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Abstract

The theory of inverse transport consists of reconstructing optical
properties of a domain of interest from measurements performed at the
boundary of the domain. Using the decomposition of the measure-
ment operator into singular components (ballistic part, single scat-
tering part, multiple scattering part), several stability estimates have
been obtained that show what may stably be reconstructed from avail-
able measurements. Such stability estimates typically assume that the
measurements are in the range of the functional mapping the optical
parameters to the measurement operator. In practice, available mea-
surements are rarely in the latter range, which renders the stability
estimates of lesser interest. In this paper, we generalize the derivation
of the stability estimates to account for general physical noise models.
The resulting approximate stability estimates provide a quantitative
description of the type of information that may be obtained on the
optical parameters.

1 Introduction

The theory of inverse transport has many applications in medical and geo-
physical imaging. The forward transport equation models the propagation
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of particles or of the energy density of waves in scattering media. The in-
teraction of the particles with the underlying medium is characterized by
the optical parameters σ(x), the extinction coefficient or total absorption
coefficient, and k(x, v′, v) the scattering coefficient. The inverse transport
problem consists of reconstructing the latter two parameters from redundant
measurements of the particle density at the boundary of a domain of interest.

Typical applications of inverse transport in medical imaging are optical
tomography [1, 16] and optical molecular imaging [11]. Applications in re-
mote sensing in the atmosphere are considered in [15]. Inverse transport can
also be used efficiently for imaging using high frequency waves propagating
in highly heterogeneous media; see e.g. [8, 9].

The amount of information that may theoretically be reconstructed de-
pends on the type of available boundary measurements. One may typically
consider four categories of measurements, depending on the availability of
time dependent versus time independent measurements and the availability
of angularly resolved versus angularly averaged measurements. Time inde-
pendent angularly averaged measurements are what is routinely considered in
practice in optical tomography, although the inversion is known mathemati-
cally to be severely ill-posed, which implies that the (spatial) resolution one
expects from such measurements is relatively low. The availability of time
dependent and/or angularly resolved measurements significantly improves
the resolution. Section 2 briefly recalls known stability results in inverse
transport theory.

The main drawback for the stability results as they are known in the
literature is that they account for noise terms that are of a very specific
nature and do not account for noise terms as they appear in many practical
situations. The objective of this paper is to extend some known stability
results to a large variety of practical noise models, such as noise coming from
blurred measurements and resolution-limited source terms. This comes at
the price that the stability results then become approximate stability results.
Section 3 presents the approximate stability results considered in this paper
and comments on their relevance. A proof of their derivation is postponed
to section 4.

2 Stability in inverse transport

We consider the following time independent linear transport equation

v · ∇u+ σ(x)u =

∫
V

k(x, v′, v)u(x, v′)dv′, (x, v) ∈ X × V

u = g (x, v) ∈ Γ−.
(2.1)
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The solution u(x, v) models the density of particles, such as photons, as
a function of space x and velocity v. The spatial domain X is a convex,
bounded, open subset of Rd for dimension d ≥ 2, with a C1 boundary ∂X.
The space of velocities V = Sd−1 is here the unit sphere to simplify the
presentation. The sets of incoming conditions Γ− and outgoing conditions
Γ+ are defined by

Γ± = {(x, v) ∈ X × V, s.t. ± v · ν(x) > 0}, (2.2)

where ν(x) is the outgoing normal vector to X at x ∈ ∂X.
The optical parameters σ(x) and k(x, v′, v) model the interaction of the

particles (e.g. photons) with the underlying medium (e.g. biological tissues).
The parameter σ(x) models the total absorption of particles caused by in-
trinsic absorption and by scattering of particles into other directions. The
scattering coefficient k(x, v′, v) indicates the amount of particles scattering
from a direction v into a direction v′ at position x. The inverse transport
problem consists of reconstructing the optical parameters from boundary
measurements of u(x, v) on Γ+.

We also consider the corresponding transport equation in the time de-
pendent setting

∂u

∂t
+ v · ∇u+ σ(x)u =

∫
V

k(x, v′, v)u(x, v′)dv′, (t, x, v) ∈ T×X × V

u = g (t, x, v) ∈ T× Γ−,
(2.3)

where T is an interval of time. Measurements are then performed for (t, x, v) ∈
T× Γ+.

Both in the time dependent and time independent settings, we denote by
A the albedo operator, which maps u|Γ− = g on Γ− to the transport solution
u restricted to Γ+:

A : u|Γ−(t, x, v) 7→ Au|Γ−(t, x, v) = u|Γ+(t, x, v)
A : u|Γ−(x, v) 7→ Au|Γ−(x, v) = u|Γ+(x, v),

(2.4)

in the time dependent and time independent settings, respectively.
In many applications in medical and geophysical imaging, only partial

information about the above albedo operator is accessible. In many prac-
tical settings in optical tomography, the source term g = g(x) is indepen-
dent of the angular variable and the available measurements are of the form
J(x) =

∫
V
|v ·ν(x)|u(x, v)dv, i.e., are angularly averaged measurements. The

reconstruction of the optical parameters is seriously compromised when only
averaged measurements are available. We refer the reader to [7] for inverse
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transport results in the time independent setting and to [3, 6] for results on
the time dependent setting. The main conclusion of these studies is that the
reconstruction of the optical parameters in the time independent setting is
a severely ill-posed problem. Mathematically, this implies that the spatial
resolution is necessarily extremely limited. This is consistent with practical
resolutions obtained in optical tomography [2, 10, 17]. In the time depen-
dent setting, accurate measurements in time allow us to stably reconstruction
the attenuation coefficient and the spatial distribution (but not the angular
phase function) of the scattering coefficient; we refer the reader to [3, 6] for
more details.

In this paper, we assume that we are capable of measuring the angularly
resolved density of outgoing particles and that the incoming particles are also
angularly resolved (which then significantly increases the time of acquisition
of the data). In such a setting, the absorption and scattering coefficients
are uniquely determined by knowledge of the albedo operator, except in the
time independent setting and in spatial dimension d = 2, where the scattering
coefficient is uniquely determined only when it is sufficiently small. We refer
the reader to [4, 5, 12, 13, 18, 20] for uniqueness and stability results in this
setting.

