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Abstract

We consider the behavior of solutions to parabolic equations with large, highly
oscillatory, possibly time dependent, random potential with Gaussian statistics.
The Gaussian potential fluctuates in the spatial variables and possibly in the
temporal variable. We seek the limit of the solution to the parabolic equation as
the scale € at which the random medium oscillates converges to zero. Depending
on spatial dimension and on the decorrelation properties of the Gaussian potential,
we show that the solution converges, as € tends to 0, either to the solution of a
deterministic, homogenized, equation with negative effective medium potential or
to the solution of a stochastic partial differential equation with multiplicative noise
that should be interpreted as a Stratonovich integral. The transition between the
deterministic and stochastic limits depends on the elliptic operator in the parabolic
equation and on the decorrelation properties of the random potential. In the
setting of convergence to a deterministic solution, we characterize the random
corrector, which asymptotically captures the stochasticity in the solution. Such
models can be used to calibrate upscaling schemes that aim at understanding the
influence of microscopic structures in macroscopic calculations.

1 Introduction

Small scale structures abound in all areas of applied science. Because their microscopic
description is often unavailable, and when it is available, generates prohibitively ex-
pensive computations in practice, there is considerable interest in understanding the
influence of the micro-scale structures at the macroscopic level. This allows us to “re-
move” the micro-structure in a consistent manner and handle macroscopic objects that
are physically and computationally much more tractable. Mathematically, the consis-
tent removal of the micro-scale is typically achieved by introducing a small scale ¢ < 1
for the micro-structure, and by obtaining a limit u to the solution u. of an equation
describing the micro-structure as the scale ¢ — 0.

Arguably the most useful method to obtain macroscopic equations for the limit u is
the homogenization methodology. Under appropriate assumptions of stationarity and
ergodicity of the micro-structure modeled as a random field, homogenization theory
provides a description for u in the form of a deterministic, effective medium, equation;
see e.g. [6, 8, 12, 16, 18, 22] for references on homogenization in random and periodic



media. Another fruitful macroscopic description of micro-structure is the introduction
of stochastic forcing in what results as a stochastic partial differential equation (SPDE)
model for u; see e.g. [13, 17, 19, 21, 27] for a few references on the topic.

We are concerned here with the derivation of (deterministic) homogenized or stochas-
tic models as the limit of solutions to parabolic equations perturbed by a large, highly
oscillatory potential. Our model takes the form

ou, 1 t x 4
T +P(x,D)uE—€—aq(€—B,g)uE—O, t>0, zeR

u.(0,2) = g(z), xeRY

(1)

where d > 1 is spatial dimension, P(x, D) is an elliptic operator, and ¢(¢, z) is a station-
ary Gaussian field. The typical operator P(z, D) we are interested in is the Laplacian
P(z,D) = —A and powers of the Laplacian P(x, D) = (—A)2 for some m > 0. We as-
sume that the initial condition g(z) is sufficiently smooth (see (48) below for a sufficient
condition of smoothness).

The potential ¢(¢,z) may or may not depend on time, and when it does depend on
time, is assumed to oscillate at the scale ¢® with 0 < 8 < m, where m is the order of the
principal symbol of P(x, D). We are thus interested in the scaling where the fluctuations
in space dominate the randomness in the potential. The potential is assumed to be large.
The scaling factor « is chosen so that the potential in (1) has an order O(1) effect. In
other words, so that u. 4 uy, as € — 0, where uy, is the unperturbed solution to (1)
with ¢ set to 0.

Once « is properly chosen, we aim at understanding the limiting stochasticity of
u. as € — 0. More precisely, we wish to answer the following questions: (i) Does u.
converge to the solution of a deterministic homogenized equation or to the solution of
a stochastic PDE? (ii) When the former occurs, what is the structure of the random
corrector to the homogenized solution? We shall see in section 2 that the answer depends
on the relationship between dimension d, the strength m of the elliptic operator, and
the decorrelation properties of the Gaussian potential q.

For dimensions d < d..(m, q), where d . (m, ¢) is a critical dimension that depends on
m and ¢, we observe convergence to the solution of a SPDE with multiplicative noise.
The multiplicative noise contribution should be understood as a Stratonovich integral
with respect to an appropriate fractional Brownian motion. When m = 2 and ¢ is time
independent and has integrable correlation function, then d..(m,q) = 2. In this setting,
convergence to a stochastic equation occurs only when d = 1. This was confirmed for
instance in [23] for not-necessarily-Gaussian, mixing potentials, and in [3] for Gaussian
potentials.

When d > d..(m,q), we observe a transition to a deterministic limit, solution of a
homogenized equation with negative effective medium potential. In some sense, it is
easier for the random solution to visit the whole space of randomness in high spatial
dimensions than in low spatial dimensions. As a consequence, averaging takes place
more efficiently and a deterministic homogenized equation arises in the limit ¢ — 0.

In the latter configuration, randomness “disappears” from the leading term in the
macroscopic limit. In many applications, it is useful to quantify the uncertainty in the
solution and thus control the size of the random fluctuations about the deterministic
limit. Much less is known about the structure of the fluctuations in homogenization in



random media than in homogenization in periodic media. Explicit expressions for the
correctors are available in simplified configurations [2, 5, 7, 10] but no theory is available
in the general setting for which homogenization theory applies. When d > d..(m,q),
we can characterize for the solution to (1) the size of u. — E{u.} and obtain that after
appropriate rescaling, it converges in distribution to a Gaussian random field. Such
a convergence result is consistent with the central limit correction to the law of large
numbers.

