realizations, the cal-
culation of the homogenized tensor is difficult and does not admit analytic expressions
except in very simple cases [30]. The amplitude of the corrector to homogenization,
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let alone its statistical description, remains largely open. The best estimates cur-
rently available in spatial dimension d ≥ 2 may be found in [47]; see also [20, 21], [19]
for discrete equations, and [5] for applications of such error estimates. Only in one
dimension of space do we have an explicit characterization of the effective diffusion
coefficient and of the corrector [14]. Unlike the case of periodic media, where the
corrector is proportional to the size of the cell of periodicity ε, the random corrector
to the homogenized solution is an explicitly characterized Gaussian process of order√

ε when the random coefficient has integrable correlation [14]. In the case of corre-
lations that are non integrable and of the form R(t) ∼ t−α for some 0 < α < 1, the
corrector may be shown to be still an explicitly characterized Gaussian process, but
now of order ε

α
2 [6].

The explicit characterizations of the correctors obtained in [6, 14] are based on
the availability of explicit solutions to the heterogeneous elliptic equation. Correctors
to homogenization have been obtained in other settings. The analysis of homogenized
solutions and central limit correctors to evolution equations with time dependent
randomly varying coefficients is well known; see e.g. [10, 23, 25, 32, 35, 41]. The
asymptotic limit of boundary value problems requires different mathematical tech-
niques. We refer the reader to [26, 45] for results in the setting of one-dimensional
problems. Note that in the case of a much stronger potential, in dimension d = 1
of the form ε−

1
2 qε instead of qε in the above Helmholtz operator, the deterministic

homogenization limit no longer holds and the solution of a corresponding evolution
equation converges to another well identified limit; see [43].

In spatial dimensions two and higher, a methodology to compute the Gaussian
fluctuations for boundary value problems of the form −∆uε + F (uε,x, x

ε ) = f(x)
was developed in [24]. An explicit expression for the fluctuations was obtained and
proved for the linear equation (−∆ + λ + q(x

ε ))uε(x) = f(x) in dimension d = 3. In
this paper, we revisit the problem and generalize it to linear problems of the form
P (x,D)uε + qε(x)uε = f(x) with an unperturbed equation P (x,D)u = f , which
admits a Green’s function G(x,y) that is more than square integrable (see (2.4)
below). The prototypical example of interest is the operator P (x,D) = −∇·a(x)∇+
q0(x) with sufficiently smooth (deterministic) coefficients a(x) and q0(x) posed on
a bounded domain with, say, Dirichlet boundary conditions, for which the Green’s
function is more than square integrable in dimensions 1 ≤ d ≤ 3.

Under appropriate mixing conditions on the random process qε(x, ω), we will show
that arbitrary spatial moments of the correctors ε−

d
2 (uε − u0,M) where uε and u0

are the solutions to perturbed and unperturbed equations, respectively, and where M
is a smooth function, converge in distribution to Gaussian random variables, which
admit a convenient and explicit representation as a stochastic integral with respect
to a standard (multi-parameter) Wiener process. If we denote by u1 the weak limit
of w1ε = ε−

d
2 (uε − u0), we observe, for 1 ≤ d ≤ 3, that E{v2

1ε(x, ω)} converges to
E{u2

1(x, ω)}, where v1ε is the leading term in w1ε up to an error term we prove is
of order O(εd) in L1(Ω × D). This shows that the limiting process u1 captures all
the fluctuations of the corrector to homogenization. This result is no longer valid in
d ≥ 4 and in homogenization in periodic media in arbitrary dimension, where the
weak limit of the corrector captures a fraction of the energy of that corrector. The
square integrability of the Green’s function thus appears as a natural condition in the
framework of homogenization in random media.

We obtain similar expressions for the spectral elements of the perturbed elliptic
equation. We find that the correctors to the eigenvalues and the spatial moments of
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the correctors to the corresponding eigenvectors converge in distribution to Gaussian
variables as the correlation length ε vanishes. In the setting d = 1, we obtain similar
result for more general elliptic operators of the form − d

dx (aε
d
dx )+q0+qε by appropriate

use of harmonic coordinates [34].
As we already mentioned, the theory developed here allows us to characterize the

statistical properties of the solutions to equations with random coefficients in the limit
where the correlation length (the scale of the heterogeneities) is small compared to
the overall size of the domain. Asymptotically explicit expressions for the correctors
may also find applications in the testing of numerical algorithms. Several numerical
schemes have been developed to estimate the heterogeneous solution accurately in the
regime of validity of homogenization; see e.g. [1, 2, 21, 22, 40]. Explicit expressions
for the correctors allow us to check whether these algorithms capture the central
limit corrections as well. Another application concerns the reconstruction of the
constitutive parameters of an equation from redundant measurements. In such cases,
lower-variance reconstructions are available when the cross-correlations are known and
used optimally in the inversion; see e.g. [44]. The correctors obtained in this paper
provide asymptotic estimates for the cross-correlation of the measured data and allow
us to obtain lower-variance reconstructions for the constitutive parameters; see [7].

An outline for the rest of the paper is as follows. Section 2 summarizes the
results obtained in the paper. The analysis of the correctors to homogenization is
undertaken in section 3 for perturbations of P (x,D) by a random potential qε(x). The
generalization to a more general one-dimensional elliptic source problem in detailed
in section 4. The results on the correctors obtained for source problems are then
extended to correctors for spectral problems in section 5. The results obtained for the
spectral problems are then briefly applied to the analysis of evolution equations.

2. Main results. Let us consider an equation of the form:

P (x,D)uε + qεuε = f, x ∈ D (2.1)

with uε = 0 on ∂D, where P (x,D) is a (deterministic) self-adjoint, elliptic, pseudo-
differential operator and D an open bounded domain in Rd. We assume that P (x,D)
is invertible with symmetric and “more than square integrable” Green’s function.
More precisely, we assume that the equation

P (x,D)u = f, x ∈ D (2.2)

with u = 0 on ∂D admits a unique solution given by:

u(x) = Gf(x) :=
∫

D

G(x,y)f(y)dy, (2.3)

where the real-valued, non-negative, symmetric kernel G(x,y) = G(y,x) (these as-
sumptions can be relaxed in Section 3) has more than square integrable singularities:

x 7→
( ∫

D

|G|2+η(x,y)dy
) 1

2+η

is bounded on D for some η > 0. (2.4)

The assumption is typically satisfied for operators of the form P (x, D) = −∇·a(x)∇+
σ(x) for a(x) uniformly bounded and coercive and σ(x) ≥ 0 in dimension d ≤ 3, with
η = +∞ when d = 1 (i.e., G is bounded), η < ∞ for d = 2, and η < 1 for d = 3.

In order to avoid resonances from occurring in (2.1), the process qε(x, ω) is a
modification -see Section 3 for the details- of q̃ε(x, ω) = q(x

ε , ω), a mean zero, (strictly)
3



stationary, process defined on an abstract probability space (Ω,F , P) [16]. We assume
that q(x, ω) has an integrable correlation function:

R(x) = E{q(y, ω)q(y + x, ω)}, (2.5)

where E is mathematical expectation associated to P, and that it is strongly mixing
in the sense given in (3.1) below. We define the following variance:

R̂(0) = σ2 :=
∫

Rd

R(x)dx =
∫

Rd

E{q(0)q(x)}dx. (2.6)

We formally recast (2.1) as uε = G(f − qεuε), where G = P (x, D)−1, and thus:

uε = Gf − GqεGf + GqεGqεuε. (2.7)

The process q̃ε is modified on a set of measure O(ε) to ensure that the above equation
admits a unique solution P−a.s. One of the main results of this paper is that:

uε − u0

ε
d
2

dist.−−−→ −σ

∫
D

G(x,y)u0(y)dWy, as ε → 0, (2.8)

weakly in space (i.e., after integration against a sufficiently smooth deterministic
function M(x)), where u0 = Gf and dWy is standard multi-parameter Wiener process
[33]; see Theorem 3.7 when G is bounded and Theorem 3.8 when G verifies (2.4). The
right-hand side in (2.8) is the limit of −ε−

d
2 GqεGf . We observe that the variance of

the latter term converges to the variance of the right-hand side in (2.8).
When the Green’s function is no longer square integrable, the variance of the

corrector −ε−
d
2 GqεGf(x) is much larger than that of −σ

∫
D

G(x,y)u0(y)dWy, which
implies that energy is lost while passing to the weak limit in (2.8). This is the case
for the elliptic operator P (x,D) = −∇ · a∇+ q0 in dimension d ≥ 4; see section 3.3.

We then extend the previous results to the general one-dimensional equation:

− d

dx
aε(x, ω)

d

dx
uε + (q0 + qε(x, ω))uε = ρε(x, ω)f(x), x ∈ D = (0, 1), (2.9)

with Dirichlet conditions uε(0) = uε(1) = 0 to simplify the presentation. The random
coefficients aε(x, ω) and ρε(x, ω) are uniformly bounded from above and below: 0 <
a0 ≤ aε(x, ω), ρε(x, ω) ≤ a−1

0 . The (deterministic) absorption term q0 is assumed to
be a non-negative constant to simplify the presentation.