The main ingredient in the derivation of the stability analysis is the de-
composition of the albedo operator into three terms A =

∑3
j=1Aj, where A1

denotes the part of the measurements that does not depend on scattering (the
ballistic part) and is thus obtained by setting k = 0 in the above transport
equation; A2 is the single scattering part of the measurement, which is linear
in the scattering coefficient k; and A3 is the multiple scattering component
of A, corresponding to measured particles that have scattered at least twice
before they exit the domain X.

The ballistic part A1 is always more singular than the other contributions
and may thus be obtained from knowledge of A. Knowledge of A1 implies
knowledge of the Radon transform of σ, hence knowledge of σ by inverse
Radon transform. In dimension d ≥ 3 in the time independent setting and
in dimension d ≥ 2 in the time dependent setting, A2 is also more singular
than A3 so that knowledge of A again uniquely determines A2. Since A2 is
linear in the scattering coefficient k, a simple inversion formula shows that
k is again uniquely determined from A2. These uniqueness results do not
tell us how errors in the measurements propagate in the inversion. Stability
estimates quantify this propagation in errors.

Let (σ, k) and (σ̃, k̃) be two sets of continuous optical parameters and
such that the transport equation (2.1) is well posed in the time dependent
setting; see [4]. Let A and Ã be the corresponding albedo (measurement)
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operators. We define

E(x, y) := exp
(
−
∫ |x−y|

0

σ
(
x− s

x− y

|x− y|
)
ds
)
, (2.5)

the optical depth between points x, y ∈ ∂X and define Ẽ(x, y) similarly by
replacing σ by σ̃. We also define

E+(x, v, w) = exp
(
−
∫ τ−(x,v)

0

σ(x− sv)ds−
∫ τ+(x,w)

0

σ(x+ sw)ds
)
, (2.6)

the optical path along the broken line with directions −v and w and changing
direction at point x, and define Ẽ+ similarly by replacing σ by σ̃. Here,
τ±(x, v) is defined as the distance between x ∈ X and the boundary ∂X in
the direction ±v.

Let (x0, v0) ∈ Γ− and define y0 = x0 + τ+(x0, v0)v0 ∈ ∂X. Then we have
the following stability results∣∣E(x0, y0)− Ẽ(x0, y0)

∣∣ ≤ ‖A− Ã‖L(L1)∫
V

∫ τ+(x0,v0)

0

∣∣E+k − Ẽ+k̃
∣∣(x0 + sv0, v0, v)dsdv ≤ ‖A− Ã‖L(L1).

(2.7)

In the time dependent setting, we have assumed that the interval of time T
was sufficiently large; see [5]. The first estimate holds for d ≥ 2. The second
estimate holds when d ≥ 2 in the time dependent setting and when d ≥ 3 in
the time independent setting.

The operator norms are defined by ‖·‖L(L1) = ‖·‖L(L1(T,L1(Γ−,dξ)),L1(T,L1(Γ+,dξ)))

in the time dependent setting and ‖ · ‖L(L1) = ‖ · ‖L(L1(Γ−,dξ),L1(Γ+,dξ)) in the
time independent setting, where dξ = |v · ν(x)|dvdµ(x) is a measure on Γ±
and dµ(x) is the surface measure on ∂X.

Such estimates provide a precise relationship between errors in the mea-
surements and errors on simple functionals of the optical parameters. Pro-
vided that additional regularity assumptions are met by the optical param-
eters, direct stability estimates for σ and k may be obtained as in [4, 5, 20].

The major drawback of such estimates is that they assume that the avail-
able measurements are in the range of the operator mapping the optical
parameters (σ, k) to the albedo operator A = A(σ, k). In practice, the avail-
able measurements are likely to be obtained as blurred versions of the “exact”
measurements. Let us denote by Aε a blurred version of A at a scale ε. It
turns out that for most types of blurring one may consider, ‖A − Aε‖L(L1)

exists but is of order O(1) independent of ε. To understand this, we may
look at this simplified example. Let A = I be the identity operator and Aε
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be the convolution by ε−dφ(x
ε
) for a smooth, compactly supported, function

φ(x) ≥ 0 such that
∫

Rd φ(x)dx = 1. Then Aε converges to A strongly but
not uniformly and it is straightforward to obtain that ‖A− Aε‖L(L1(Rd)) = 2
independent of ε. This renders the practical use of estimates such as (2.7)
relatively uninteresting as soon as the noisy measurements are not in the
range of the operator mapping the optical parameters to the measurement
operator.

The analysis of the albedo operator leading to (2.7) may be refined to
provide approximate (inexact) stability estimates, which account for noise in
the available measurements. This is addressed in the next two sections.

3 Approximate stability results

Since the L(L1) norm onA−Ã is too stringent, we need to slightly modify the
metric in which we gauge the quality of measurements. What we propose to
do here is to assume that the source and the detectors have limited resolution.

Time independent setting. We start with the time independent setting.
The source resolution is quantified by the scale ε = (ε1, ε2), where ε1 mea-
sures the minimal spatial extension of the source and ε2 the minimal angular
extension. In other words, the source term may be written as a function of
the form φ(x−x0

ε1
)ψ(v−v0

ε2
). The detector resolution is quantified by the scale

η = (η1, η2), where again η1 is related to spatial resolution and η2 to angular
resolution.

The smoothing of the detectors is quantified by a kernel φη. Let ηi > 0,
i = 1, 2, and φη ∈ C1(Γ+ × Γ+,R) be such that

φη ≥ 0, (3.1)

suppφη ⊂ {(x, v, y, w) ∈ Γ+ × Γ+ | |x− y| < η1 and |v − w| < η2}, (3.2)∫
Γ+

φη(x, v, y, w)dξ(y, w) = 1 for all (x, v) ∈ Γ+, (3.3)∫
Γ+

φη(x, v, y, w)dξ(x, v) ≤ C for all (y, w) ∈ Γ+, (3.4)

where C is a constant. We denote byRη the bounded operator from L1(Γ+, dξ)
to L1(Γ+, dξ) defined by

Rηg(x, v) =

∫
Γ+

φη(x, v, y, w)g(y, w)dξ(y, w), (3.5)
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for a.e. (x, v) ∈ Γ+ and for g ∈ L1(Γ+, dξ). Note that Rη is a smoothing
operator at the spatial scale η1 and the angular scale η2. The details of
the optical coefficients at scales smaller than η are thus not recoverable in a
stable manner.