The above model (1) may be seen as a (generalization to arbitrary strength m of the)
continuous version of the parabolic Anderson model. The parabolic Anderson model
is related to the analysis of localization of waves in random media. In one dimension
of space, waves localize as soon as the underlying medium exhibits some disorder; this
is known as Anderson localization. In higher spatial dimensions, no such phenomenon
occurs, at least for sufficiently small disorder. Instead, we observe that the energy
density of the waves converges to a homogenized, deterministic limit, solution of a
radiative transport equation [1, 9, 11, 20, 24, 25, 26]. A similar behavior, albeit in a
simpler context, is observed here. We obtain a stochastic limit, as is the case in Anderson
localization, for low dimension, and a deterministic limit for large dimensions. One of
the main results obtain below is that for potential with very long range correlations, the
limit is stochastic even in large spatial dimensions and this for all values of m including
the practically interesting case m = 2 corresponding to the Laplacian.

Stochastic models may also be defined in the range of parameters where a homoge-
nized limit arises. For instance, stochastic PDE with multiplicative white noise in space
and space-time may be defined for the Laplacian m = 2 in dimensions d > 2. In such a
framework however, the equations cannot be defined in the Stratonovich form but should
rather be defined using a Wick-Skorohod integral (which may be seen as a generaliza-
tion of the Ito integral defined for non-anticipative processes). The Skorohod integrals
are the right tools to remove (renormalize) infinite terms that would arise otherwise.
Their physical justification and interpretation is however somewhat more difficult and
their solutions are singular distributions; see e.g. [13, 14, 15, 19]. The stochastic models
presented here all have solutions that are square-integrable functions (in the probability
space in which randomness is defined). Moreover, they display the feature that they can
be obtained as limits of solutions of equations with equations with random coefficients
that oscillate at large but finite frequencies.

The rest of the paper is structured as follows. The main assumptions and main
results of the paper are stated in section 2. The derivation of the results relies on earlier
work available in [3, 4]. The reader is referred to the latter references for many details
of the derivation of the homogenized and stochastic equations. The derivation of the
homogenized limit is presented in section 3. The analysis of the SPDE in Stratonovich
form and the convergence of u. to its solution is carried out in section 4.

2 Main results

Potential and power spectrum. The potential ¢(¢,z) in (1) is a stationary Gaus-
sian process defined on a probability space (£, F,P) such that Eq = 0, where E is
mathematical expectation with respect to the measure P: Ef = [, f(w)dP(w). The



Gaussian process is then uniquely characterized by its correlation function

R(t,x) = E{q(s,y)a(s + t,y + o)} (2)

We denote by R(t, ) the Fourier transform of R(t, ) with respect to the second variable
and normalized such that

@r)IR(E, €)= / 6 Rt o) da (3)
Rd
The limiting behavior of the solution in (1) depends on the long range correlations
of the potential in both space and time. We consider two types of correlation functions.
In the first model corresponding to long range correlations in time, we assume that

R either R(z) ~ ﬁ as |z] = 00 0 <p < d,
R(t,x) ~ —— as [t| = oo and @ (4)
t or R(z)dx < oo,

R4

This translates in the Fourier domain as

S(t,€)

R(t,6) = e

n=(d—p)AO0, (5)

where S(t,g) is a bounded function integrable in the ¢ variable and converging to a
bounded and integrable function Sy (€) as t — oo. We use the notation aAb = min(a, b).
The case of time-independent potential can formally be modeled by choosing b = 0 and
S(€) independent of time.
In the second model corresponding to short range correlations in time, we assume
that
K(t)

either R(t,z) ~ T as |z| — oo for 0 < p < d with () integrable,
x
(6)
or / R(t,x)dxdt < oco.
Rd+1

This translates in the Fourier domain as

S(t,€)
s

where S (t,€) is a bounded function integrable in both the ¢ and the ¢ variables.
In both models, the case 0 < p < d and 0 < n =d —p < d corresponds to spatial
long range correlations, whereas the case of an integrable correlation function in time is

described by n = 0.

R(t,€) = n=(d—p)N0, (7)

Duhamel expansion and solution to (1). The analysis of equation (1) is ren-
dered more complicated by the fact that the Gaussian potential ¢.(t,z) := E%q(s%, )
is unbounded. The theory of existence and uniqueness of a solution to (1) would be
greatly simplified if the spatial domain were bounded and the equation augmented with,
say, Dirichlet condition at the domain’s boundary. The reason is that with probability
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one, the Gaussian potential would be bounded on the bounded domain for all times
0 <t <T. Classical theories would then ensure existence of a unique solution to the
equation with random potential. Here, we assume that the spatial domain is R? to
simplify the convergence analysis. We construct a solution u.(¢) by Duhamel expan-
sion, which we prove is in L*(Q x R?) for sufficiently small times. We do not address
the question of uniqueness, which could be addressed using a setting similar to the one
described in [3].
The Duhamel solution is constructed as follows. We formally replace (1) by

t
us(t,r) = Gig(w) + Heue(t,x),  Heue(t,z) := / Gi—sq=ue(s, T)ds, (8)
0

where G, = e~*P(®D) is the unperturbed propagator, solution operator of (1) with ¢ set

to 0. The Duhamel solution is then defined as

u(t,x) = Z Ue (L, ), Uen(t, ) = HZ[Geg|(t, ). 9)

n>0

We show that u.(t) € L2(2 x R?), at least for sufficiently small times 0 <t < T, where
T depends on the statistics of the random potential ¢(t, z); see (49) below.

Convergence to a homogenized solution. Convergence to a homogenized limit is
obtained by analyzing (1) in the Fourier domain. We thus restrict ourselves to the case

m

where P(z, D) = (—A)z.
In the cases where the limit u of u. as ¢ — 0 is deterministic, it is the solution of an
equation of the form
ou
— 4+ (-A)2u—pu=0 t>0, zecR?
ot (10)
u(0,2) = g(z),  w€RY

IVE]

where p = p(d,m,n, b, 3) is a positive constant that depends on the structure of the
power spectrum R(t,€) and may be expressed as the following limit:

r maft
p = lim gd-2 / / e lél R(—,ag)dgdt. (11)
e—0 0 R4 EB

The random corrector u. — E{u.} typically significantly differs from u. — u. The
reason is that u is the leading contribution to the deterministic component E{u.} of u..
There are however many deterministic corrections that can potentially be larger than
ue — E{u.}. It is the latter term we are interested in since it asymptotically captures
the stochasticity part of u.. In the situations considered here, the corrector has the
following structure. The size of the corrector is €7 for a properly chosen coefficient
v = y(d,m,n b, 3). After rescaling, the corrector converges weakly in space and in
distribution to the solution of the following stochastic equation with additive noise

%+(_A)%ul_pulzauw t>0, r € R?
ot (12)

u(0,z) = 0, r € RY,



for some o = o(d, m, n, b, 3) and some mean zero Gaussian field W (¢, z) whose statistics
depend on (m,n,b).