We assume that aε(x, ω) = a(x
ε , ω), qε(x, ω) = q(x

ε , ω), and ρε(x, ω) = ρ(x
ε , ω),

where a(x, ω), q(x, ω), and ρ(x, ω) are strictly stationary processes on an abstract
probability space (Ω,F , P). We assume appropriate joint mixing conditions on the
random processes (see Section 4) and integrability of the cross-correlation functions
Rfg(x) for {f, g} ∈ {a, q, ρ}, where Rfg(x) = E{f(y, ω)g(y + x, ω)}. Let us define:

bε(x) =
a∗

aε(x, ω)
− 1, q̃ε(x, ω) = qε(x, ω)− q0bε(x), δρε = ρε − E{ρ}, (2.10)

where (a∗)−1 = E{a−1}. The process q̃ε(x, ω) will be modified on a set of measure
O(ε) to ensure existence of a solution to (2.9). We denote by G(x, y) the Green’s
function of the homogenized equation (2.9), where aε is replaced by a∗, qε by 0 and
ρε by ρ̄ = E{ρ}. Then we have that

uε − u0√
ε

(x) dist.−−−→
∫ 1

0

σ(x, t)dWt, (2.11)
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where Wt is standard Brownian motion and

σ2(x, t) = 2
∫ ∞

0

E{F (x, t, 0)F (x, t, τ)}dτ,

F (x, t, τ) = Hb(x, t)b(τ) + Hρ(x, t)δρ(τ)−Hq(x, t)q̃(τ).
(2.12)

Here, we have defined:

Hb(x, t) =
∫ 1

0

[
χx(t)

∂

∂x
G(x, y; 1) + χy(t)

∂

∂y
G(x, y; 1) +

∂

∂L
G(x, y; 1)

]
ρ̄f(y)dy

Hρ(x, t) = G(x, t)f(t), Hq(x, t) = G(x, t)
∫ 1

0

G(t, z)f(z)dz,

(2.13)

where χx(t) = 1 if 0 < t < x and χx(t) = 0 otherwise. The homogeneous Green’s
function G(x, y) = G(x, y; 1), where G(x, y;L) is defined in (4.2) below and the ho-
mogenized solution is defined as u0(x) = ρ̄

∫ 1

0
G(x, t)f(t)dt. The proof of the result

is based on a change of variables to harmonic coordinates and the techniques used to
prove the convergence result in (2.8).

The above two problems may be recast as uη(ω) = Aη(ω)f for a deterministic
source term f , where Aη(ω) is the solution operator and η = ε

d
2 . Let A be the formal

limit of Aη as η → 0. For the above problems, we show that

E{‖Aη −A‖2} . η2, (2.14)

which is sufficient to adapt results in [31] and obtain Gaussian fluctuations for the
leading eigenvalues and eigenvectors of the compact, self-adjoint, operator Aη. More
precisely, let (λη

n, uη
n) and (λn, un) be the spectral elements of Aη and A, respectively,

where the eigenvalues are ordered in decreasing order (assuming they are non-negative
to simplify). The results obtained on the convergence of the source problems allow us
to assume that

Aη −A

η
un(x) dist.−−−→

∫
D

σn(x,y)dWy, (2.15)

weakly in space for some known kernel σn(x,y). Then we find that

λη
n − λn

η

dist.−−−→
∫

D2
un(x)σn(x,y)dWydx :=

∫
D

Λn(y)dWy as η → 0. (2.16)

The eigenvalue correctors are therefore Gaussian variables, which may conveniently
be written as a stochastic integral that is quadratic in the eigenvectors since σn(x,y)
is a linear functional of un. The correlations between different correctors may also be
obtained as

E
{λη

n − λn

η

λη
m − λm

η

}
η→0−−−→

∫
D

Λn(x)Λm(x)dx. (2.17)

By proper normalization, (un, uη
n) is equal to 1 plus an error term of order O(η2)

on average. We find the limiting behavior of the Fourier coefficients of uη
n − un and

obtain that for m 6= n:(uη
n − un

η
, um

)
dist.−−−→ 1

λn − λm

∫
D2

um(x)σn(x,y)dWydx. (2.18)

Note that the convergence holds for fixed values of n as η → 0. We do not have
convergence of the eigenelements for values of, say, n = ε−γ for γ > 0. The results
obtained on the spectral elements allow us to address the convergence of solutions to
several evolution equations; see Section 5.3.
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3. Correctors for Helmholtz equations. In this section, we analyze the con-
vergence properties of uε given by (2.7) assuming that the Green’s function of the
unperturbed problem (2.2) satisfies (2.4).

We define q̃ε(x, ω) = q(x
ε , ω), where q(x, ω) is a mean zero, strictly stationary,

process defined on an abstract probability space (Ω,F , P) [16]. We assume that q(x, ω)
has an integrable correlation function defined in (2.5). We also assume that q(x, ω)
is strongly mixing in the following sense. For two Borel sets A,B ⊂ Rd, we denote
by FA and FB the sub-σ algebras of F generated by the field q(x, ω) for x ∈ A and
x ∈ B, respectively. Then we assume the existence of a (ρ−) mixing coefficient ϕ(r)
such that ∣∣∣E{

(η − E{η})(ξ − E{ξ})
}(

E{η2}E{ξ2}
) 1

2

∣∣∣ ≤ ϕ
(
2 d(A,B)

)
(3.1)

for all (real-valued) square integrable random variables η on (Ω,FA, P) and ξ on
(Ω,FB , P). Here, d(A,B) is the Euclidean distance between the Borel sets A and B.
The multiplicative factor 2 in (3.1) is here only for convenience. Moreover, we assume
that ϕ(r) is bounded and decreasing. We will impose additional restrictions on the
process to ensure that the equation (2.7) admits a unique solution.

3.1. Existence of solutions and error estimates. In order for the above
equation to admit a unique solution, we need to ensure that (I−GqεGqε) is invertible
P−a.s. We modify the process q̃ε(x, ω) defined above on a set of measure of order εd

so that GqεGqε has spectral radius bounded by ρ < 1 P−a.s. To do so and to estimate
the source term Gf − GqεGf in (2.7), we need a few lemmas.

Lemma 3.1. Let q(x, ω) be strongly mixing so that (3.1) holds and such that
E{q6} < ∞. Then, we have:∣∣E{q(x1)q(x2)q(x3)q(x4)}

∣∣ . sup
{yk}k={xk}k

ϕ
1
2 (|y1 − y3|)ϕ

1
2 (|y2 − y4|)E{q6} 2

3 . (3.2)

We use the notation a . b when there is a positive constant C such that a ≤ Cb.
Proof. Let y1 and y2 be two points in {xk}1≤k≤4 such that d(y1,y2) ≥ d(xi,xj)

for all 1 ≤ i, j ≤ 4 and such that d(y1, {z3, z4}) ≤ d(y2, {z3, z4}), where {y1,y2, z3, z4}
= {xk}1≤k≤4. Let us call y3 a point in {z3, z4} closest to y1. We call y4 the remaining
point in {xk}1≤k≤4. We have, using (3.1) and E{q} = 0, that:

E :=
∣∣E{q(x1)q(x2)q(x3)q(x4)}

∣∣ . ϕ(2|y1 − y3|)(E{q2}) 1
2
(
E{(q(y2)q(y3)q(y4))2}

) 1
2 .

The last two terms are bounded by E{q6} 1
6 and E{q6} 1

2 , respectively, using Hölder’s
inequality. Because ϕ(r) is assumed to be decreasing, we deduce that:∣∣E{q(x1)q(x2)q(x3)q(x4)}

∣∣ . ϕ(|y1 − y3|)E{q6} 2
3 . (3.3)

If y4 is (one of) the closest point(s) to y2, then the same arguments show that∣∣E{q(x1)q(x2)q(x3)q(x4)}
∣∣ . ϕ(|y2 − y4|)E{q6} 2

3 . (3.4)

Otherwise, y3 is the closest point to y2, and we find that: E . ϕ(2|y2 − y3|)E{q6} 2
3 .

However, by construction, |y2 − y4| ≤ |y1 − y2| ≤ |y1 − y3|+ |y3 − y2| ≤ 2|y2 − y3|,
so (3.4) is still valid (this is where the factor 2 in (3.1) is used). Combining (3.3) and
(3.4), the result follows from a ∧ b ≤ (ab)

1
2 for a, b ≥ 0, where a ∧ b = min(a, b).
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Lemma 3.2. Let qε be a stationary process qε(x, ω) = q(x
ε , ω) with integrable

correlation function in (2.5) and f ∈ L2(D) a deterministic function. Then we have:

E{‖GqεGf‖2L2(D)} . εd‖f‖2L2(D). (3.5)

Let qε satisfy one of the following additional hypotheses:
[H1] There is a constant C such that |q(x, ω)| < C dx× P-a.s.
[H2] E{q6} < ∞ and q(x, ω) is strongly mixing with mixing coefficient in (3.1)

such that ϕ
1
2 (r) is bounded and rd−1ϕ

1
2 (r) is integrable on R+.

Then we find the following bound for the operator GqεGqε:

E{‖GqεGqε‖2L(L2(D))} . εd. (3.6)

Note that [H2] and r 7→ ϕ(r) decreasing impose that ϕ(r) = o(r−2d); see [4].
Proof [Lemma 3.2]. Here and below, we denote ‖ · ‖ = ‖ · ‖L2(D) and calculate

GqεGf(x) =
∫

D

( ∫
D

G(x,y)qε(y)G(y, z)dy
)
f(z)dz,

so that by the Cauchy-Schwarz inequality, we have

|GqεGf(x)|2 ≤ ‖f‖2
∫

D

( ∫
D

G(x,y)qε(y)G(y, z)dy
)2

dz.

By definition of the correlation function, we thus find that

E{‖GqεGf‖2} . ‖f‖2
∫

D4
G(x,y)G(x, ζ)R

(y − ζ

ε

)
G(y, z)G(ζ, z)dxdydζdz. (3.7)

Extending G(x,y) by 0 outside D ×D, we find in the Fourier domain that

E{‖GqεGf‖2} . ‖f‖2
∫

D2

∫
Rd

| ̂G(x, ·)G(z, ·)|2(p)εdR̂(εp)dpdxdz.