We now model some reasonable limitations of the source term. Let
(x′0, v

′
0) ∈ Γ−. The point (x′0, v

′
0) ∈ Γ− models the incoming condition

and is fixed in the analysis that follows. For ε := (ε1, ε2) ∈ (0,+∞)2, let
fε ∈ C1

0(Γ−) such that

‖fε‖L1(Γ−,dξ) = 1, (3.6)

fε ≥ 0, (3.7)

suppfε ⊂ {(x′, v′) ∈ Γ− | |x′+τ+(x′, v′)v′−x′0−τ+(x′0, v
′
0)v

′
0| < ε1 and |v′−v′0| < ε2}.

(3.8)
The condition for ε1 is written as a constraint on Γ+ rather than a constraint
on Γ−. Yet fε above is easily seen as a smooth approximation of the delta
function on Γ− at (x′0, v

′
0) as ε1 → 0+ and ε2 → 0+ and is thus an admissible

incoming condition in L1(Γ−, dξ).
Now that the source term has resolution limited by ε and the measure-

ments are convolved measurements at the scale η, we need to select measure-
ments that capture the singularities of the albedo operator while eliminating
multiple scattering as efficiently as possible. Since the source term and detec-
tor resolution is limited, the separation between different orders of scattering
based on the singularities of the albedo operator is no longer feasible exactly.
The role of approximate stability estimates is to show what may still be
reconstructed stably and with which error. The selection of measurements
is different for the ballistic an the single scattering parts. The selection is
performed by means of a function ψ whose support indicates which measure-
ments are selected or not. Such a function is different for the selection of the
ballistic and the single scattering components as we shall see.

Assume that (k, k̃) ∈ L∞(X × V × V )2. Let ψ ∈ L∞(Γ+) such that
‖ψ‖L∞(Γ+) ≤ 1. Then using (4.8), (3.5) and (4.6) we obtain for ε > 0 that∫

Γ+

ψ(x, v)Rη(A− Ã)fε(x, v)dξ(x, v) = I1(ψ, η, ε) + I2(ψ, η, ε) + I3(ψ, η, ε),

(3.9)
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where

I1(ψ, η, ε) =

∫
Γ+

ψ(x, v)

∫
Γ+

φη(x, v, y, w)
(
e−

∫ τ−(y,w)

0 σ(y−sw,w)ds (3.10)

−e−
∫ τ−(y,w)

0 σ̃(y−sw,w)ds
)
fε(y − τ−(y, w)w,w)dξ(y, w)dξ(x, v),

I2(ψ, η, ε) =

∫
Γ+

ψ(x, v)

∫
V×Γ+

φη(x, v, y, w) (3.11)∫ τ−(y,w)

0

(
(kE+)(y − tw, w′, w)− (k̃Ẽ+)(y − tw, w′, w)

)
fε(y − tw − τ−(y − tw, w′)w′, w′)dtdξ(y, w)dw′dξ(x, v),

I3(ψ, η, ε) ≤ C

∫
V

(∫
y∈∂X

ν(y)·w>0

∣∣∣∣∫
Γ+

φη(x, v, y, w)ψ(x, v)dξ(x, v)

∣∣∣∣
×(ν(y) · w)dy)

1
p′ dw, (3.12)

and C = C(p,X, V σ, k, σ̃, k̃) for 1 < p < d
d−1

and p−1 + p′−1 = 1, and where

E+(z, w′, w) = exp
(
−
∫ τ−(z,w′)

0
σ(z−sw′, w′)ds−

∫ τ+(z,w)

0
σ(z+sw,w)ds

)
for

(z, w′, w) ∈ X × V × V (in section 3 and 4 the absorption coefficient σ(x, v)
is allowed to depend on the velocity variable). Here, I1 corresponds to the
ballistic part we aim at selecting while I2 and I3 correspond to the scattering
components. The objective is to find some stability for I1.

Most of the theorems above are presented for V = Sd−1 the unit sphere.
The results adapt with few modifications to the case where V is a bounded
open subset in Rd with infv∈V |v| > 0. It turns out that that approximate
stability estimates depend on the dimension on V . To present estimates that
work in both scenarios, we define dimV as

dimV :=

{
d− 1, if V := Sd−1,

d, if V is an open subset of Rd.
(3.13)

The main approximate stability result is as follows.

Theorem 3.1. Assume that (σ, k) and (σ̃, k̃) satisfy (4.1) and (4.4). Assume
also (k, k̃) ∈ L∞(X × V × V )2. Let 1 < p < d

d−1
and let p′ = p

p−1
> d. Then

the following statements are valid:

i. there exists a constant C1 = C1(X,V, p, σ, k, σ̃, k̃) such that

|I1(ψ, η, ε)| ≤ ‖Rη(A− Ã)fε‖L1(Γ+,dξ) + C1(η2 + ρ)dim(V ), (3.14)

for (ρ, ε1, ε2, η1, η2) ∈ (0,+∞)5 and for ψ ∈ L∞(Γ+), ‖ψ‖L∞(Γ+) ≤ 1,

suppψ ⊂ {(x, v) ∈ Γ+ | |v − v′0| < ρ}. (3.15)
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ii. There exists a constant C2 = C2(X,V, p, σ, k, σ̃, k̃) such that

|I2(ψ, η, ε)| ≤ ‖Rη(A− Ã)fε‖L1(Γ+,dξ) + C2

(
ρ1 + η1 +

2diam(X)η̌2√
1− η̌2

) d−2
p′

,

η̌2 =
2η2

v0(1− ρ2
2)