For the first model of power spectrum corresponding to long-range correlations in
time, we have the following result:

Theorem 2.1 Let u. be the solution given by (9) for a Gaussian potential with statistics
given by (5). Let us assume that

(I1-bm+n<d and azg—b(mz_ﬁ):(l_;)m%—%. (13)

Then u.(t) converges strongly in L*(2 x RY) uniformly in time for 0 <t < T < ;- - lo
u(t, z) solution of (10) with homogenized potential given by

St (509 -m
p(m,n,b, ) = / A; R et S3(1.) = 506 0cgom (9

The constant C,, depends on the power spectrum and is defined in (44) below. When the
potential q(x) is independent of time, the above expression simplifies as

plmw) = [ Z8ae— [ Elac (15)

re [€]™
which has an integrable singularity at € = 0 only when m +n < d.
The corrector to homogenization is determined by
Ue 61%;]{%} o Y= d—(1 2b)m
weakly in space and in distribution, where uy is the solution to (12) with o(m,n,b, 3)
and the mean-zero, self-similar, Gaussian field W given by

L (16)

02— 8(0),  E{W(ta)W(t+sz+y) = “P{Wr“ O<p<d (17)

0(y), Jpa R(z)dz < oo.

When the potential q(z) is independent of time, the above mean zero Gaussian field
W (z) has the statistics given in (17) with b = 0.

For the second model for the power spectrum corresponding to short memory in time,
the results should be modified as follows.

Theorem 2.2 Let u. be the solution given by (9) for a Gaussian potential with statistics
given by (7). Then independent of dimension and for a choice of potential scaling

= (TN 08)

we have that u. converges strongly in L*(Q x R?) uniformly in time for 0 <t < T to
u(t, x) solution of (10) with homogenized potential given by

( e
/GMn@/‘S@mﬁ d<m+n & B<m
Rd

p(m,n, B) = / Ad%“ €)dédt B=m (19)

,§)
d d )
\ /Rd |€|m g sman

m




The corrector to homogenization is determined by

—E d—(1—b)m—
w-Ew) _ . _d-(-bm-n
ev 2
weakly in space and in distribution, where uy is the solution to (12) with o(m,n,b, ()

and the mean-zero, self-similar, Gaussian field W given by

> 0, (20)

52 /R S(t,0)dt,  E{W(t,z)W(t+s,a+y)} = 5(75){ lgy(|y)p Lo ;g(:f);di < 0.

(21)

We thus observe that potentials with short memory in time always give rise to a homog-
enized limit independent of dimension. The corrector is then the solution of a stochastic
equation with additive noise that is white in time and white or colored in space.

The behavior is different for potentials with long memory in time (which includes
time-independent potentials). Only when the dimension d is sufficiently large as in (13)
do we obtain a homogenized limit. The critical dimension d., = (1 — b)m + n also
gives rise to a homogenized limit for an appropriate scaling of €. We do not treat this
critical case here and refer the reader to [3] where the case b = 0 is treated. When the
dimension d < d.., we observe a totally different behavior. The “corrector” given in
(20) then becomes as large as the “leading” term and a different regime arises.

Convergence to a stochastic limit. The convergence of u. to a stochastic limit is
analyzed in the physical domain. Let G(t,z;y) be the Green’s function of the unper-
turbed operator, i.e.,

e lg(t,n) = [ Gltasy)gly)dy (22)

R4
The stochastic partial differential equation we obtain for the limit of u,. is of the form

%+P(m,D)u:au0W(t,$)7 t>0, zeR (23)

u(0,2) = g(x),  weRY

where ¢ > 0 is a constant and W(t,z) is a centered Gaussian field with correlation
function given by

E{W (t,x)W(t + s,z +y)} = ﬁ { lsy(|y—;' 0 :i; d ’ (24)

and where u o W (t, z) means that the product is understood as a Stratonovich integral.
More precisely, this means that we look for mild solutions to (23) of the form

t
utia) = e Pg(e) 4o [ [ G- smyulsy) o Wdsdy),  (25)
0 JRd
with W (t, ) formally defined such that W (dy,ds) = W (t, z)ds dy. The solution u(s, )

in (25) is not deterministic and the above integral needs to be defined carefully. This is
done as in [3] by means of iterated Stratonovich integrals. More precisely, let us define

Hu(t,x) = cr/o /Rd G(t — s,x;y)u(s,y) o W(ds, dy), (26)

7



and iteratively
ug(t, z) = e @Dyt z), Uni1(t, 1) = Hu,(t,z) = H" g(t, x). (27)

We observe that w, is defined as n iterated Stratonovich integrals that can be defined
as in [3]; see below. We then have the following result.

Theorem 2.3 Let us define u(t,x) = > . un(t,x). Thenu(t) € L*(QxR?) uniformly
on compact intervals in time is a solution to (25). Moreover, there exists a dense
subspace M = M(T) of L*((0,T) x R x Q) in which we can show that u(t,z) above is
the unique solution to (25).

The main ideas of the proof of the theorem will be presented in section 4. The solution
to the e—dependent problem is likewise constructed by a Duhamel expansion as in (8)-
(9). For the regimes that are not covered in Theorem 2.1, namely when dimension is
sufficiently small so that (1 — b)m +n > d, it turns out that the operators H and H.
are very “close” in an appropriate metric. More precisely, we have the following result.