Here f̂(ξ) =
∫

Rd e−iξ·xf(x)dx is the Fourier transform of f(x). Since R(x) is in-
tegrable, then R̂(εp) (which is always non-negative by e.g. Bochner’s theorem) is
bounded by a constant we call R0 so that

E{‖GqεGf‖2} . ‖f‖2εdR0

∫
D3

G2(x,y)G2(z,y)dxdydz . ‖f‖2εdR0,

by the square-integrability assumption on G(x,y). This yields (3.5). Let us now
consider (3.6). We denote by ‖GqεGqε‖L the norm ‖GqεGqε‖L(L2(D)) and calculate
that

GqεGqεφ(x) =
∫

D

( ∫
D

G(x,y)qε(y)G(y, z)dy
)
qε(z)φ(z)dz.

Therefore,(
GqεGqεφ(x)

)2

≤
∫

D

( ∫
D

G(x,y)qε(y)G(y, z)qε(z)dy
)2

dz
∫

D

φ2(z)dz,

by Cauchy-Schwarz. This shows that

‖GqεGqε‖2L(ω) ≤
∫

D2

( ∫
D

G(x,y)qε(y)G(y, z)dy
)2

q2
ε(z)dzdx.
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When qε(z, ω) is bounded P−a.s., the above proof leading to (3.5) applies and we
obtain (3.6) under hypothesis [H1]. Using Lemma 3.1, we obtain that

E{qε(y)qε(ζ)q2
ε(z)} . ϕ

1
2

( |y − ζ|
ε

)
ϕ

1
2 (0) + ϕ

1
2

( |y − z|
ε

)
ϕ

1
2

( |z− ζ|
ε

)
.

Under hypothesis [H2], we thus obtain that

E{‖GqεGqε‖2L} .
∫

D4
G(x,y)G(x, ζ)ϕ

1
2

( |y − ζ|
ε

)
G(y, z)G(ζ, z)dydζdxdz

+
∫

D2

( ∫
D

G(x,y)ϕ
1
2

( |y − z|
ε

)
G(y, z)dy

)2

dxdz.

Because rd−1ϕ
1
2 (r) is integrable, then x 7→ ϕ

1
2 (|x|) is integrable as well and the bound

of the first term above under hypothesis [H2] is done as in (3.7) by replacing R(x) by
ϕ

1
2 (|x|). The second term is bounded, using the Cauchy-Schwarz inequality, by∫

D

( ∫
D

( ∫
D

G2(x,y)dx
)
G2(y, z)dy

)( ∫
D

ϕ
( |y − z|

ε

)
dy

)
dz . εd,

since x 7→ ϕ(|x|) is integrable, D is bounded, and (2.4) holds.
Applying the previous result to the process q̃ε(x, ω) = q(x

ε , ω), we obtain from
the Chebyshev inequality that

P(ω; ‖Gq̃εGq̃ε‖L > ρ) .
E{‖Gq̃εGq̃ε‖2L}

ρ2
. εd. (3.8)

On the set Ωε ⊂ Ω of measure P(Ωε) . εd where ‖Gq̃εGq̃ε‖L > ρ, we modify the
potential q̃ε and set it to e.g. 0. We thus construct

qε(x, ω) =
{

q̃ε(x, ω) ω ∈ Ω\Ωε,

0 ω ∈ Ωε.
(3.9)

Lemma 3.3. The results obtained for q̃ε(x, ω) = q(x
ε , ω) in Lemma 3.2 hold for

qε(x, ω) constructed in (3.9).
Proof. For instance,

E{‖GqεGf‖2} = E{χΩε(ω)‖GqεGf‖2}+ E{χΩ\Ωε(ω)‖GqεGf‖2}

= E{χΩ\Ωε(ω)‖Gq̃εGf‖2} ≤ E{‖Gq̃εGf‖2} . εd‖f‖2.

The same proof holds for the second bound (3.6).
We need to ensure that the oscillatory integrals studied in subsequent sections

are not significantly modified when q(x
ε , ω) is replaced by the new qε(x, ω). Let

Iε = ε−
d
2 ‖q(x

ε , ω)− qε(x, ω)‖. Then, under [H1] or [H2], we have

lim
ε→0

E
{
Iε

}
≡ lim

ε→0
E

{
χΩε(ω)

∥∥∥ 1

ε
d
2
q
(x

ε
, ω

)∥∥∥}
= 0. (3.10)

Indeed, by Hölder’s inequality, boundedness of D and stationarity of q, we have
E{Iε} . E{χp′

Ωε(ω))}
1
p′ ε−

d
2 E{|q|p}

1
p . εd( 1

2−
1
p )(E|q|p)

1
p , for 1

p + 1
p′ = 1. The result

follows when p > 2.
8



With the modified potential, (2.7) admits a unique solution P-a.s. and we find
that ‖uε‖(ω) . ‖Gf‖+ ‖GqεGf‖ P− a.s., where ‖ · ‖ denotes L2(D) norm. Using the
first result of Lemma 3.2, we find that

E{‖uε‖2} . ‖f‖2. (3.11)

Now we can address the behavior of the correctors. We find that

(I − GqεGqε)(uε − u0) = −GqεGf + GqεGqεGf. (3.12)

Using the results of Lemma 3.2, we obtain that
Lemma 3.4. Let uε be the solution to the heterogeneous problem (2.1) and u0 the

solution to the corresponding unperturbed problem. Then we have that(
E{‖uε − u0‖2}

) 1
2 . ε

d
2 ‖f‖. (3.13)

Note that writing uε = Aεf and u0 = A0f , with Aε and A0 the solution operators of
the heterogeneous and homogeneous equations, respectively, we have just shown that

E{‖Aε −A0‖2} . εd. (3.14)

Now GqεGqε(uε − u0) is bounded by εd in L1(Ω; L2(D)) by Cauchy-Schwarz:

E{‖GqεGqε(uε − u0)‖} ≤
(
E{‖GqεGqε‖2L}

) 1
2
(
E{‖uε − u0‖2}

) 1
2

. εd.

Lemma 3.5. Under hypothesis [H2] of Lemma 3.2, we find that

E{‖GqεGqεGf‖2} . ε2d 1+η
2+η ‖f‖2 � εd‖f‖2, (3.15)

where η is such that y 7→
( ∫

D

|G|2+η(x,y)dx
) 1

2+η

is uniformly bounded on D.

Proof. By Cauchy-Schwarz,

|GqεGqεGf(x)|2 ≤ ‖f‖2
∫

D

( ∫
D2

G(x,y)qε(y)G(y, z)qε(z)G(z, t)dydz
)2

dt.

So we want to estimate

A = E{
∫

D6
G(x,y)G(x, ζ)qε(y)qε(ζ)G(y, z)G(ζ, ξ)qε(z)qε(ξ)G(z, t)G(ξ, t)d[ξζyzxt]},

where d[x1 . . .xn] ≡ dx1 . . . dxn. We use (3.2) to obtain that A . A1 + A2 + A3:

A1 =
∫

D6
G(x,y)G(x, ζ)ϕ

1
2

( |y − ζ|
ε

)
G(y, z)G(ζ, ξ)ϕ

1
2

( |z− ξ|
ε

)
G(z, t)G(ξ, t)d[ξζyzxt],

A2 =
∫

D2

( ∫
D2

G(x,y)G(y, z)ϕ
1
2

( |y − z|
ε

)
G(z, t)dydz

)2

dtdx,

A3 =
∫

D6
G(x,y)G(ξ, t)G(x, ζ)G(z, t)ϕ

1
2

( |y − ξ|
ε

)
G(y, z)G(ζ, ξ)ϕ

1
2

( |ζ − z|
ε

)
d[ξζyzxt].

Denote Fx,t(y, z) = G(x,y)G(y, z)G(z, t). Then in the Fourier domain, we find that

A1 .
∫

D2

∫
R2d

ε2dϕ̂
1
2 (εp)ϕ̂

1
2 (εq)|F̂x,t(p,q)|2dpdqdxdt.
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Here ϕ̂
1
2 (p) is the Fourier transform of x 7→ ϕ

1
2 (|x|). Since ϕ̂

1
2 (εp) is bounded because

rd−1ϕ
1
2 (r) is integrable on R+, we deduce that

A1 . ε2d

∫
D4

G2(x,y)G2(y, z)G2(z, t)dxdydzdt . ε2d,

using the integrability condition imposed on G(x,y).
Using 2ab ≤ a2 + b2 for (a, b) = (G(x,y), G(x, ζ)) and (a, b) = (G(ξ, t), G(z, t))

successively, and integrating in t and x, we find that

A3 .
∫

D4
G(y, z)G(ζ, ξ)ϕ

1
2

( |y − ξ|
ε

)
ϕ

1
2

( |ζ − z|
ε

)
d[yζzξ],

thanks to (2.4). Now with (a, b) = (G(y, z), G(ζ, ξ)), we find that

A3 .
∫

D4
G2(y, z)ϕ

1
2

( |y − ξ|
ε

)
ϕ

1
2

( |ζ − z|
ε

)
d[yζzξ] . ε2d,

since ϕ
1
2 is integrable and G is square integrable on the bounded domain D.

Let us now consider the contribution A2. We write the squared integral as a
double integral over the variables (y, ζ, z, ξ) and dealing with the integration in x and
t using 2ab ≤ a2 + b2 as in the A3 contribution, obtain that

A2 .
∫

D4
G(y, ζ)ϕ

1
2

( |y − ζ|
ε

)
G(z, ξ)ϕ

1
2

( |z− ξ|
ε

)
d[yζzξ].