1
2

(3.16)

for (ρ1, ρ2, ε1, ε2, η1, η2) ∈ (0,+∞)6, η̌2 < 1, and for ψ ∈ L∞(Γ+),
‖ψ‖L∞(Γ+) ≤ 1,

suppψ ⊂ {(x, v) ∈ Γ+ | |x−x′0−τ+(x′0, v
′
0)v

′
0| > η1+ε1 or |v−v′0| > η2+ε2},

(3.17)
suppψ ⊂ {(x, v) ∈ Γ+ | inf

(s,s′)∈R2
|x− sv − x′0 + s′v′0| < ρ1}, (3.18)

suppψ ⊂ {(x, v) ∈ Γ+ | |v̂ · v̂′0| < ρ2}. (3.19)

Theorem 3.1 is proved in Section 4. We now comment on its significance.
The first result (3.14) applies to all functions ψ supported in the velocity
variable in the ρ-vicinity of v0 as indicated in (3.15). Not all such test func-
tions are of interest. When ρ is much smaller than ε2 or η2, then I1(ψ, η, ε)
does not capture the whole ballistic part. This renders the estimate (3.14)
useless. The support of ψ thus needs to be sufficiently large so that it cap-
tures the ballistic part. With our assumptions on fε and φη, this means that
ψ should have a support of size ε1 +η1 in the vicinity of x0 and of size ε2 +η2

in the vicinity of v0.
Once the support of ψ is sufficiently large as indicated above, then I1(ψ, η, ε)

captures the ballistic part of the signal up to an error caused by single and
multiple scattering as indicated in Theorem 3.1. This is the error made on
the Radon transform of σ averaged over the support of ψ. We then have
to invert the Radon transform from these smoothed out measurements at
the scale of the support of ψ. This is a task that needs to be performed
carefully and whose analysis will be carried out elsewhere. At a qualitative
level, we expect to reconstruct σ = σ(x) at the scale limited by the support
of ψ. The latter should therefore be sufficiently large (of size ε1 + η1 in the
vicinity of x0 and of size ε2 + η2 in the vicinity of v0) in order to capture the
ballistic front and yet sufficiently small so as to guarantee the best available
resolution for the reconstruction of σ. All spatial scales in σ smaller than ε
and η cannot be reconstructed stably. What our results says is that all scales
larger than these numbers can indeed be reconstructed stably from transport
measurements.

The second result (3.16) in Theorem 3.1 addresses the reconstruction of
the scattering coefficient. The test function ψ should be supported away
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from the ballistic part, have a support that is sufficiently large so that it
captures all of the single scattering contribution, and yet not too large so
that the multiple scattering contribution is small over the support and so
that resolution is not lost in the reconstruction of k(x, v′, v) from available
transport measurements. Note the role of η̌2 as a combination of η2 and ρ2.
The term involving η̌2 shows that the reconstruction of k(x, v0, v) involves
an error of order η̌2 ∼ η2 when v0 and v are not close to being parallel
(i.e., when v0 · v bounded away from 1). When v0 and v become parallel, it
becomes harder to separate the ballistic part from the single scattering part
and η̌2 � η2 when ρ2 approaches 1.

Time dependent setting. We now consider the time dependent setting.
The results are very similar to those in the time independent setting. The
main difference is that resolution in the time variable needs to be accounted
for. We now have η = (η1, η2, η3) ∈ (0,+∞)3, where η1 measures smoothing
in time, η2 smoothing in space, and η3 smoothing in velocity. Similarly,
ε = (ε1, ε2, ε3) ∈ (0,+∞)3 measures the support of the source term in time,
space, and velocity, respectively.

Let φη ∈ C1(R× Γ+ × Γ+,R) be such that

φη ≥ 0, (3.20)

suppφη ⊂ {(τ, x, v, y, w) ∈ T × Γ+ × Γ+ | 0 < τ < η1, |x− y| < η2

and |v − w| < η3}, (3.21)∫
T×Γ+

φη(τ, x, v, y, w)dτdξ(y, w) = 1 for all (τ, x, v) ∈ T × Γ+, (3.22)∫
T×Γ+

φη(τ, x, v, y, w)dτdξ(x, v) ≤ C for all (τ, y, w) ∈ T × Γ+. (3.23)

where C is a constant. We denote by Rη the bounded operator in L1(T ×
Γ+, dtdξ) defined by

Rηg(t, x, v) =

∫
T×Γ+

φη(t− t′, x, v, y, w)g(t′, y, w)dt′dξ(y, w), (3.24)

for a.e. (t, x, v) ∈ T × Γ+ and for g ∈ L1(T × Γ+, dtdξ).
Let (x′0, v

′
0) ∈ Γ−. Let ε = (ε1, ε2, ε3) ∈ (0,+∞)3 and let fε ∈ C1(T ×Γ−)

be such that fε ≥ 0, ‖fε‖L1(T×Γ−) = 1, suppfε ⊆ {(t′, x′, v′) ∈ T × Γ− | t′ <
ε1, |x′ + τ+(x′, v′)v′− x′0− τ+(x′0, v

′
0)v

′
0| < ε2, |v′− v′0| < ε3} (we assume that

(0, t0) ⊂ T for some t0 > 0).
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Assume that (k, k̃) ∈ L∞(X × V × V )2. From the decomposition of the
time-dependent albedo operator we have∫

T×Γ+

ψ(t, x, v)Rη

(
A− Ã

)
fε(t, x, v)dtdξ(x, v) =

3∑
1=1

Ii(ψ, η, ε), (3.25)

where

I1(ψ, η, ε) =

∫
T×Γ+

(
e−

∫ τ−(x,v)

0 σ(x−sv,v)ds − e−
∫ τ−(x,v)

0 σ̃(x−sv,v)ds
)
ψ(t, x, v) (3.26)

×
∫
T×Γ+

φη(t− t′, x, v, y, w)fε(t
′ − τ−(y, w), y − τ−(y, w)w,w)dt′dξ(y, w)dtdξ(x, v),

I2(ψ, η, ε) =

∫
T×Γ+

ψ(t, x, v)

∫
T×Γ+

φη(t− t′, x, v, y, w) (3.27)

×
∫
V

∫ τ−(y,w)

0

(
(kE+)(y − sw,w′, w)− (k̃Ẽ+)(y − sw,w′, w)

)
fε(t

′ − s− τ−(y − sw,w′), y − sw − τ−(y − sw,w′)w′, w′)dsdw′dξ(y, w)dt′dξ(x, v)dt,

|I3(ψ, η, ε)| ≤ C

∫
T×V

(∫
y∈∂X

ν(y)·w>0

∣∣∣∣∫
(0,T )×Γ+

φη(t− t′, x, v, y, w)ψ(t, x, v)dtdξ(x, v)

∣∣∣∣p′
× (ν(y) · w)dµ(y))

1
p′ dwdt′, (3.28)

where C is a constant that does not depend on ε and η.