Theorem 2.4 Let u. be the solution given by (9) for a Gaussian potential with statistics
given by (5). Let us assume that P(z, D) = (=A)= as in Theorem 2.1 and that

(1-b)m+n>d, a:d_n;ﬁb:pzﬁb. (28)

Then u. converges in distribution to the solution u of (23) described in Theorem 2.3.
The multiplicative noise has statistics given by (24) and the constant o is given by

K 0<p<d

2 _ - ~
7= R(x)dx integrable R, (29)

R4

where k and R are defined in (4).

Some remarks. Before addressing the derivation of the results presented above, we
give some examples of application and remarks.

) = (=A)2. More generally, let
2) satisfy the following integra-

t
/ / il y)dtdy < 00, (30)
re  |t°y[?

uniformly in x and some regularity condition outlined in (71) below. Then the above
existence and convergence results still hold; see []].

Remark 2.5 The above theorem was stated for P(x, D
the Green’s function G(t,xz;y) of P(x,D) defined in (2
bility constraint

Remark 2.6 Consider the practically interesting case P(x, D) = —A with thus m =
2. Then we have the following results. Consider a Gaussian potential ¢(¢,x) with
correlation function satisfying (4). The behavior of the correlation function at infinity
dictates the type of convergence. When p + 2b < 2, i.e., for long (spatial and/or
temporal) memory effects, we obtain a stochastic limit whose multiplicative noise term
W(t,z) is self-similar and has the same asymptotic behavior as ¢(t,z) for large ¢ and
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z. For time independent potentials ¢(z), the constraint becomes R(z) ~ klz|™? with
p < 2 and this independent of spatial dimension. Stochastic models of the form (23)
for the heat equation are therefore possible in all dimensions provided that they have
sufficiently slow decorrelations.

When p 4+ 2b > 2, we observe a sharp transition to a homogenization regime. The
critical case p + 2b = 2 was not treated in this paper. We refer the reader to [4] for
an example of a critical case. When p + 2b > 2, the decorrelation is sufficiently fast
that the solution u. “sees” enough of the randomness in space-time to efficiently average
over it and converge to a deterministic limit by ergodicity. The effects of randomness
then appear as a corrector to homogenization. In the simplified setting of a Gaussian
potential, the corrector to homogenization takes a very explicit form as the solution to
a stochastic equation with additive noise (12).

Remark 2.7 We have considered two types of stochastic models. The first model in
(12) is a stochastic PDE with additive noise. Since u is deterministic in the regime of
homogenization, it is not difficult to make sense of the product on the right hand side
of (12) and obtain that

uy(t, ) = /0 /Rd G,(t — s, z,y)u(s,y)W(dy,ds), (31)

where G,(t — s,x,y) is the Green’s function of the operator e~1=2%~rl  The above
solution is well-defined for a wide class of driving noises W (t,z) independent of the
spatial dimension.

The second model in (23) is a stochastic PDE with multiplicative noise. Its analysis
is significantly more complicated. The reason is that the solution u, as in the model
with additive noise (12), can be rather singular. The product uW of singular objects
may therefore not make sense. What Theorem 2.3 shows is that the product indeed
makes sense when a condition essentially of the form (30) holds, which is equivalent to
the constraint on dimension in (28) for P(x, D) = (=A)% as may be verified in the
Fourier domain.

When (30) does not hold, we verify that E{us(¢, x)} is unbounded in the Duhamel ex-
pansion (27). There are no reasonable way to define solutions to (23) with Stratonovich
product. Other stochastic models are then possible, for instance models that interpret
u(t, x) o W (dzx,dt) as a Skorohod integral, which generalizes the It6 integral to anticipa-
tive processes. The physical interpretation of such models is however quite different and
they cannot be derived as limits of solutions to equations with random coefficients of
the form (1). We refer the reader to e.g. [13, 17, 19, 27] for references on such models.

Remark 2.8 The different expressions for the effective medium potential p in Theorems
2.1 and 2.2 all come from analyzing the limit as ¢ — 0 of

i [ e—tlf'“ffz<i 55>d§dt (32)
Pe 0 Rd gﬁ’ .

Boundedness of p. hinges on the technical fact that R(T, €) is bounded for small values
of 7 and that its singular behavior for large values of 7 is compatible with its singular



behavior for small values of €. This result is in sharp contrast with the analysis of (30),
which for G(x, D) = (—A)2 is equivalent to

/T/ €t|§|m /T dt </‘ €_|E‘m df) -

S = —_— = “a Q.

o Jra [EM° o oS N e [

The latter bound implies that d < n + (1 — b)m while p. is bounded as soon as d >

n+ (1 —b)m (Theorem 2.1) and independent of d when R(7,£) is integrable in the time
variable (Theorem 2.2).

Remark 2.9 We have assumed in (4) and (6) that the correlation was isotropic in the
spatial variables. More generally, we can replace || " in (4) and (6) by any homogeneous
function h(z) of degree —p, i.e., a function such that h(Az) = [A|7Ph(x). All the results

in the above theorems hold with |§|™" replaced by Cp,h(€), where C}, is an appropriate
constant and h(§) is homogeneous of degree —n.

3 Convergence to a homogenized equation

This section is devoted to a derivation of the results presented in Theorems 2.1 and
2.2. The proofs are based on modifications of similar proofs in [4]. We focus on the
differences between the derivations and refer the reader to [4] for more details. The
methodology followed in [4] consists of recasting (1) in the Fourier domain

0

(& + gm)@e = (js * U, (33)

with @.(0,&) = g(§), where

o ¥ 0:(1,€) = / (8,6 — 0. (Q)dC.