Using Hölder’s inequality, we obtain that

A2 .
(( ∫ ∞

0

ϕ
p′
2

(r

ε

)
rd−1dr

) 1
p′

( ∫
D2

Gp(y, z)dydz
) 1

p
)2

. ε2d 1+η
2+η ,

with p = 2 + η and p′ = 2+η
1+η since ϕ

1
2 (r)rd−1, whence ϕ

p′
2 (r)rd−1, is integrable.

The above lemma applies to the stationary process q̃ε(x, ω), and using the same
proof as in Lemma 3.3, for the modified process qε(x, ω) in (3.9). We have therefore
obtained that

E{‖uε − u + GqεGf‖} . εd 1+η
2+η . (3.16)

For what follows, it is useful to recast the above result as:
Proposition 3.6. Let q(x, ω) be constructed so that [H2] holds and let qε(x, ω)

be as defined in (3.9). Let uε be the solution to (2.7) and u0 = Gf . We assume that
u0 is continuous on D. Then we have the following result:

lim
ε→0

E
{∥∥∥uε − u0

ε
d
2

+
1

ε
d
2
Gq

( ·
ε
, ω

)
u0

∥∥∥}
= 0. (3.17)

Proof. Thanks to (3.10), we may replace qε(x, ω) by q̃ε(x, ω) = q(x
ε , ω) in (3.16)

up to a small error compared to ε
d
2 . Indeed,

E
{∥∥∥ 1

ε
d
2
G
(
q
( ·

ε
, ω

)
− qε(·, ω)

)
u0

∥∥∥}
= E

{
χΩε(ω)

∥∥∥ 1

ε
d
2
Gq

( ·
ε
, ω

)
u0

∥∥∥}
≤ ‖G‖‖u0‖L∞(D)E

{
χΩε(ω)

∥∥∥ 1

ε
d
2
q
( ·

ε
, ω

)∥∥∥}
� 1.

The rescaled corrector ε−
d
2 Gq( ·ε , ω)u0 does not converge strongly to its limit.

Rather, it should be interpreted as a stochastic oscillatory integral whose limiting
distribution is governed by the central limit theorem [16, 23].
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3.2. Oscillatory integrals and central limits. The convergence of oscillatory
integrals ε−

d
2 Gq( ·ε , ω)Gf to Gaussian processes is an application of the central limit

theorem. It is well known in one dimension of space and can be generalized in several
dimensions of space using the central limit theorem for discrete random variables as
it appears in [11]. The details of the convergence are presented in [4]; we merely
summarize here the main steps of the derivation.

We consider such limits first in the one-dimensional case and second for arbitrary
space dimensions. In one dimension of space, the Green’s function G(x, y) is typically
Lipschitz continuous and we will assume this regularity for the first part of this section.
Then, the leading term of the corrector ε−

1
2 (uε − u0), given by:

u1ε(x, ω) =
∫

D

−G(x, y)
1√
ε
q(

y

ε
, ω)u0(y)dy, (3.18)

is of class C(D) P-a.s. and we can seek convergence in that functional class. Since
u0 = Gf , it is continuous for f ∈ L2(D). Then we have:

Theorem 3.7. Let us assume that G(x, y) is Lipschitz continuous. Then, under
the conditions of Proposition 3.6,

u1ε(x, ω) dist.−−−→ −σ

∫
D

G(x, y)u0(y)dWy, as ε → 0, (3.19)

in the space of continuous paths C(D), where dWy(ω) is the standard Wiener measure
on (C(D),B(C(D)), P). As a consequence, the corrector to homogenization satisfies:

uε − u0√
ε

(x) dist.−−−→ −σ

∫
D

G(x, y)u0(y)dWy, as ε → 0, (3.20)

in the space of integrable paths L1(D).
Proof. To prove (3.19), we need to show tightness and convergence of the fi-

nite dimensional distributions of u1ε. Tightness of u1ε follows from the fact that
E{|u1ε(x, ω)|2} . 1, and that

E{|u1ε(x, ω)− u1ε(ξ, ω)|2} = E
( ∫

D

[G(x, y)−G(ξ, y)]
1√
ε
q(

y

ε
)u0(y)dy

)2

=
∫

D2
[G(x, y)−G(ξ, y)][G(x, ζ)−G(ξ, ζ)]

1
ε
R(

ζ − y

ε
)u0(y)u0(ζ)dydζ

. |x− ξ|2
∫

D2

1
ε
|R(

ζ − y

ε
)|u0(y)u0(ζ)dydζ . |x− ξ|2,

since the correlation function R(r) is integrable and u0 is bounded.
The convergence of the finite dimensional distributions is addressed as follows;

see [4] for more details. The finite-dimensional distribution (u1ε(xj , ω))1≤j≤n has the
characteristic function for k = (k1, . . . , kn):

Φε(k) = E{ei
∑n

j=1 kju1ε(xj ,ω)} = E{ei
∫

D
m(y) 1√

ε
qε(y)dy}, m(y) =

n∑
j=1

kjG(xj , y)u0(y).

It thus remains to show that

Imε :=
∫

D

m(y)
1√
ε
q(

y

ε
)dy

dist.−−−→ Im :=
∫

D

m(y)σdWy, ε → 0, (3.21)
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for arbitrary continuous moments m(y). This is done by approximating m(y) by
mh(y) constant on intervals of size of order h so that we have to analyze random
variables of the form Mεj = mhj

∫ jh

(j−1)h
1√
ε
q(y

ε )dy. We show that the variables Mεj

become independent in the limit ε → 0 and converge in distribution to mhjσN (0, h),
where N (0, h) is the centered Gaussian variable with variance h. Our assumptions on
ϕ allow us to verify the mixing properties required in [11] to apply the central limit
theorem to the discrete random variables qj =

∫ j+1

j
q(y)dy appearing in Mεj .

This concludes the proof of the convergence in distribution of u1ε in the space
of continuous paths C(D). It now remains to recall the convergence result (3.17) to
obtain (3.20) in the space of integrable paths.

In arbitrary dimension, the leading term in ε−
d
2 (uε − u0) is given by:

u1ε(x, ω) =
∫

D

−G(x,y)
1

ε
d
2
qε(y, ω)u0(y)dy. (3.22)

Because of the singularities of the Green’s function G(x,y) in dimension d ≥ 2, we
obtain convergence of the above corrector in distribution on (Ω,F , P) and weakly in
D. More precisely, let Mk(x), 1 ≤ k ≤ K, be sufficiently smooth functions such that

mk(y) = −
∫

D

Mk(x)G(x,y)u0(y)dx = −GMk(y)u0(y), 1 ≤ k ≤ K, (3.23)

are continuous functions (we thus assume that u0(x) is continuous as well). Let us
introduce the random variables

Ikε(ω) =
∫

D

mk(y)
1

ε
d
2
q
(y

ε
, ω

)
dy. (3.24)

Because of (3.10), the accumulation points of the integrals Ikε(ω) are not modified if
q(y

ε , ω) is replaced by qε(y, ω). Then we have:
Theorem 3.8. Under the above conditions and the hypotheses of Proposition

3.6, the random variables Ikε(ω) converge in distribution to the mean zero Gaussian
random variables Ik(ω) as ε → 0, where the correlation matrix is given by

Σjk = E{IjIk} = σ2

∫
D

mj(y)mk(y)dy. (3.25)

Here, we have defined:

σ2 =
∫

Rd

E{q(0)q(y)}dy, Ik(ω) =
∫

D

mk(y)σdWy, (3.26)

where dWy is standard multi-parameter Wiener process [33]. As a result, for M(x)
sufficiently smooth, we obtain that(uε − u0

ε
d
2

,M
)

dist.−−−→ −σ

∫
D

GM(y)Gf(y)dWy. (3.27)

Proof. The convergence in (3.27) is a direct consequence of the second equality
in (3.26) and the strong convergence (3.17) in Proposition 3.6. The second equality
in (3.26) is directly obtained from (3.25) since Ik(ω) is a (multivariate) Gaussian
variable. In order to prove (3.25), we use a methodology similar to that in the proof
of Theorem 3.7.
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The convergence in (3.21) is now multi-dimensional and we approximate m(y) by
mh(y), which is constant and equal to mhj on small hyper-cubes Cj of size h (and
volume hd); there are M ≈ h−d of them. Because ∂D is assumed to be sufficiently
smooth, it can be covered by MS ≈ h−d+1 cubes and we set mh(x) = 0 on those
cubes. We then define the random variables Mεj(ω) = mhj

∫
Cj

1

ε
d
2
q(y

ε , ω)dy, show
that they become asymptotically independent as ε → 0, and apply the central limit
theorem for the discrete random variables qj(ω) =

∫
j+[0,1]

q(y, ω)dy with j ∈ Zd and
[0,1] = [0, 1]d. Our assumptions on ϕ(r) allow us to show that the variables qj(ω) are
sufficiently mixing so that the central limit theorem in [11, 15] applies; see [4].