Theorem 3.2. Assume that (σ, k) and (σ̃, k̃) satisfy (4.1). Assume also
(k, k̃) ∈ L∞(X × V × V )2. Let 1 < p < dimV+1

dimV
and let p′ = p

p−1
. Then the

following statements are valid:

i. there exists a constant C1 = C1(X,V, p, σ, k, σ̃, k̃) such that

|I1(ψ, η, ε)| ≤ ‖Rη(A− Ã)fε‖L1(T×Γ+,dtdξ) + C1(η3 + ρ)dim(V ), (3.29)

for (ρ, ε1, ε2, ε3, η1, η2, η3) ∈ (0,+∞)7, and for ψ ∈ L∞(T×Γ+), ‖ψ‖L∞(T×Γ+) ≤
1, suppψ ⊂ {(t, x, v) ∈ T × Γ+ | |v − v′0| < ρ}.

ii. There exists a constant C2 = C2(X,V, p, σ, k, σ̃, k̃) such that

|I2(ψ, η, ε)| ≤ ‖Rη(A− Ã)fε‖L1(T×Γ+,dtdξ)

+C2(η1 + ρ1)
1
p′

(
ρ2 + η2 +

2diam(X)η̌3√
1− η̌3

) d−2
p′

,

η̌3 =
2η3

v0(1− ρ2
3)

1
2

(3.30)
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for (ρ1, ρ2, ρ3, ε1, ε2, ε3, η1, η2, η3) ∈ (0,+∞)9, ρ3 < 1, η̌3 < 1, and for
ψ ∈ L∞(T × Γ+) which satisfies the conditions ‖ψ‖L∞(T×Γ+) ≤ 1,

suppψ ⊂ {(t, x, v) ∈ T×Γ+ | |x−x′0−τ+(x′0, v
′
0)v

′
0| > η2+ε2 or |v−v′0| > η3+ε3},

(3.31)

suppψ ⊂ {(t, x, v) ∈ T × Γ+ | |v̂ · v̂′0| < ρ3,

inf
(s,s′)∈R2

|x− sv̂ − x′0 + s′v̂′0| < ρ2}, (3.32)

suppψ ⊂ {(t, x, v) ∈ T×Γ+ | |t−s−s′|
s=

(x−x′0)·(v̂′0−(v̂·v̂′0)v̂)

1−(v̂′0·v̂)2

s′=
(x−x′0)·(v̂−(v̂·v̂′0)v̂′0)

1−(v̂′0·v̂)2

< ρ1}. (3.33)

The derivation of the above theorem is also presented in section 4. The
conclusions drawn after Theorem 3.1 still hold in the time dependent setting.
The main difference between the two settings is the stability of the scattering
coefficient in I2, which is better in the time dependent setting than it is in

the time independent setting because of the presence of the term (η1 + ρ1)
1
p′ ,

where p′ > dimV + 1. The availability of time dependent measurements
allows one to better separate single scattering from multiple scattering than
when only in the presence of time dependent measurements. No such effect
is observable on the separation between the ballistic and single scattering
contributions.

4 Sketch of derivation

In this section we develop the mathematical framework for the well-posedness
of the stationary Boltzmann transport equation (2.1) and for the existence
of the albedo operator A : L1(Γ−, dξ) → L1(Γ+, dξ). We give results on the
decomposition of the albedo operator used in (3.9) and we prove the estimate
on the multiple scattering part (3.12). Finally we prove Theorem 3.1.

For the non-stationary case we refer the reader to [5, 12]. Modifying the
results of [5], one obtains the decomposition (3.25) with the estimate (3.28).
The proof of Theorem 3.2 then follows the same lines as that of Theorem
3.1.

Existence theory for the time independent albedo operator. Recall
that X ⊂ Rd, d ≥ 2, is an open bounded subset with C1 boundary ∂X, and
that V is Sd−1 or an open subset of Rd which satisfies v0 := infv∈V |v| > 0,
V0 := supv∈V |v| <∞. We do not assume that X is convex in this section so

12



that one obtains that Theorems 3.1 and 3.2 still hold when X is not assumed
to be convex. We assume that (σ, k) is admissible if

0 ≤ σ ∈ L∞(X × V ),
k(x, v′, v) is a measurable function on X × V × V, and
0 ≤ k(x, v′, .) ∈ L1(V ) for a.e. (x, v′) ∈ X × V
σp(x, v

′) =
∫
V
k(x, v′, v)dv belongs to L∞(X × V ).

(4.1)

We introduce the Banach space

W := {u ∈ L1(X × V ); v · ∇xu ∈ L1(X × V ), τ−1u ∈ L1(X × V )},
‖u‖W = ‖v · ∇u‖L1(X×V ) + ‖τ−1u‖L1(X×V ),

where v ·∇x is understood in the distributional sense and τ(x, v) = τ−(x, v)+
τ+(x, v) for (x, v) ∈ X̄ × V , and we recall that the map γ± : u → u|Γ±
is continuous from W to L1(Γ±, dξ) (see Theorem 2.1 of [14]) so that the
equation (2.1) makes sense for u ∈ W . The stationary linear Boltzmann
transport equation (2.1) is transformed into the following integral equation

(I +K)u = Ju−, (4.2)

where K is the bounded operator in L1(X × V, τ−1dxdv) defined by

Ku(x, v) = −
∫ τ−(x,v)