R4

Here and below, we use the notation £™ = ||™. Since ¢(z) is a stationary mean zero
Gaussian random field, it admits the following spectral representation

1 &x 5
o) = g [ e (34)

where ¢(£)d¢ is the complex spectral process such that

Bl [ F©i©d | g€ = | F©a(6)m) RE)de,

for all f and g in L*(R%; R(€)d€). Note that E{G(€)d(Q)} = R(€)6(6+¢) and E{(£)d(¢)} =
R(£)6(€ =€)

Duhamel expansion. The equation (33) is then recast as
m ¢ m
as(tv f) = eitf Q(f) + / 6735 / Qs(t - 875 - fl)l&sa -5, fl)dglds' (35)
0 R

10



This allows us to write the formal Duhamel expansion

ﬁs(tﬁ) = Zan,s(t7€>> (36)

neN
n—1 . n—1
et 6) = / I / e &5k [ (b € — Esn)d(En)dsdE.  (37)
k=0 k=0

Here, we have introduced the following notation:

n—1 n
S = (S0, 5n-1), th(8) =t —s0— ... — s_1, to(s) =t, ds =[] dsi, d& =[] dé.
k=0 k=1

We want to show that for sufficiently small times, the expansion (36) converges (uni-
formly for all ¢ sufficiently small) in the L?(2 x R?) sense and that the L? norm of u.(#)
is bounded by the L?(R%) norm of g.

Estimates of moments. The convergence results are based on the analysis of the
following moments

U™ (t,€,C) = Bt (£, §)tiem (£, Q) } (38)

which are given by

n—1 tr(s) m—1 (1) . .
/ 11 / 11 / oD o (- T Td SR G o= (- )
Ralrtm) p 2o J0 15 /0

n—1m—1

$E{ T TT (b 6 = G1)dellies G = o) (60 )it (Gr) dsdrdE .

k=0 1=0

We also need to define the moments

Ug(ta §) = E{as,n(tv 5)}’ (39)

and the covariances

V(€5 Q) = cov(tien(t, ), tem(t,€)) = U™ (1,6, C) — U (U, Q). (40)

We introduce the notation s,(s) = t,(s) = t_zz;é sp and T (T) = t(T) = t_27i61 .
We also define &, 1141 = G and Spix41 = Tk for 0 < k& < m. Then, we observe that
Uan’m(t, &o, fn+m+1) may be recast as

n+m+1 ntm+l _
/ H 6_8'“5’TE{ H Ge(ths k1 — fk)}ﬁ(fn)ﬁO(an)def (41)
k=0 k=1,k#n+1

where the domain of integration in the s and £ variables is inherited from the previous
expression. The potential is of the form

q(t, z) = iq(i f)-

ex\eb’ ¢
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We observe that the analysis of (38) requires that we calculate the expectation of a
finite product of potentials. The expectation in U™ vanishes unless there is n € N
such that n +m = 2n is even.

The variables &, are gathered in pairs as follows. For each 1 < k < n + m with
k # n+ 1, we define a pair (&, &) with k£ < [ for the contribution such that

E{g(tr, k-1 = &k)qe (b, 11 — &)}
= 2O R(MFN e(& — &1))0(Ek — o1 + & — &1).

The number of pairings in a product of n+m = 2n terms (i.e., the number of allocations
of the set {1,...,2n} into n unordered pairs) is equal to

(2n—1)!  (2n)!

2n-1(p —1)I  pl2n

= (2n — I

In each instance of the pairings, we have n terms k and 7 terms [ = [(k). We denote by
simple pairs the pairs such that (k) = k + 1, which thus involve a delta function of
the form 0(&x41 — &k—1). The collection of pairs (&, &) for n values of k and 7 values

#ﬂl)l), graphs
that can be constructed for a given value of 7. We denote by Ay = Ay(g) the collection
of the n values of k and by By = By(g) the collection of the n values of I(k). Then we

find that the product of random terms in U™ is given by

of (k) constitutes a graph g € &, the collection of all possible |&| =

n+m+1
E{ H Q= (t, &1 — fk)}
k=1k#n+1 4
Z H d— 2aR< l(k (gk gk_l))é(é-k - gk—l + gl(k) - gl(k)_l) :
9€B keAo(g)

This allows us to summarize the main results:

n+m+1 ~
U;%m (ta §07 gn-‘rm—i—l) = / H G_Skg}:g(gn)ﬂO(gn—H) Z
k=0

d—2a 5tk — Zfl(/l;) - "
TT =R (" 26 — €-1) ) 0(6 — G + Gy — 1) dsde.
keAo(g)
Similarly,
UP(t, €0) = §(&) / [TeF>
i 12:0 9€6 (43)
H 5d’2"‘R<—k gﬁl (&) e(&r — 5#1))5(51{ — &1 + &y — Eugiy—1) dsdE.
k€Ao(g)

Analysis of crossing and non-simple graphs. The analysis of the sum over the
graphs g is handled as in [4]. The graphs in & can be grouped into several categories.
We denote by &, the set of crossing graphs, which admit at least one value of k < n
such that [(k) > n + 2. We denote the non-crossing graphs by &,. = &\&,.. The

12



unique graph composed solely of simple pairs is called gs;. The crossing graphs with a
single crossing are called &, while &,.,; = &.\G; is the set of graphs with at least two
crossings.

With these definitions, V"™ (t, £y, &nimy1) is the sum over the crossing graphs and
U2 (t,&0)Um(t, &nvms) is the sum over the non-crossing graphs in U™ (¢, £, Entmt1)-

The smgle graph g is responsible for the homogenized limit. The non-crossing
graphs are responsible for the ensemble average E{u.}. The crossing graphs with a
single crossing &, are responsible for the corrector to homogenization. All the other
graphs are shown collectively to contribute less than the aforementioned terms.

