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Abstract
This paper deals with the reconstruction and the redundancy of the two-
dimensional attenuated Radon transform (AtRT). When full measurements
are available, we characterize the information on a spatially and angularly
dependent function that can be retrieved from its AtRT. In particular we consider
the reconstruction of isotropic scalar and vector-valued source terms. Next we
consider the reconstruction of a spatially dependent function from its AtRT with
half angular measurements. We show that the inversion is feasible provided
that the spatial variations of the absorption coefficient are not too large. The
reconstruction is based on the decomposition of the reconstruction operator
in the Novikov formula into three components bounded in the L2 sense. The
first component involves the measured partial data. The second component is
a skew-symmetric operator. The third component is a symmetric and compact
contribution whose spectral radius, which depends on the attenuation, needs
to be smaller than unity in our reconstruction. In a paper (Bal and Moireau,
Preprint) on the numerical implementation of the reconstruction, we show
that the reconstruction algorithm can be successfully applied in situations of
practical interest.

1. Introduction

The reconstruction of a function from its attenuated Radon transform (AtRT) finds many
applications in medical imaging, for instance image reconstruction in single-photon emission
computed tomography (SPECT) [13, 16], or in Doppler tomography [7, 8, 24, 27], with non-
uniform attenuation. Whereas reconstruction formulae in the absence of absorption [22] and for
constant absorption [28] have been known for several decades now, the inversion of the general
AtRT in the case of arbitrary absorption has been obtained only recently; see [15, 18, 19] for the
derivation of the Novikov formula and [4, 7, 8] for a different approach. Direct discretizations
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of the Novikov formula have successfully been used to invert the AtRT numerically from
synthetic and real data [10, 12]. Other contributions to the analysis of the attenuated Radon
transform include [6, 9, 11, 21, 25].

Denoting by g(s, θ) with s ∈ R and θ ∈ (0, 2π) the (non-attenuated) Radon transform of
a source term f (x) defined over R2, it is well-known that g(−s, θ + π) = g(s, θ). There is
therefore a redundancy of order 2 in the measured data when the source term is isotropic. This
redundancy can be used to reduce the effect of noise in the data. In many practical situations,
however, we would like to reconstruct the source term f (x) from half measurements, for
instance for θ ∈ (0, π) only.

Whereas the case of vanishing absorption is easily handled since g(−s, θ+π)= g(s, θ), no
such simplification arises in the case of arbitrary absorption. In the case of constant absorption,
a method was recently derived in [17] to iteratively reconstruct the source term f (x) from its
exponential Radon transform (ERT: the AtRT in the case of constant absorption) with half
measurements. The method was generalized to more arbitrary domains of data acquisition
in [20]. Some work also exists on the analysis of the Range conditions for full measurements,
i.e., the constraints that the measured data must satisfy to be the ERT of a source term of the
form f (x) [2].

These reconstruction techniques are based on a judicious change of contours of integration
in the complex plane and on the Fourier slice theorem. As such they do not adapt to the case of
spatially varying attenuation. In the latter case, the redundancy is expressed in terms of Range
conditions for the measured data [13, 19]. Such Range conditions can be used to determine
more information than the source term as in [14] but do not provide any algorithm to reconstruct
the source term from partial measurements. Let us mention [26] for an alternative perspective
on the analysis of redundant information in the AtRT and [3, 23] for results on the simultaneous
detection of the source term and the absorption parameter.

In this paper we analyse the redundancy in the AtRT by characterizing the information
that can be reconstructed from a possibly angularly dependent function. We show that two
spatially independent scalar functions can be reconstructed from the AtRT as in the case of the
Radon transform and propose explicit reconstructions in simple cases. The reconstructions are
based on an extension of the technique developed in [19] involving the solution of a Riemann–
Hilbert problem. We consider two applications: reconstruction of a mildly angularly dependent
source term in SPECT and reconstruction of a vector-valued source term of the form θ · F(x) in
Doppler tomography. In particular we show that both components of F(x) can be reconstructed
provided that the support of F(x) is included in the support of a(x).