0

e−
∫ t
0 σ(x−sv,v)ds

∫
V

k(x−tv, v′, v)u(x−tv, v′)dv′dt, (x, v) ∈ X×V,

for all u ∈ L1(X × V, τ−1dxdv), and where J is the continuous lifting of γ−
given by

Ju−(x, v) = e−
∫ τ−(x,v)

0 σ(x−sv,v)dsu−(x− τ−(x, v)v, v), (x, v) ∈ X × V, (4.3)

for u− ∈ L1(Γ−, dξ) (see Proposition 2.1 [14] for the continuity of J). Then
under the additional assumption

the bounded operator I +K in L1(X × V, τ−1dxdv) admits a bounded
inverse in L1(X × V, τ−1dxdv),

(4.4)
the integral equation (4.2) is uniquely solvable for all u− ∈ L1(Γ−, dξ); u ∈
W; and the operator A : L1(Γ−, dξ) → L1(Γ+, dξ), u− → u|Γ+ is bounded
(see [4, 14]).

Note that condition (4.4) is satisfied when ‖τσp‖∞ < 1 or σ−σp ≥ 0 (see
[4, 19]).
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Decomposition of the albedo operator and proof of the estimate
(3.12). First we note that −v ·∇x(Ku)(v, x) = σ(x, v)Ku(x, v)+

∫
V
k(x, v′,

v)u(x, v′)dv′ for a.e. (x, v) ∈ X × V and for u ∈ L1(X × V, τ−1dxdv).
Therefore the operator γ+(K2) (γ+(K2u) = (K2u)|Γ+) is a well-defined and
bounded operator from L1(X×V, τ−1dxdv) → L1(Γ+, dξ), and the following
Lemma 4.1 gives properties of the distributional kernel of this bounded oper-
ator. This Lemma 4.1 is a variant of lemma 2.7 of [4]. The proof of Lemma
4.1 is postponed to the end of this paragraph.

Lemma 4.1. Assume that k ∈ L∞(X × V × V ), then there exists a nonneg-
ative measurable function β : X × V ×X × V → [0,+∞) such that

(
K2u

)
|Γ+

(x, v) =

∫
X×V

β(x, v, x′, v′)u(x′, v′)dx′dv′ (4.5)

for a.e. (x, v) ∈ Γ+ and for any u ∈ L1(X × V, τ−1dxdv); and for any
1 < p < 1 + 1

d−1
, p−1 + p′−1 = 1, there exists some nonnegative constant

C(p,X, V, σ, k) such that∥∥∥∥∫
Γ+

ψ(x, v)β(x, v, x′, v′)τ(x′, v′)dξ(x, v)

∥∥∥∥
L∞(Xx′×Vv′ )

≤ C

∫
V

(∫
x∈∂X

ν(x)·v>0

|ψ(x, v)|p′(ν(x) · v)dµ(x)

) 1
p′

dv,

(4.6)

for any ψ ∈ L∞(Γ+).

Note that from condition (4.4) and the integral equation (4.2) it follows
that

u := Ju− −KJu− +K2(I +K)−1Ju−. (4.7)

Therefore taking the trace over Γ+ of both the left hand side of equality (4.7)
and each of the three terms of the sum on the right-hand side of (4.7) and
taking account of Lemma 4.1 we obtain the following Proposition 4.2.

Proposition 4.2. Under condition (4.4), the following equality in the dis-
tributional sense is valid

Au−(x, v) =
2∑
i=1

∫
Γ−

αi(x, v, x
′, v′)u−(x′, v′)dµ(x′)dv′ (4.8)

+

∫
X×V

β(x, v, x′, v′)((I +K)−1Ju−)(x′, v′)dx′dv′,
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for a.e. (x, v) ∈ Γ+ and for any C1 compactly supported function u− on Γ−,
where

α1(x, v, x
′, v′) = e−

∫ τ−(x,v)

0 σ(x−sv,v)dsδv(v
′)δx−τ−(x,v)v(x

′), (4.9)

α2(x, v, x
′, v′) =

∫ τ−(x,v)

0

e−
∫ t
0 σ(x−sv,v)ds−

∫ τ−(x−tv,v′)
0 σ(x−tv−sv′,v′)ds

×k(x− tv, v′, v)δx−tv−τ−(x−tv,v′)v′(x
′)dt, (4.10)

for a.e. (x, v) ∈ Γ+ and (x′, v′) ∈ Γ−, and where β is given by (4.5).

We refer the reader to [4] for more details on the derivation of Proposition
4.2.

Finally the equality (3.9) follows from (4.8) (applied on (σ, k) and (σ̃, k̃)),
and the estimate (3.12) follows from (4.8), (4.6) (applied on (σ, k) and (σ̃, k̃)),
the boundedness of (I +K)−1J and (I + K̃)−1J̃ from L1(Γ−, dξ) to L1(X ×
V, τ−1(x, v)dxdv) and equality (3.6).

Proof of Lemma 4.1. Let k ∈ L∞(X × V × V ) and let 1 < p < 1 + 1
d−1

,

p′−1 +p−1 = 1. Using the estimate τ(x′, v′) ≤ diam(X)
v0

for (x′, v′) ∈ X×V and
using Hölder inequality, we obtain that the proof of estimate (4.6) is reduced
to the proof of (4.15). We introduce the function χ : Rd × Rd → [0,+∞)
defined by

χ(x, y) =

{
0, if x+ p(y − x) 6∈ X for some p ∈ (0, 1);

1, if x+ p(y − x) ∈ Xfor all p ∈ (0, 1).
(4.11)

for (x, y) ∈ (Rd)2. From the definition ofK, one obtains that (K2u−)|Γ+(x, v) =∫
X×V β(x, v, x′, v′)u−(x′, v′)dx′dv′, where β is a nonnegative measurable func-

tion from X × V ×X × V to [0,+∞). More precisely if V = Sd−1 then

β(x, v, x′, v′) =

∫ τ−(x,v)

0

χ(x− tv, x′)