The estimates for the crossing and non-crossing graphs are based on the following
generalization of [4, Lemma 2.1]:

Lemma 3.1 Let k=0 or k = 1. Assume that R(t, &) is of the form given in (5). Then
for each n > 0, there ezists a constant C, independent of (o € R?, (; € R?, and u € R
such that

// e |5—Emco|m n) RS- G )asie < G, ()

where 4, = (d —n— (1 —b)m —n) Am. Assume that R(t,€) is of the form given in (6).
Then the above holds with b = 0. In both cases, when d —n— (1 —b)m —n # m, we can
set n =0 with Cy—p = Cy < 0.

Proof. Let us first replace 7 At by 7 for some 7 < T'. We then observe that we need
to bound the following term

e /Rd/ 7m£m [3 fn;o’m : t>k‘3 - U’ﬁl‘ﬁ - Cl’”g<56_5u’€ a Q)deS'

Recall that 2a = (1 — b)m + 8b. We first consider the integral in § over the domain
|€ — (1] > 1. Since S is bounded in the first variable, we observe that

/T efssf""ff"" 8m(lfb)
ds i
o |s—ul’ &

On the ball of radius one centered at &, we obtain that

IA

/ ( g™ /\t)ksm(l b)dg < CMd=m)rm)+m(1-b)—n
B(&o,1) |§ C0|m g

On the domain R\(B(&, 1) U B(&1,1)), the integral is yet smaller by integrability of
S with respect to the second variable. Both contributions are smaller than the result
announced in (44), whose leading contribution comes from the integral over B(&;,1).

The contribution to (44) on B(&;, 1) is bounded by

(1-b) T e g™ k
i m/ / ( At) dsde.
B Jo I8 —ul?l§ =GP\ E—Gol™

We verify that the maximum for such a contribution is attained when (, = (; = 0 and
u =0 (see e.g. [4, Lemma 2.2]). We then separate the integrals |{| < e and [¢| > . The
latter contribution is bounded by

1 —s
ngm/ Td—l—n—km—(l—b)mdr /oo € - ds < Cvi_:k((d—n—(l—b)m)/\m)7
€ 0 S

13



when d —n—km— (1 —b)m # 0 and with a logarithmic singularity otherwise (and hence
the presence of n > 0 in (44)). We verify that the contribution || < ¢ is at best of the
same order and this concludes the proof of the lemma. The proof is also quite similar
when the power spectrum is integrable in time. 0O

In order to exhibit those crossing graphs that contribute to the random corrector
to homogenization, we need to generalize the estimate [4, Eq.(50)]. This is based on
replacing [4, Eq.(48)] in [4, Eq.(47)] by

6d72a7n+ﬁb

d—2a Tas—u
P )ds< Ot
o ) R e 0

where C, is a constant independent of u. This inequality is a direct consequence of the
assumptions on the power spectrum both in the integrable and non-integrable cases.

Equipped with these inequalities, the derivation of Theorems 2.1 and 2.2 is dealt
with as in [4]. We merely highlight the differences here. The above lemma with & = 0
allows one to generalize [4, Eq.(39)] to the setting of Theorems 2.1 and 2.2. The lemma
with £ = 1 allows one to generalize [4, Eq.(40)] and show that crossing graphs have
negligible energy as in [4, Eq.(44)]. Using (45) in lieu of [4, Eq.(48)], we find that [4,
(50)] is replaced by

(45)

V(1o i) < COx e ([ as)p gl 40
where we have defined |®.| as the number of crossing graphs, where
n = n n
&|C ( / ds) < Z(4c,1)" (47)

as in [4, (42)], and where we have assumed that ¢ is bounded for the norm (in the
Fourier domain)

. 1 .

9l = sup [ late)Pde (15)
¢eRd JRRA ’5 - C‘

This shows that all crossing graphs contribute at most a contribution of size ¢

gd=n=(=bm <« 1. Moreover, the estimate (47) shows that the summation over all graphs

is converging as soon as

d—2a—n+p8b _

AC,T < 1. (49)

This is the smallness condition we need to impose on final time in order to obtain our
convergence result.

Estimating the various contributions. Now, each graph with a non-crossing pair
(€&, &ry) such that [(k) > k + 1 (non simple pair) generates a contribution that is e
smaller than when such a pair cannot be found. This shows that the only contribution of
order O(1) is the simple graph g,. All graphs in &, are therefore of order e —"=(1=b)mzm,
This implies that the graphs of order exactly 4 "~(1=0)" are the crossing graphs with
simple pairs, i.e., graphs in &.

These estimates plus the control (47)-(49) also allow one to show that u.(t) is indeed
a function in L?(R¢ x Q) uniformly in time for 0 < ¢t < T, that the graph g, provides
the only order O(1) contribution, and that the corrector is given by the graphs in &..
The analysis of the corrector is then performed as in [4, Section 3.2].
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Analysis of the homogenization contribution. The analysis of the leading con-
tribution is performed as in [4, Section 3.1]. The simple graph contribution is given
by

Ues(t,&0) = Y UZ(t,60) == Ue(t, &) (%), (50)

ne2N

where, using the notation 7 = 2n (with U27*" = 0)
Uls(t,6) = UL, €0)g(o) (51)
n n—1
N
UL, &) = /H e s [ R(W, e(&art1 — ka)>5(52k+2 — &op)dsdé.
k=0 k=0

We can sum these contributions and verify that U. (¢, &) solves the following integral
equation in the time variable

6 S t € _ e_té'm ~

/ / /Rd et 2aR< (& — f)) s(t—s—s1,8)dérdsds. (52)

The last term may be recast as

t v
/ ( / €M (0s1) P51 20 / R(‘S_;7g§1_gg>dgldsl>Us,s(t—v,g)dv.
0 0 ]Rd g

The same analysis as in [4, Section 3.1] shows that the above term may be well approx-
imated by fot e " p U 5(t — v, &)dv, where

:/ /d e’ﬂnslad*m]%(é%,€51>d51d51, (53)
o Jr

which is independent of v for v > 0. This is the expression given in (32). It remains
to analyze the limit of (53) as € — 0 to obtain the results stated in Theorems 2.1 and
2.2. The technical but straightforward details are left to the reader. This concludes the
proof of Theorems 2.1 and 2.2.