3.3. Larger fluctuations, random and periodic homogenization. The re-
sults stated in the preceding section generalize to larger fluctuations of the form:

q̃ε(x, ω) =
1

εαd
q
(x

ε
, ω

)
, (3.28)

with qε the same modification of q̃ε as before. The corrector −GqεGf is now of order
εd( 1

2−α) for 0 ≤ α < 1
2 . The next-order corrector, given by GqεGqεGf in (3.12), is

bounded in L1(Ω × D) by εd( 1+η
2+η−2α) according to Lemma 3.5. The order of this

term is smaller than the order of the leading corrector εd( 1
2−α) again provided that

0 ≤ α < η
2(2+η) , which converges to 1

2 for d = 1, 2 as η → ∞ and converges to 1
6

for d = 3 as η → 1. In dimension d = 1, 2, we can infer from these results that
ε−d( 1

2−α)(uε − u0) converges in distribution to the limits obtained in the preceding
sections as ε → 0 provided that 0 ≤ α < 1

2 . The proof presented in this paper extends
only to the values 0 ≤ α < 1

4 since it is based on imposing that the spectral radius of
GqεGqε be sufficiently small using (3.6) in Lemma 3.2. For (3.28), this translates into
E{‖GqεGqε‖2L(L2(D))} . εd(1−4α). We then verify that all results leading to Proposi-

tion 3.6 generalize when 0 < α < 1
4 to yield (3.17) with ε

d
2 replaced by εd( 1

2−α). Note
that in the limiting case α = 1

2 , uε does not converge to the deterministic solution u0

as is shown in the temporal one-dimensional case in [43].
Let P (x,D) = −∇·a(x)∇+ q0(x). The results on the corrector uε−u0 obtained

in Theorems 3.7 and 3.8 are valid for 1 ≤ d ≤ 3. If we admit the expansion in
(2.7) that uε − u0 = −Gqεu0 plus smaller order terms, then the results obtained in
Theorem 3.8 show that uε − u0 converges weakly in space and in distribution to a
process of order O(ε

d
2 ) for all dimensions. The theory of this paper does not allow

us to justify (2.7) when d ≥ 4 because the Green’s functions are no longer square
integrable. Corrections of order ε2 thus correspond to a transition that we also find
in the periodic case:

−∆uε + q
(x

ε

)
uε = f in D, (3.29)

with uε = 0 on ∂D, defined on a smooth open, bounded, domain D ⊂ Rd, where q(y)
is [0, 1]d-periodic. Following [8], we introduce the fast scale y = x

ε and introduce a
decomposition uε = uε(x, x

ε ) = u0 + εu1 + ε2u2. Replacing ∇x by 1
ε∇y +∇x in (3.29)

and equating like powers of ε yields three equations; see [4] for additional details. The
first equation shows that u0 = u0(x). We can choose u1(x) = 0 in the second equation.
The third equation −∆yu2 −∆xu0 + q(y)u0 = f(x), admits a solution provided that
−∆xu0 + 〈q〉u0 = f(x), in D with u0 = 0 on ∂D. Here, 〈q〉 is the average of q
on [0, 1]d, which we assume is sufficiently large so that the above equation admits
a unique solution. We recast the above equation as u0 = GDf . The corrector u2
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thus solves −∆yu2 =
(
〈q〉 − q(y)

)
u0(x), and by the Fredholm alternative is uniquely

defined along with the constraint 〈u2〉 = 0. We denote the solution operator of the
above cell problem as G# so that u2(x,y) = −G#(q − 〈q〉)(y)Gf(x). Thus formally:

uε(x) = Gf(x)− ε2G#(q − 〈q〉)
(x

ε

)
Gf(x) + l.o.t. (3.30)

We thus observe that the corrector u2ε(x) := u2(x, x
ε ) is of order O(ε2) in the L2

sense, say. In the sense of distributions, however, integrations by parts show that the
corrector may be of order o(εm) for all integer m in the sense that the oscillatory
integral

∫
D

M(x)u2ε(x)dx � εm for all m when M(x)u0(x) ∈ C∞0 (D).
A similar behavior occurs for the random integral

v1ε(x, ω) =
∫

D

−G(x,y)q
(y

ε
, ω

)
u0(y)dy, (3.31)

which behaves like ε
d
2 u1ε defined in (3.22) thanks to (3.10). Theorem 3.8 shows

that (v1ε,M(x)) is of order O(ε
d
2 ) for M(x) and u0(x) sufficiently smooth and that

ε−
d
2 (v1ε,M(x)) converges in distribution to a Gaussian random variable. This result,

however, does not hold in the L2(D)−sense for d ≥ 4 when G(x,y) is the fundamental
solution of the Helmholtz equation −∆ + q0(x) on D. Indeed, we prove that:

Proposition 3.9. For u0(x) and R̂(ξ) Hölder continuous, we have:

E{v2
1ε(x, ω)} ∼



εdR̂(0)
∫

D

G2(x,y)u2
0(y)dy 1 ≤ d ≤ 3

ε4| ln ε| (2π)4R̂(0)
c4

u2
0(x) d = 4

ε4u2
0(x)(2π)d

∫
Rd

R̂(ξ)
|ξ|4

dξ d ≥ 5.

(3.32)

Here aε ∼ bε means aε = bε(1 + o(1)).
Proof. We calculate:

E{v2
1ε(x, ω)} =

∫
D2

G(x,y)G(x, z)R
(y − z

ε

)
u0(y)u0(z)dydz. (3.33)

Extending G(x, ·) by 0 outside of D, by the Parseval equality the above term is equal to
(2π)d

∫
R2d |Fy→ξ(G(x,y)u0(y))|2(ξ)εdR̂(εξ)dξ, where Fx→ξ is the Fourier transform

from x to ξ. In dimension 1 ≤ d ≤ 3, since R̂(εξ) → R̂(0) pointwise, the Lebesgue
dominated convergence theorem yields the result. In dimension d ≥ 4, however, the
Green function is no longer square integrable and the integral is larger than εd.

For d ≥ 4, we replace G(x,y) by cd|x − y|2−d where cd is the measure of the
unit sphere Sd−1. The difference G(x,y) − cd|x − y|2−d is a function bounded by
C|x − y|3−d, which yields a smaller contribution to E{v2

1ε}. We also replace u0(y)
by u0(x), up to an error bounded by |x − y|α as soon as u0(x) is of class C0,α(D).
Similarly, we replace u0(z) by u0(x) and thus obtain that

E{v2
1ε(x, ω)} ∼ u2

0(x)
∫

D2

1
cd|x− y|d−2

1
cd|x− z|d−2

R
(y − z

ε

)
dydz.

Let α > 0 and B(x, α) the ball of center x and radius α so that B(x, α) ⊂ D. Because
all singularities occur when y and z are in the vicinity of x, we use the proof of the
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case 1 ≤ d ≤ 3 to show that up to a term of order εd, we can replace D by B(x, α):

E{v2
1ε(x, ω)} ∼ u2

0(x)
∫

B2(0,α)

1
cd|y|d−2

1
cd|z|d−2

R
(y − z

ε

)
dydz. (3.34)

Now for d ≥ 5, using the dominated convergence theorem, we can replace B(0, α) by
Rd because the Green function is square integrable at infinity, whence

E{v2
1ε(x, ω)} ∼ u2

0(x)
∫

R2d

1
cd|y|d−2

1
cd|z|d−2

R
(y − z

ε

)
dydz.

This, however, by the Parseval equality, is equal to

E{v2
1ε(x, ω)} ∼ u2

0(x)(2π)d

∫
Rd

1
|ξ|4

εdR̂(εξ)dξ = u2
0(x)(2π)d

∫
Rd

1
|ξ|4

ε4R̂(ξ)dξ,

since the Fourier transform of the fundamental solution of the Laplacian is |ξ|−2.
When d = 4, we come back to (3.34), and replace one of the integrals (in z) on

B(0, α) by an integral on Rd using again the dominated convergence theorem and the
other integral by an integration on Bα

ε = B(0, α)∩B(0, ε), with an error that we can
verify is of order O(ε4). This yields the term∫

B(0,α)×Rd

1
c2
4|y|2|z|2

R
(y − z

ε

)
dydz =

∫
Bα

ε ×Rd

(2π)4ε2

c4|y|2|ξ|2
R̂(ξ)ei ξ·y

ε dξdy + O(ε4)

=
∫

B
α
ε
1 ×Rd

(2πε)4

c4|y|2|ξ|2
R̂(ξ)eiξ·ydξdy + O(ε4) = R̂(0)(2πε)4

∫
B

α
ε
1

1
c2
4|y|4

dy + O(ε4)

=
R̂(0)(2πε)4

c4

∫ α
ε

1

|y|3

|y|4
d|y|+ O(ε4) =

R̂(0)(2πε)4

c4
| ln ε|+ O(ε4).

Here, we have assumed that |R̂(ξ)− R̂(0)| was bounded by C|ξ|β for some β > 0.
In all dimensions, ε−

d
2 v1ε(x, ω) converges (weakly and in distribution) to a limit

u1(x, ω) = −
∫

D
G(x,y)u0(y)dWy. In dimension 1 ≤ d ≤ 3, we have proved that u1

was the limit of ε−
d
2 (uε−u0). The above calculation shows that the limit u1 captures

all the energy in the oscillations of the homogenization corrector ε−
d
2 v1ε in the sense

that ε−dE{‖v1ε‖2L2(D)} converges to E{‖u1‖2L2(D)}.
In higher dimension d ≥ 4, as in the case of homogenization in periodic media,

most of the energy is lost while passing to the (weak) limit. While the energy of the
asymptotic corrector ε

d
2 u1 is ε

d
2 (E{‖u1‖2L2(D)}

1
2 = O(ε

d
2 ), the energy of the random

corrector v1ε (and that of ε
d
2 u1ε) is (E{‖v1ε‖2L2(D)}

1
2 , which is of order O(ε2) for d ≥ 5

and of order O(ε2| ln ε| 12 ) for d = 4. Most of the energy of the random correctors to
homogenization is lost when passing from u1ε or ε−

d
2 v1ε to its weak limit u1 because

u1ε remains highly oscillatory in dimension d ≥ 4.