[
k(x− tv, v1, v)k(x

′, v′, v1)

|x− tv − x′|d−1

× e−
∫ t
0 σ(x−sv,v)ds−

∫ t1
0 σ(x−tv−sv1,v1)ds

]
t1=|x−tv−x′|

v1= x−tv−x′
t1

dt, (4.12)

for a.e. (x, v) ∈ Γ+, (x′, v′) ∈ X × V , where χ is defined by (4.11); and if
V is an open bounded subset of Rd which satisfies v0 := infv∈V |v| > 0 and
V0 := supv∈V |v| <∞, then

β(x, v, x′, v′) =

∫ V0

v0

rd−2

∫ τ−(x,v)

0

[
k(x− tv, rω, v)k(x′, v′, rω)

|x− x′ − tv|d−1
(4.13)

×e−
∫ t
0 σ(x−sv,v)ds−

∫ t1
0 σ(x−tv−srω,rω)dsχV (rω)

]
rt1ω=x−x′−tv

χ(x− tv, x′)dtdr,
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for a.e. (x, v) ∈ Γ+, (x′, v′) ∈ X × V , where χ is defined by (4.11) and
χV (w) = 1 for w ∈ V and χV (w) = 0 for w 6∈ V . Let C(V ) := 1 when

V = Sd−1. Let C(V ) :=
V d
0

d
when V is an open bounded subset of Rd. Then

using (4.12), (4.13), the estimate σ ≥ 0, Hölder inequality and the estimate

τ−(x, v) ≤ diam(X)
v0

for (x, v) ∈ Γ+ we obtain

|β(x, v, x′, v′)|p ≤

C(V )‖k‖2
∞diam(X)

1
p′

v
1
p′
0

p ∫ τ−(x,v)

0

dt

|x− tv − x′|p(d−1)
,

(4.14)
for a.e. (x, v) ∈ Γ+, (x′, v′) ∈ X × V . Therefore∫

x∈∂X
ν(x)·v>0

β(x, v, x′, v′)p(ν(x) · v)dµ(x)

≤ C(V )p
(

diam(X)

v0

) p
p′

‖k‖2p
∞

∫
y∈X

1

|y − x′|p(d−1)
dtdy

≤ C(V )p
(

diam(X)

v0

) p
p′

‖k‖2p
∞Vol(Sd−1)

diam(X)1+(1−p)(d−1)

1 + (1− p)(d− 1)
, (4.15)

for a.e. (x′, v′) ∈ X × V (we performed the change of variables y = x − tv,
y ∈ X, (x, v) ∈ Γ+, t ∈ (0, τ−(x, v)), dy = (ν(x) · v)dtdµ(x)).

Proof of Theorem 3.1. Let ψ ∈ L∞(Γ+), ‖ψ‖L∞(Γ+) ≤ 1. Let (x, v) ∈ Γ+.
Using (3.2) we obtain that if (x, v) ∈ suppψ then

φη (x, v, z, w) = 0 if χsuppψ+Bη(z, w) = 0, (4.16)

for (z, w) ∈ Γ+, where

Bη := {(a, b) ∈ Rd × Rd | |a| < η1 and |b| < η2}, (4.17)

χsuppψ+Bη(z, w) =

{
1 if (z, w) ∈ suppψ +Bη,
0 if (z, w) 6∈ suppψ +Bη.

}
(4.18)

From (3.12), (4.16) and the estimate ‖ψ‖L∞(Γ+) ≤ 1 it follows that

|I3(ψ, η, ε)| ≤ C

∫
V

(∫
y∈∂X

ν(y)·w>0

χsuppψ+Bη(y, w)(ν(y) · w)dy

) 1
p′

dw. (4.19)

where C is a constant that depends only on p, X, V , (σ, k) and (σ̃, k̃).
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In addition using the estimate ‖ψ‖L∞(Γ+) ≤ 1 we obtain |
∫

Γ+
ψ(x, v)

Rη(A− Ã)fε(x, v)dξ(x, v)| ≤ ‖Rη(A− Ã)fε‖L1(Γ+,dξ). Therefore using (3.9)
we obtain

either |I1(ψ, η, ε)| ≤ ‖Rη(A− Ã)fε‖L1(Γ+,dξ) + |I2(ψ, η, ε)|+ |I3(ψ, η, ε)|.
(4.20)

or |I2(ψ, η, ε)| ≤ ‖Rη(A− Ã)fε‖L1(Γ+,dξ) + |I1(ψ, η, ε)|+ |I3(ψ, η, ε)|. (4.21)

Assume that ψ satisfies (3.15). We prove (3.14) which reduces to es-
timating Ii(ψ, η, ε), i = 2, 3 (see (4.20)). Using the changes of variables
“(z, w) = (y − tw, w)” and “(z, w′) = (y′ + t′ŵ′, w′)”), (3.11) gives

I2(ψ, η, ε) =∫
Γ+

ψ(x, v)

∫
V×Γ−

∫ τ+(y′,w′)

0

φη (x, v, y′ + t′w′ + τ+(y′ + t′w′, w)w,w)

(kE+ − k̃Ẽ+)(y′ + t′w′, w′, w)fε(y
′, w′)dt′dξ(y′, w′)dwdξ(x, v).

(4.22)
Combining (3.15) and (3.2) we obtain that if (x, v) ∈ suppψ then

φη (x, v, z, w) = 0 for (z, w) ∈ Γ+, |w − v′0| ≥ η2 + ρ. (4.23)

From (4.22)–(4.23) and the assumptions σ ≥ 0, σ̃ ≥ 0, (k, k̃) ∈ L∞(X ×
V × V )2, and (3.4), (3.6) and the estimate ‖ψ‖L∞(Γ+) ≤ 1 it follows that

|I2(ψ, η, ε)| ≤ C‖k+k̃‖∞diam(X)
v0

∫
w∈V

|w−v′0|<η2+ρ
dw. Combining (4.19), (3.15), (4.17)

and (4.18), we obtain |I3(ψ, η, ε)| ≤ C
∫

w∈V
|w−v′0|<η2+ρ

dw. Combining these latter

estimates with (4.20) we obtain (3.14).
Now assume that ψ satisfy (3.17)–(3.19). Let (ε1, ε2, η1, η2) ∈ (0,+∞)4

be such that η2 <
v0

√
1−ρ22
2

. We prove (3.16), which reduces to estimating
Ii(ψ, η, ε), i = 1, 3 (see (4.21)). From (3.2) and (3.8), it follows that

suppΦε,η ⊆ {(x, v) ∈ Γ+ | |x−x′0−τ+(x′0, v
′
0)v

′
0| < ε1+η1 and |v−v′0| < ε2+η2},

(4.24)
where Φε,η is the function defined by

Φε,η(x, v) =

∫
Γ+

φη(x, v, y, w)fε(y − τ−(y, w)w,w) (4.25)