4 Convergence to a stochastic equation

The derivation of Theorems 2.3 and 2.4 closely follows the presentation in [3]. Lengthy
calculations very similar to those in [3] are not reproduced here. Rather, we merely
describe what needs to be modified in the proofs in [3].

The first item is the construction of iterated Stratonovich integrals that allow us to
make sense of the Duhamel solution defined in Theorem 2.3. We use estimates that are
similar to those obtained in the preceding section. The construction of a space in which
we can obtain uniqueness of mild solutions to the limiting stochastic equation (23) may
be done as in [3] and is not considered here. It finally remains to address the perturbed
problem (1) by showing that the Duhamel solution is well-defined and that it converges
in law to the solution to (23) as ¢ — 0.
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Construction of iterated Stratonovich integrals. Let z = (¢, z) denote the spatio-
temporal variables. Let f(z1,...,2,) be a function of n variables in R4*1. We want to
define the iterated Stratonovich integral Z,(f) and first assume that f separates as
f(z1, ..o, 20) = [z fu(2k). Then we define

(1 fe(=0)) = [T Ta (=), (54)

where Zy(f) = [pars f(2)dW (2) is defined as the usual multi-parameter Wiener integral
for the Gaussian measure dWW(z). We recall that the Gaussian measure with “density”
W (z) is defined by its correlation function in (24), which we denote by

p(2) = E{W(OW(C + 2)} (55)

Note that Z;(f) is then the centered Gaussian random variable with variance given by

fR2d+2 f(Z)f(C)gO(Z - C)dZdC-

It remains to generalize the above definition to a larger class of functions by density.
We define the symmetrized function

1
fﬁ(zh"'uzn):m Z f(Zs(l)a"'aZS(n)>7 (56)
s€6y
where the sum is taken over the n! permutations of the variables zi,...,2,. We then

define Z,(f) = Z,(fs) and thus now consider functions that are symmetric in their
arguments. As in [3], we drop the o in the definition of the Stratonovich integral and
write the Ito-Skorohod integral as 6W. The iterated It6 integral is defined as

Lo(ga) — /R o e )W () L OW () (57)

The above iterated integral is well-known to exist for all functions g, such that

lgnlliy = n(2)gn(2)0%" (2 = 2')dzd?" < oo. (58)
R2n(d+1)

Here, o®™(z) = ¢(21) ... ¢(2,). Let us pretend that iterated Stratonovich integrals are
defined and that we want to write them in terms of iterated Ito integrals. More precisely,
let us assume that a square integrable random variable f(w) may be decomposed as

[ = ZIn<fn) = Z Im(gm)'

n>0 m>0

Then we may project Stratonovich integrals onto the orthogonal basis of Ito integrals
as follows

E{Z.(fa)Im(ém)} = B{Ln(gm) Lm () } = m! /RQm(cHl) gm(2)¢m(zl)90®m(z - z’)dzdz’,
where ¢, is a test function. We find that E{Z,(f,)],.(¢m)} is equal to
/R e fa(z o 20) O (Cry ooy o) B{dW (21) . dW (2,)0W (C1) - . OW (G }-

16



We have again to look at a product of Gaussian measures with the additional rule that
E{6W (yx)0W (y;)} = 0 for k # [ by renormalization of the It6-Skorohod integral. The
functions f,, and ¢, are symmetric in their arguments (i.e., invariant by permutation
of their variables). We observe that the variables y need be paired with m variables x
so that we need n > m for the above expression not to vanish. There are (:l) ways of
pairing the y variables. There remain n — m = 2k variables that need be paired, for a
possible number of pairings equal to

(2k — 1)!

The above term is thus given by

k k —
(ml;z )(k@ﬁ/ﬁn% G €)M (€ — €)ddE ¢ (Q)dC.

This shows that

(m + 2k)!
CmlkI2k

gm(C) = / Fson (G, €, €)M (€ — €)dede’. (59)

As a consequence, we have shown by projection onto the basis of iterated Ito-Skorohod
integrals that

[

0|3

] ol

e /R o Dulanan €€ = €)dede). (60

k=0 (

In(fn) =

This serves as a possible definition for the iterated Stratonovich integral. We observe
that the above integral is well-defined provided that the right-hand side is well-defined.
This imposes [§] 4 1 constraints on f,(z,) in order for the integral to be well-defined
since each g, has to satisfy (58). We easily verify that (60) is a generalization of (54)
obtained for simple functions.

Duhamel solution. It remains to show that the iterated Stratonovich integrals in-
deed define the terms w,(t,z) = Z,(f.(t,x,-) for appropriate kernels f,(¢,x,-), in
the Duhamel expansion and that the sum over n is a square integrable function u €
L2((0,T) x R? x Q) for all 0 < T < oo.

For z = (t,7), we define R? = (0,¢) x R? and R4 = (0,7) x R%. We also define
G(z,2') = G(t — ', x;2') and ug(z) = (e7P@P)g)(z). Then we observe that

n(20) =0 / / G(z0,21) - .- G(2n-1, 2n)uo(2n)W(d21) ... W(dz,),
RY,

where the above is defined as an iterated Stratonovich integral. That u € L?((0,T) x
R x Q) is obtained by estimating the following correlations

Lym = E{ /Rd un(z)um(z)dz}.
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Derivation of the estimates. The hypotheses on the Green’s function guaranties
the existence of v < 1 such that the L? norm of the Green’s function in space is bounded
by t~7. Moreover, using the explicit expression e " for the Green’s function in the
Fourier domain, we obtain that

C
((t =7) + (u—v))wlt —ul*

/ Glt—7,2,y)G(u—v,z()p(r—2z,t—u)drdz < (61)
R2d

Using the above estimate in a straightforward manner, lengthy calculations similar to
those in [3] show that I, in [3, Eq. (18)] should be replaced by

to t1 tn_1 N1 dt
- k+1
Cn/ tlv/ / || ey
0 0 0 gl (be = frgr)2m 2

The calculation below [3, Eq. (18)] shows that the above term is bounded by

n,,—pn p
c,C"n", 1—a—b>p>0.