4. Correctors for one-dimensional elliptic problems. In this section, we
consider the homogenization of the one-dimensional elliptic problem (2.9) presented
in Section 2. We assume that the random coefficients are jointly strongly mixing in
the sense of (3.1), where for two Borel sets A and B in Rd, we denote by FA and
FB the σ-algebras generated by the random fields a(x, ω), q(x, ω), and ρ(x, ω) for
x ∈ A and x ∈ B, respectively. We still assume that the ρ-mixing coefficient ϕ(r) is
integrable and such that ϕ

1
2 is also integrable.
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In the case where qε = 0 and ρε = 0, the corrector to the homogenization limit
u0 has been considered in [13]. For general sufficiently mixing coefficients aε with
positive variance σ2 = 2

∫∞
0

E{a(0)a(t)}dt > 0, we obtain that uε − u0 is of order
√

ε
and converges in distribution to a Gaussian process. This section aims at generalizing
the result to (2.9) using the results of the preceding section and the following change
of variables in harmonic coordinates [34]:

zε(x) = a∗
∫ x

0

1
aε(t)

dt,
dzε

dx
=

a∗

aε(x)
, a∗ =

1
E{a−1}

, (4.1)

and ũε(z) = uε(x). Note that E{zε(x)} = x. Then we find, with x = x(zε), that

−(a∗)2
d2

dz2
ũε + a∗q0ũε + aε[(1− a−1

ε a∗)q0 + qε]ũε = aερεf, 0 < z < zε(1)

with ũε(0) = ũε(zε(1)) = 0. Let us introduce the following Green’s function

−a∗
d2

dx2
G(x, y;L) + q0G(x, y;L) = δ(x− y) (4.2)

with G(0, y;L) = G(L, y;L) = 0 and set G(x, y) = G(x, y; 1). With q̃ε(x, ω) defined
in (2.10), we find that

ũε(z) =
∫ zε(1)

0

G(z, y; zε(1))(ρεf − q̃εũε)(x(y))
aε

a∗
(x(y))dy,

uε(x) =
∫ 1

0

G(zε(x), zε(y); zε(1))(ρεf − q̃εuε)(y)dy.

Upon defining Gεu(x) =
∫ 1

0
G(zε(x), zε(y); zε(1))u(y)dy, we obtain that:

uε = Gερεf − Gεq̃εGερεf + Gεq̃εGεq̃εuε. (4.3)

Since a0a
∗x ≤ zε(x, ω) ≤ a∗a−1

0 x P−a.s., the Green’s operator Gε is bounded P−a.s.
and the results of Lemma 3.2 generalize to the case where the operator Gε replaces
G. As in (3.8), we thus modify q̃ε (i.e. we modify aε and qε) on a set of measure
O(ε) so that ‖Gεq̃εGεq̃ε‖L ≤ r < 1 and obtain that (3.10) holds. Let us introduce the
notation:

ρε = ρ̄ + δρε, ρ̄ = E{ρ}, Gε = G + δGε, G = E{Gε}, u0 = Gρ̄f. (4.4)

δzε(x) = zε(x)− x =
∫ x

0

b
( t

ε

)
dt, b(t, ω) =

a∗

a(t, ω)
− 1. (4.5)

We first obtain the
Lemma 4.1. The operator Gε may be decomposed as Gε = G + G1ε +Rε, with

G1εf(x) =
∫ 1

0

(
δzε(x)

∂

∂x
+ δzε(y)

∂

∂y
+ δzε(1)

∂

∂L

)
G(x, y; 1)f(y)dy, (4.6)

and Gf(x) =
∫ 1

0
G(x, y)f(y)dy. We have the following estimates:

E{‖G1ε‖2}+ E{‖Rε‖}+ E{|δzε(x)δzε(y)|} . ε, 0 ≤ x, y ≤ 1. (4.7)

16



Proof. We first use the fact that E{|δzε(x)δzε(y)|} ≤
(
E{(δzε(x)δzε(y))2}

) 1
2 .

Denoting by bε(x, ω) = b( t
ε , ω), we have to show that

E
{∫ x

0

∫ x

0

∫ y

0

∫ y

0

bε(z1)bε(z2)bε(z3)bε(z4)d[z1z2z3z4]
}

. ε2.

Now using the mixing property of the mean zero field bε and the integrability of ϕ
1
2 (r),

we obtain the result using (3.2) as in the proof of Lemma 3.5. The integral defining
Gε is split into two contributions, according as y < x or y > x. On these two intervals,
G(x, y;L) is twice differentiable, and we thus have the expansion

G(zε(x), zε(y); zε(1)) = G(x, y; 1)+
(
δzε(x)

∂

∂x
+δzε(y)

∂

∂y
+δzε(1)

∂

∂L

)
G(x, y; 1)+rε,

where the Lagrange remainder rε = rε(x, zε(x), y, zε(y), zε(1)) is quadratic in the
variables (δzε(x), δzε(y), δzε(1)) and involves second-order derivatives of G(x, y; 1) at
points (ξ, ζ, L) between (x, y; 1) and (zε(x), zε(y); zε(1)).

From (4.7) and the fact that second-order derivatives of G are P−a.s. uniformly
bounded on each interval y < x and y > x (we use here again the fact that a0a

∗x ≤
zε(x, ω) ≤ a∗a−1

0 x P−a.s.), we thus obtain that E{|rε(.)|} . ε. This also shows the
bound for E{‖Rε‖} in (4.7). The bound for E{‖G1ε‖2} is obtained similarly.

Because we have assumed that q̃ε and ρε were bounded uniformly, we can replace
Gε by G + G1ε in (4.3) up to an error of order ε in L1(Ω; L2(D)). The case of qε and
ρε bounded on average would require us to address their correlation with rε defined
in the proof of the preceding lemma. This is not considered here. We recast (4.3) as

uε − u0 = (Gερε − Gρ̄)f − Gεq̃εGερεf + Gεq̃εGεq̃ε(uε − u0) + Gεq̃εGεq̃εGf. (4.8)

Because G(zε(x), zε(y); zε(1)) and ρε are uniformly bounded, the proof of Lemma 3.2
generalizes to give us that

E{‖Gεq̃εGεq̃ε‖2}+ E{‖Gεq̃εGερεf‖2}+ E{‖(Gερε − Gρ̄)f‖2} . ε. (4.9)

So far, using ‖Gεq̃εGεq̃ε‖L ≤ r < 1, we have thus obtained the following result:
Lemma 4.2. Let uε be the solution to the heterogeneous problem (2.9) and u0 =

ρ̄Gf the solution to the corresponding homogenized problem. Then we have that(
E{‖uε − u0‖2}

) 1
2 .

√
ε‖f‖. (4.10)

The estimate (3.14) with d = 1 is thus verified in the context of the elliptic equation
(2.9). As a consequence, we find that E{‖uε − u0‖2} . ε so that by Cauchy-Schwarz
and (4.9), E{‖Gεq̃εGεq̃ε(uε − u0)‖} . ε. It remains to exhibit the term of order

√
ε in

uε − u0. Let us introduce the decomposition

uε − u0 =
[
G1ερ̄ + Gδρε − Gq̃εGρ̄

]
f + sε, (4.11)

sε = (δGεδρε +Rερ̄)f − (Gεq̃εGερε − Gq̃εGρ̄)f + Gεq̃εGεq̃ε(uε − u0) + Gεq̃εGεq̃εGf.

Lemma 4.3. Let f ∈ L2(D). We have

E{‖sε‖} . ε‖f‖. (4.12)
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Proof. Because G(zε(x), zε(y); zε(1)) is uniformly bounded, the proof of Lemma
3.5 generalizes to show that E{‖Gεq̃εGεq̃εGf‖2} . ε2‖f‖2. We already know that
E{‖Rε‖} . ε. It remains to address the terms I1 = G1εδρεf , I2 = Gq̃εG1ερεf ,
I3 = G1εq̃εGρεf , and I4 = Gq̃εGδρεf . Because ρε is uniformly bounded P−a.s., the
first three terms are handled in a similar way. Let us consider E{I2

1}, which is bounded
by the sum of three terms of the form:

E{
∫

D3
δzε(v1(x, y))H(x, y)δzε(v2(x, ζ))H(x, ζ)δρε(y)δρε(ζ)f(y)f(ζ)dxdydζ},

where vk(x, y) is either x, y, or 1 for k = 1, 2, and H(x, y) is a uniformly bounded
function. Using the definition of δzε, we recast the above integral as∫

D3

∫ v1

0

∫ v2

0

E{bε(t1)bε(t2)δρε(y)δρε(ζ)}dt1dt2H(x, y)H(x, ζ)f(y)f(ζ)dxdydζ.

Using (3.2), we see that the above integral is bounded by terms of the form∫
D3

∫ v1

0

∫ v2

0

ϕ
1
2

(u1 − u2

ε

)
ϕ

1
2

(u3 − u4

ε

)
dt1dt2|H(x, y)H(x, ζ)||f(y)||f(ζ)|dxdydζ,

where (u1, u2, u3, u4) = (u1, u2, u3, u4)(t1, t2, y, ζ) is an arbitrary (fixed) permutation
of (t1, t2, y, ζ). Because ϕ(r) is integrable, the Cauchy-Schwarz inequality shows that
the above term is . ε2‖f‖2. The term E{I2

4} is given by

E
{∫

D4
G(x, y)G(x, ζ)q̃ε(y)q̃ε(ζ)G(y, z)G(ζ, ξ)δρε(z)δρε(ξ)f(z)f(ξ)d[xyzζξ]

}
.

Since G(x, y) is uniformly bounded on D, we again use (3.2) as above to obtain a
bound of the form ε2‖f‖2.