×
(
e−

∫ τ−(y,w)

0 σ(y−sw,w)ds − e−
∫ τ−(y,w)

0 σ̃(y−sw,w)ds
)
dξ(y, w),

for (x, v) ∈ Γ+. Therefore using (3.10) and (3.17), we obtain I1(ψ, ε, η) = 0.
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Now we estimate I3(ψ, ε, η). For w ∈ V let ŵ ∈ Sd−1 be defined by
ŵ = w

|w| . Let (x, v) ∈ Γ+, v̂ 6= ±v̂′0. Let dist(x, v) denote inf(s,s′)∈R2 |x− sv̂ −
x′0 + s′v̂′0|. Then

dist(x, v) = |x− x′0 − ((x− x′0) · v̂⊥) v̂⊥ − ((x− x′0) · v̂′0) v̂′0| , (4.26)

where
v⊥ := v − (v · v̂′0) v̂′0, (4.27)

i.e. dist(x, v) is the orthogonal distance of the vector x − x′0 to the vector
plane spanned by v and v′0. We use the following Lemma 4.3 whose proof is
postponed to the end of this section.

Lemma 4.3. Let (y, w) ∈ Γ+ and (z, ζ) ∈ Bη such that (y − z, w − ζ) ∈
suppψ. Then

dist(y, w) ≤ ρ1 + η1 +
4diam(X)η2

v0(1− ρ2
2)

1
2

(
1− 2η2

v0

√
1−ρ22

) 1
2

. (4.28)

Let λ = ρ1 +η1 + 4diam(X)η2

v0(1−ρ22)
1
2

(
1− 2η2

v0

√
1−ρ2

2

) 1
2
. Combining (4.28) and (4.19) we

obtain

|I3(ψ, η, ε)| ≤ C

∫
w∈V

(∫
y∈∂X

dist(y,w)≤λ

|ν(y) · w|dy

) 1
p′

dw ≤ C ′λ
d−2
p′ , (4.29)

where C ′ is a constant that depends on p, X, V , (σ, k), (σ̃, k̃), and that does
not depend on ψ, ε and η.

Proof of Lemma 4.3. From (4.26) and the estimates |z| ≤ η1 and dist(y −
z, w − ζ) < ρ1 (see (3.18) for (y − z, w − ζ) ∈ suppψ), it follows that

dist(y, w) ≤ dist(y, w − ζ)

+
∣∣∣((y − x′0) · ̂(w − ζ)⊥

)
̂(w − ζ)⊥ − ((y − x′0) · ŵ⊥) ŵ⊥

∣∣∣ ,
≤ dist(y, w − ζ) +

∣∣∣((y − x′0) ·
(

̂(w − ζ)⊥ − ŵ⊥

))
̂(w − ζ)⊥

∣∣∣
+
∣∣∣(y − x′0) · ŵ⊥

(
ŵ⊥ − ̂(w − ζ)⊥

)
|
∣∣∣

≤ dist(y, w − ζ) + 2|y − x′0|
∣∣∣ ̂(w − ζ)⊥ − ŵ⊥

∣∣∣ , (4.30)

dist(y, w − ζ) ≤ dist(y − z, w − ζ) + |z| ≤ ρ1 + η1, (4.31)
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(we also used the Cauchy-Bunyakovski-Schwarz inequality). Taking account
of the estimates |y − x′0| ≤ diam(X), (4.30)–(4.31), estimate (4.28) reduces
to proving the following estimate∣∣∣ ̂(w − ζ)⊥ − ŵ⊥

∣∣∣ ≤ 2η2

v0(1− ρ2
2)

1
2

(
1− 2η2

v0

√
1−ρ22

) 1
2

. (4.32)

First note that from (4.27), and from the estimates |(w− ζ) · v̂′0| ≤ ρ2|w− ζ|
(see (3.19) and (y − z, w − ζ) ∈ suppψ) and |ζ| ≤ η2 it follows that

|(w − ζ)⊥|2 = |w − ζ|2 − ((w − ζ) · v̂′0)2 ≥ (1− ρ2
2)|w − ζ|2, (4.33)

Note also that using the estimates |ζ⊥| ≤ |ζ| ≤ η2, |w⊥| ≥ |(w− ζ)⊥|− |ζ⊥| ≥
|(w − ζ)⊥| − η2, we obtain∣∣∣ ̂(w − ζ)⊥ − ŵ⊥

∣∣∣2 =
|ζ⊥|2 − (|(w − ζ)⊥| − |w⊥|)2

|(w − ζ)⊥||w⊥|
≤ η2

2

|(w − ζ)⊥|2
(
1− η2

|(w−ζ)⊥|

) .
(4.34)

Note also that |w − ζ| ≥ v0

2
since |ζ| ≤ η2 ≤ v0

2
≤ |w|

2
. Therefore combining

(4.33)–(4.34) we obtain (4.32).

Remarks. For the geometry based on F± introduced in [4] we can obtain
approximate stability estimates similar to the estimates of Theorem 3.1 for
the albedo operator A : L1(F−) → L1(F+). We emphasize that the geometry
based on F± may be more practical for application than the geometry based
on Γ±.

One may obtain approximate stability estimates similar to the estimates
of Theorem 3.1 for the albedo operator A : L1(Γ−, dξ̃) → L1(Γ+, dξ̃), where
dξ(x, v) = τ(x, v)dξ(x, v) (for the existence of the albedo operator in the
spaces L1(Γ±, dξ̃), we refer the reader to [14, 4]).
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