As a consequence, we have

Z I <2 Z Inm < QZnC’pC’”n_p” < 0.

m<n n

This shows the L? bound. It is then straightforward to generalize [3, Theorem 2] and
obtain that the Duhamel solution is the unique solution to the stochastic PDE problem
in the space M constructed in [3, Eq. (23)] with the coefficients g, defined in (59).

Convergence result. The proof of convergence of u. to u is also similar to the cor-
responding result in [3]. The main difference is that the potential and the limiting
Gaussian measure are now allowed to depend on time.

Let us define

t
Hoult,z) = / Gt — s, y)u(s, ). (s, y)dyds, (62)
0 Rd

where we have defined ¢.(s,y) =™

as

q(Z5,%). The Duhamel solution is defined formally

ue(t,2) = Y tno(t,2), Uparo(t7) = Hettn o, 2), uo(t,x) = e PP [g(x)],  (63)

n=0

where ¢ is the initial condition of the stochastic equation. The same proof that leads
to the square integrability of u(t,z) solution of the SPDE also shows that wu.(t,z) is
well defined as an element in L?(Q x R?) uniformly in time. It remains to analyze the
convergence of ..

We consider the case of long range memory effects both in time and space for con-
creteness. The other cases may be handled similarly. We thus consider the setting
where

R(t,x) ~ kp(t,x), (t,z) — oo, o(t,x) = tlﬁ =R{W(t—s,2z—y)W(s v}
(64)
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Let R(w,&) be the power spectrum of g(t,x) in all variables and p(w,€) the Fourier
transform of ¢(t, ) in all variables, which is proportional to |w|°~[¢[P~¢. By Bochner’s
theorem, R(w,£) is non-negative and we may define

R(w, &)\ %
o)

Moreover, by normalization, we find that p(0,0) = \/k = 0. Let p(t,x) be the inverse
Fourier transform of p(w, ). The construction of p, which is real-valued, is such that

plw. ) = ( (65)

R(t,z) = /R2d+2 p(t — s,z —y)p(s — o,y — 2)p(o, z)dsdodydz. (66)

The reason for these calculations is that we are now in a position to define a mollification
of W (s, z) as follows:

. 1 t—8 T —yY\,;
ita) = [ (S )W s sy, (67)

This defines a mean-zero Gaussian process whose covariance function is found, using

(66) and (64), to be:

E{G(60)0,0)} = 5 R( 550 (65)

In other words, ¢. and ¢. have the same correlation function and hence have the same
probability distribution. The solution @. constructed as in (63) with ¢. replaced by G.
thus has the same distribution as u.. Convergence in distribution of . to v thus implies
convergence in distribution of u. to u. It turns out that 4. converges strongly to u.

We now drop the " in @, and look at the corrector u — u., where wu is the solution of
the limiting stochastic PDE. We can show as in [3] that u. — u converges to 0 in the
L*(Q x RY) sense uniformly in time. We refer the reader to that paper for additional
details and stress here the main differences. Convergence is obtained by analyzing terms
of the form

Tanon(t) = [ B (10(0) = ) (1) = () e

with

5I€nm t =

/ Il [ /H (=t 15 0) [ Gltnsrasuo©)e

/ / G(s1— s141, U3 yl+1)/ G(8m: Ymi Quo(C)dCH(zo — )0 (yo — )
{(HO’dW tk,l’k an tk,l‘k)dtkdl’k><HO’dW(Sl,yl
k=1 =1

The above statistical moments involve sums over quantities of the form dW (t,r) —
¢-(t,x)dtdx := (W(t,x) —q.(t, z))dtdz. That such quantities are small in an appropriate

(st u1) dSldyz) }dx.

H:S
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sense is based on the following calculations, generalizing [3, Eq. (32)] (where each
instance of dW should read odW. We recall that o2 = k.):

E{oW (t,z)cW(0,0)} = Uzw(t,x)t
E{ocW (t,2)q.(0,0)} = "/Rdﬂﬂ( &;S’x—y

1 t
E{q(t)a.0,0} = —5R(5:2).

1
. ) €d+590(8, y)dsdy (69)

Because 5(0,0) = 1, we verify that E{cW (t,2)q.(0,0)} converges to o(t, x) weakly
(as a distribution) as ¢ — 0 and that E{q.(t,2)q-(0,0)} converges to o®p(t,z) in
the same sense. This shows that E{(cW (¢, z) — ¢.(t,2))oW (0,0)} and E{(cW (t,z) —
¢-(t,2))q-(0,0)} converge to 0 in the same sense. We can now follow the proof of |3,
Theorem 4] and obtain that ¢1. ,,,(t) converges to 0 uniformly over compact intervals.
The only difference with respect to the proof of [3, Theorem 4] is that [3, Eq. (33)]
should now be replaced by

/ G(s — s0,2;Q)G(T — 710,Y; §)he (s — 7,2 — y)dady, (70)
R2d

with h.(t, z) of the form ]E{(aW(t 2)—q-(t, )W (0,0)} or E{(cW (¢, 2)—q(t, 2))q(0,0)}.
Using the explicit expression of G (t, &) = e ™ for the Fourier transform of G(t, z;y) =
G(t,z —y), we find for the possible expressions of h. that

Ce?
((t =7) + (u—v))w]t =l
(71)
for some positive values of v and n with 7 arbitrary small (with then ~ small as well).
This shows that the contribution in (70) is small and as in [3] that 61, ,,(t) converges
to 0 uniformly over compact intervals. This concludes the derivation of the convergence
result.

’/ G (s — s0,2;Q)G(T — 70, y; §)he(s — 7, @ — y)dady| <
RZd
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