It remains to analyze the convergence of the contribution [G1ερ̄+Gδρε−Gq̃εGρ̄]f .
As in (3.18), we define u1ε(x, ω) = 1√

ε

[
G1ερ̄ +Gδρε−Gq̃εGρ̄

]
f(x), which we recast as

u1ε(x, ω) =
1√
ε

∫ 1

0

[
b
( t

ε

)
Hb(x, t) + δρ

( t

ε

)
Hρ(x, t)− q̃

( t

ε

)
Hq(x, t)

]
dt, (4.13)

with the kernels defined in (2.13). We have the following result:
Theorem 4.4. Let f ∈ L∞(0, 1). The process u1ε(x, ω) converges weakly and in

distribution in the space of continuous paths C(D) to the limit u1(x, ω) given by

u1(x, ω) =
∫ 1

0

σ(x, t)dWt, (4.14)

where Wt is standard Brownian motion and σ(x, t) is defined in (2.12).
The corrector to homogenization thus satisfies that:

uε − u0√
ε

(x) dist.−−−→ u1(x, ω), as ε → 0, (4.15)

in the space of integrable paths L1(D).
Note that we may recast u1ε(x, ω) as u1ε(x, ω) =

∑3
k=1

1√
ε

∫
D

pk( t
ε )Hk(x, t)dt,

where the pk are mean zero processes and the kernels Hk(x, t) are given in (2.13).
The corrector in (4.14) may then be rewritten as

u1(x) =
3∑

k=1

∫
D

σk(x, t)dW j
t , (4.16)
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with three correlated standard Brownian motions such that dW j
t dW k

t = ρjkdt, where:

σk(x, t) = Hk(x, t)
√

2
( ∫ ∞

0

E{pk(0)pk(τ)}dτ
) 1

2

ρjk =

∫ ∞

0

E{pj(0)pk(τ) + pk(0)pj(τ)}dτ

2
( ∫ ∞

0

E{pj(0)pj(τ)}dτ

∫ ∞

0

E{pk(0)pk(τ)}dτ}
) 1

2
.

(4.17)

That (4.14) and (4.16) are equivalent comes from the straightforward calculation that
both processes are mean zero Gaussian processes with the same correlation function.
The new equation (4.16) shows the linearity of u1(x) with respect to f(x).

Proof. We recast u1ε(x, ω) as

u1ε(x, ω) =
∑

k

1√
ε

∫
D

qk(
t

ε
)Hk(x, t)dt,

with a decomposition similar to but different from (4.13) above and where the qk are
mean-zero processes. We verify that we can choose the terms Hk(x, t) in the above
decomposition so that all of them are uniformly (in t) Lipschitz in x, except for one
term, say H1(x, t), which is of the form

H1(x, t) = χx(t)L1(x, t), L1(x, t) =
∫ 1

0

∂

∂x
G(x, y; 1)ρ̄f(y)dy,

where L1(x, t) is uniformly (in t) Lipschitz in x. This results from the fact that
G(x, y; 1) is Lipschitz continuous and that its partial derivatives are bounded and
piecewise Lipschitz continuous; we leave the tedious details to the reader.

Because of the presence of the term H1(x, t) in the above expression, it is not
sufficient to consider second-order moments of u1ε to show tightness as in the proof
of Theorem 3.7. Rather, we consider fourth-order moments as follows:

E{|u1ε(x, ω)− u1ε(ξ, ω)|4} =
1
ε2

∑
k1,k2,k3,k4

∫
D4

E{qk1(
t1
ε

)qk2(
t2
ε

)qk3(
t3
ε

)qk4(
t4
ε

)}×

4∏
m=1

(Hkm
(x, tm)−Hkm

(ξ, tm))dt1dt2dt3dt4.

Using the mixing condition of the processes qk and Lemma 3.1 (where each q in (3.2)
may be replaced by qk without any change in the result), we obtain that E{|u1ε(x, ω)−
u1ε(ξ, ω)|4} is bounded by a sum of terms of the form

1
ε2

∫
D4

ϕ
1
2 (

t2 − t1
ε

)ϕ
1
2 (

t4 − t3
ε

)
4∏

m=1

(Hkm
(x, tm)−Hkm

(ξ, tm))dt1dt2dt3dt4,

whence is bounded by terms of the form(1
ε

∫
D2

ϕ
1
2 (

t2 − t1
ε

)
2∏

m=1

(Hkm
(x, tm)−Hkm

(ξ, tm))dt1dt2

)2

.

When all the kernels Hkm are Lipschitz continuous, then the above term is of order
|x − ξ|4. The largest contribution is obtained when k1 = k2 = 1 because H1(x, t) is
not uniformly Lipschitz continuous. We concentrate on that contribution and recast

H1(x, t)−H1(ξ, t) = (χx(t)− χξ(t))L1(x, t) + χξ(t)(L1(x, t)− L1(ξ, t)).
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Again, the largest contribution to the fourth moment of u1ε comes from the term
(χx(t) − χξ(t))L1(x, t) since L1(x, t) is Lipschitz continuous. Assuming that x ≥ ξ
without loss of generality, we calculate that∫

D2
(χx(t)− χξ(t))L1(x, t)(χξ(s)− χξ(s))L1(ξ, s)

1
ε
ϕ

1
2 (

t− s

ε
)dtds

=
∫ x

ξ

∫ x

ξ

L1(x, t)L1(ξ, s)
1
ε
ϕ

1
2 (

t− s

ε
)dtds . (x− ξ),

since ϕ
1
2 is integrable. Note that this term is not of order |ξ − x|2. Nonetheless,

we have shown that E{|u1ε(x, ω) − u1ε(ξ, ω)|4} . |ξ − x|2, so that we can apply the
Kolmogorov criterion in [9] and obtain tightness of u1ε(x, ω) as a process with values
in the space of continuous functions C(D).

The finite-dimensional distributions are treated as in the proof of Theorem 3.7
and are replaced by the analysis of random integrals of the form:

1√
ε

∫ 1

0

[
b
( t

ε

)
mb(t) + δρ

( t

ε

)
mρ(t) + q̃

( t

ε

)
mq(t)

]
dt.

The functions m are continuous and can be approximated by mh constant on intervals
of size h so that we end up with M independent (in the limit ε → 0) variables of the
form:

√
h√
N

∑N
j=1 mbhbj+mρhδρj+mqhq̃j . It remains to apply the central limit theorem

as in the proof of Theorem 3.7. The above random variable converges in distribution
to

N (0, hσ2), σ2 = 2
∫ ∞

0

E{(mbhb + mρhδρ + mqhq̃)(0)(mbhb + mρhδρ + mqhq̃)(t)}dt.

This concludes our analysis of the convergence in distribution of u1ε to its limit in the
space of continuous paths C(D). The convergence of uε − u0 follows from the bound
(4.12).

5. Correctors for spectral problems. For ω ∈ Ω, let Aη(ω) be a sequence
of bounded (uniformly in ω P−a.s. and in η > 0), compact, self-adjoint operators,
converging to a deterministic, compact, self-adjoint operator A as η → 0 in the sense
that the following error estimate holds:

E‖Aη(ω)−A‖p . ηp, for some 1 ≤ p < ∞, (5.1)

where ‖Aη(ω)−A‖ is the L2(D) norm and D is an open subset of Rd.
The operators A and P−a.s. Aη(ω) admit the spectral decompositions (λn, un)

and (λη
n, uη

n), where the real-valued eigenvalues are ordered in decreasing order of their
absolute values and counted mn times, where mn is their multiplicity.

For λn, let µn be (one of) the closest eigenvalue of A that is different from λn.
Let us then define the distance:

dn =
|λn − µn|

2
. (5.2)

Following [31], we analyze the spectrum of Aη in the vicinity of λn. Let Γ be the
circle of center λn and radius dn in the complex plane and let R(ζ, A) = (A− ζ)−1 be
the resolvent of A defined for ζ 6∈ σ(A), the spectrum of A. The projection operator
onto the spectral components of B inside the curve Γ is defined by

Pn[B] = − 1
2πi

∫
Γ

R(ζ, B)dζ. (5.3)
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Note that for all ζ ∈ Γ, we have that R(ζ, A)Pn[A] = (λn − ζ)−1. We have:
Proposition 5.1. Let Aη and A be the operators described above and let λn be

fixed. Then, for η sufficiently small with respect to dn, we can choose mn eigenvalues
λη

n of Aη in the vicinity of λn so that the following estimate holds:

E{|λn − λη
n|p}+ E{|‖uη

n − un‖p} .
ηp

dp
n
∧ 1, (5.4)

for a suitable labeling of the eigenvectors uη
n of Aη associated to the eigenvalues λη

n.
Proof. It follows from [31, Theorem IV.3.18] that for those realizations ω such that

‖Aη(ω)−A‖ < dn, then there are exactly mn eigenvalues of Aη in the dn−vicinity of
Γ. Since this also holds for every λm such that dm > dn, we can index the eigenvalues
of Aη as the eigenvalues of A. Moreover, |λη

n(ω) − λn| ≤ ‖Aη(ω) − A‖. For those
realizations ω such that ‖Aη(ω) − A‖ ≥ dn, we choose mn eigenvalues of Aη(ω)
arbitrarily among the eigenvalues that have not been chosen in the dm−vicinity of
λm for |λm| > |λn|. For all realizations, we thus obtain that

|λη
n(ω)− λn| .

‖Aη(ω)−A‖
dn

.

It remains to take the pth power and average the above expression to obtain the first
inequality of the proposition.

In order for the eigenvectors uη
n and un to be close, we need to restrict the size of

η further. To make sure the eigenvectors are sufficiently close, we need to ensure that

Pn[Aη]−Pn[A] =
−1
2πi

∫
Γ

[R(ζ, Aη)−R(ζ, A)]dζ =
1

2πi

∫
Γ

R(ζ, Aη)(Aη−A)R(ζ, A)dζ,

is sufficiently small. On the circle Γ and for ‖A−Aη‖ < dn, we verify that

sup
ζ∈Γ

‖R(ζ, A)‖ =
1
dn

, sup
ζ∈Γ

‖R(ζ, Aη)‖ ≤ 1
dn − ‖A−Aη‖

,

by construction of dn and by using R−1(ζ, Aη) = R−1(ζ, A) + (Aη − A) and the
triangle inequality ‖R−1(ζ, Aη)‖ ≥ ‖R−1(ζ, A)‖ − ‖Aη −A‖ ≥ dn − ‖Aη −A‖. Upon
integrating the expression for Pn[Aη]− Pn[A] on Γ, we find for 2‖Aη −A‖ < dn that

ρ := ‖Pn[Aη]− Pn[A]‖ ≤ ‖Aη −A‖
dn − ‖Aη −A‖

≤ 2
dn
‖Aη −A‖ < 1.

For self-adjoint operators A and Aη, the above bound on the distance ρ between
the eigenspaces is sufficient to characterize the distance between the corresponding
eigenvectors. We follow [31, I.4.6 & II.4.2] and construct the unitary operator

Uη
n =

(
I − (Pn[Aη]− Pn[A])2

)− 1
2
(
Pn[Aη]Pn[A] + (I − Pn[Aη])(I − Pn[A])

)
. (5.5)

Let un,k, 1 ≤ k ≤ mn be the eigenvectors associated to λn, n ≥ 1. The eigenspace
associated to λη

n admits for an orthonormal basis the eigenvectors defined by [31]:

uη
n,k = Uη

nun,k, 1 ≤ k ≤ mn. (5.6)

The relation (5.5) may be recast as

Uη
n = (I −Rη

n)
(
I + Pn[Aη](Pn[Aη]− Pn[A]) + (Pn[Aη]− Pn[A])Pn[Aη]

)
,

21



where ‖Rη
n‖ . ρ2. This shows that ‖Uη

n − I‖ . ρ and ‖uη
n,k − un,k‖ . ρ . d−1

n ‖Aη −
A‖, 1 ≤ k ≤ mn, whenever d−1

n ‖Aη−A‖ < µ for µ sufficiently small. When d−1
n ‖Aη−

A‖ ≥ µ, we find that ‖un,k − uη
n,k‖ . 2µ‖Aη(ω)−A‖/dn, where the vectors uη

n,k are
constructed as an arbitrary orthonormal basis of the eigenspace associated to λη

n.
Upon taking pth power and ensemble averaging, we obtain (5.4).

5.1. Correctors for eigenvalues and eigenvectors. Let (λn, un) be a solu-
tion of Aun = λnun and let λη

n and uη
n be the solution of Aηuη

n = λη
nuη

n defined in
Proposition 5.1. We assume that (5.1) holds with p = 2. We calculate that

λη
n − λn

η
=

(
un,

Aη −A

η
un

)
+

1
η

(
uη

n − un,
(
(Aη − λη

n)− (A− λn)
)
un

)
.

The last term, which we denote by rη
n(ω) is bounded by O(η) in L1(Ω) using the

results of Proposition 5.1 with p = 2 and the Cauchy-Schwarz inequality. Thus, rη
n(ω)

converges to 0 in probability. Let us assume that the eigenvectors are defined on a
domain D ⊂ Rd and that for a smooth function M(x), we have:(

M(x),
Aη −A

η
un(x)

)
dist.−−−→

∫
D2

M(x)σn(x,y)dWydx as η → 0. (5.7)

Using this result, and provided that the eigenvectors un(x) are sufficiently smooth,
we obtain that

λη
n − λn

η

dist.−−−→
∫

D2
un(x)σn(x,y)dWydx :=

∫
D

Λn(y)dWy as η → 0. (5.8)

The eigenvalue correctors are therefore Gaussian variables, which may conveniently
be written as a stochastic integral that is quadratic in the eigenvectors since σn(x,y)
is a linear functional of un. The correlations between different correctors may also
obviously be obtained as

E
{λη

n − λn

η

λη
m − λm

η

}
η→0−−−→

∫
D

Λn(x)Λm(x)dx. (5.9)

Let us now turn to the corrector for the eigenvectors. Note that ‖un − uη
n‖2 =

2(1 − (un, uη
n)), so that (un, uη

n) is equal to 1 plus an error term of order O(η2) on
average. The construction of the eigenvectors in (5.6) shows that un − uη

n is of order
O(η2) in the whole eigenspace associated to the eigenvalue λn. It thus remains to
analyze the convergence properties of (un − uη

n, um) for all m 6= n. A straightforward
calculation similar to the one obtained for the eigenvalue corrector shows that(uη

n − un

η
, (A−λn)um

)
= −

( (Aη − λη
n)− (A− λn)

η
un, um

)
−1

η
((Aη−A)(uη

n−un), um).

The last term converges to 0 in probability (and is in fact of order O(η) in L1(Ω) as
above). We thus find that(uη

n − un

η
, um

)
dist.−−−→ 1

λn − λm

∫
D2

um(x)σn(x,y)dWydx. (5.10)

The Fourier coefficients of the eigenvector correctors converge to Gaussian random
variables. As in the case of eigenvalues, this allows us to estimate the cross-correlations
of the Fourier coefficients corresponding to (possibly) different eigenvectors.
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5.2. Applications. The first application pertains to the following problem:

Aε = (P (x, D) + qε)−1, A = P (x, D)−1. (5.11)

Lemma 3.4 and its corollary (3.14) show that (5.1) holds with p = 2 and η = ε
d
2 . The

operators Aε and A are also compact and self-adjoint for a large class of operators
P (x, D) which includes the Helmholtz operator P (x, D) = −∆ + q0(x). Let (λε

n, uε
n)

be the solutions of λεPεuε = uε and (λn, un) the solutions of λPu = u. Then,

λε
n − λn

ε
d
2

dist.−−−→ −λnσ

∫
D2

un(x)G(x,y)un(y)dWydx = −λ2
nσ

∫
D

u2
n(y)dWy, (5.12)

or equivalently, that for the eigenvalues of Pε and P , we have:

(λε
n)−1 − λ−1

n

ε
d
2

dist.−−−→ σ

∫
D

u2
n(y)dWy. (5.13)

The Fourier coefficients of the eigenvectors satisfy similar expressions.
The second example is the one-dimensional elliptic equation (2.9). Still setting

η = ε
1
2 , we find that ε−

1
2 (Aε − A)un

dist.−−−→
∫

D
σn(x, t)dWt, where σn(x, t) is defined

in (2.12) with the source term f in (2.13) being replaced by un(x). The operators
Aε and A satisfy (5.1) with p = 2 thanks to Lemma 4.2 and its corollary (3.14). The
expressions for the eigenvalue and eigenvector correctors are thus directly given by
(2.16) and (2.18), respectively.

5.3. Correctors for time dependent problems. As an application of the
preceding theory, let us now consider an evolution problem of the form ut + θPu = 0,
for t > with u(0) = u0, where θ = 1 or θ = i, and P is a symmetric pseudodifferential
operator with domain D(P ) ⊂ L2(D) for some subset D ⊂ Rd and with a compact
inverse A = P−1, which we assume, without loss of generality, has positive eigenvalues.

We then consider the randomly perturbed problem uη
t + θPηuη = 0, for t > 0

with uη(0) = u0, where Pη(ω) verifies the same hypotheses as P with compact inverse
Aη = P−1

η . We assume that (5.1) holds. We denote by λn and λη
n the eigenvalues of

A and Aη and by un and uη
n the corresponding eigenvectors. We have that

u(t) = e−θtP u0 =
∑

n

e−θλnt(un, u0)un :=
∑

n

αn(t)un, αn(t) = e−θλnt(un, u0).

and uη(t) =
∑

n

αη
n(t)uη

n, and αη
n(t) = e−θλη

nt(un
η , u0). We verify that, for |sη|

η→0−−−→ 0:

αη
n − αn

η
= e−θλntθt

λn − λη
n

η
(un, u0) + e−θλnt(

uη
n − un

η
, u0) + sη. (5.14)

The above difference thus converges to a mean zero Gaussian random variable whose
variance may easily be estimated from the results obtained in the preceding section.
We do not control the convergence of the eigenvectors for arbitrary values of n and
thus cannot obtain the law of the full corrector uη(t)−u(t). We can, however, obtain
a corrector for the low frequency parts uη

N (t) and uN (t) of uη(t) and u(t), respectively,
where only the first N terms are kept in the summation. We may also estimate the
corrector for (uη

N (t)−uN (t), um) using the above expansion for the Fourier coefficients
and the results obtained in the preceding section. We again obtain that the corrector
is a mean zero Gaussian variable whose variance may be calculated explicitly.
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Other time-dependent equations may be treated in a similar way. For instance,
the wave equation utt + Pu = 0, with u(0) = u0 and ut(0) = g0, and P a symmetric
operator with compact and positive definite inverse, may be recast as

wt −Aw = 0, w(0) = w0, w =
(

u

ut

)
, A =

(
0 1
P 0

)
. (5.15)

We verify that the eigenvalues λn of A are purely imaginary and equal to ±i
√

λP ,
where λP are the positive eigenvalues of P . We thus obtain that(

u

ut

)
(t) =

∑
λ

e−λtΠA,λ

(
u0

g0

)
, with ΠA,λ =

(
ΠP,−λ2 0

0 λΠP,−λ2

)
, (5.16)

the orthogonal projector onto the nth eigenspace of A. A similar expression may
be used for the perturbed problem uη(t), where P is replaced by Pη. The results
presented earlier in this section easily generalize to provide an estimate for the low
frequency component of u(t)− uη(t).
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