In the case where half of the angular measurements are available we propose an algorithm
that allows us to reconstruct compactly supported (in the unit ball B to simplify) source terms
from the AtRT g(s, θ) for s ∈ R and θ ∈ M , where M is such that (0, 2π)\M ⊂ M + π .
This implies that either g(s, θ) or g(s, θ + π) is measured for all θ and all s. The simplest
example is M = [0, π) as in [17]. More general situations such as those in [20] are also
included. The algorithm is based on a decomposition of the Novikov formula [18] into three
components. The first component involves only the measured data on R × M . The second
component involves an operator bounded in L2(B) and skew-symmetric. It is similar to
the skew-symmetric operator introduced in [17] in the case of constant absorption. The key
observation to obtain a skew-symmetric operator is a symmetry of the AtRT (see (61) below).
The third operator is a compact and self-adjoint operator in L2(B). It vanishes in the case
of constant absorption. Our reconstruction algorithm is iterative and requires that the latter
operator be of spectral radius less than unity. This constraints corresponds to assuming that the
absorption parameter does not have too large spatial variations. The case of large variations of
the absorption parameter remains open. However, we show in [5], devoted to the numerical
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implementation of the method, that in many situations of practical interest the method of
reconstruction can be successfully applied.

The rest of the paper is organized as follows. In section 2 we present an extension of
the Novikov formula in the case where the source term f (x, θ) may depend on the angle of
incidence θ . This derivation gives some insight on the redundancy of the measured data and
the type of information on f (x, θ) that can be obtained from its AtRT. It also allows us to
reconstruct F(x) in a source term of the form f (x, θ) = θ · F(x) in Doppler tomography.
The iterative reconstruction algorithm is derived in section 3. The proof of convergence of the
reconstruction algorithm is based on regularity estimates for the various components that appear
in the Novikov reconstruction formula. Such estimates are given in section 4. Concluding
remarks are presented in section 5.

2. Reconstruction from full measurements

We derive in this section a generalization of the Novikov formula [18, 19], which allows us to
reconstruct a function from its attenuated Radon transform (AtRT). We consider here functions
that may depend on the direction of propagation and obtain the information on the source
term that can be reconstructed from the AtRT. This generalization of the original Novikov
reconstruction formula displays quite explicitly the redundancy in two-dimensional AtRT and
provides useful reconstruction formulae in SPECT and Doppler tomography applications.

The rest of the section is organized as follows. Section 2.1 introduces the AtRT and the
main notation used in the paper. Section 2.2 recasts the reconstruction problem as a Riemann–
Hilbert problem. This Riemann–Hilbert problem is solved in sections 2.3–2.5, where our
main reconstruction formulae are proposed. Section 2.6 shows that the reconstruction of
two spatial functions from given ‘measured data’ is optimal in the sense that the AtRT of
the reconstructed source term is equal to the measured data. Finally, section 2.7 considers
reconstruction formulae in Doppler tomography.

2.1. Transport equation and AtRT

The transport equation with possibly anisotropic source term is given by

θ · ∇ψ(x, θ) + a(x)ψ(x, θ) = f (x, θ), x ∈ R2, θ ∈ S1. (1)

Throughout we identify θ = (cos θ, sin θ) ∈ S1 and θ ∈ (0, 2π). The source term f (x, θ)
cannot be completely arbitrary in θ and we make here the simplifying assumption that

f (x, θ) =
N∑

k=−N

fk(x)eikθ (2)

for some N ∈ N with f−k = f̄k so that f (x, θ) is real-valued. We assume that the fk(x) are
compactly supported and that for all x ∈ R2,

lim
s→+∞ψ(x − sθ, θ) = 0, (3)

so that (1) can uniquely be solved by the method of characteristics. Since the absorption
parameter a(x) is important only on the support of the source term in practice, we assume
that it is sufficiently smooth and decays exponentially at infinity to simplify. This allows us to
define

Dθa(x) = 1
2

∫ ∞

0
[a(x − tθ)− a(x + tθ)] dt . (4)
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This is a symmetrized beam transform. It is different from the beam transform defined
in [15, 19]. This symmetrized notation is convenient in the sequel. We observe that
θ · ∇Dθa(x) = a(x) so that the solution to the transport equation (1) is given by

eDθ a(x)ψ(x, θ) =
∫ ∞

0
(eDθ a f )(x − tθ, θ) dt . (5)

Let us define θ⊥ = (− sin θ, cos θ) and decompose x = sθ⊥ + tθ. We find that

lim
t→+∞ eDθa(sθ⊥+tθ)ψ(sθ⊥ + tθ, θ) =

∫
R

(eDθ a f )(sθ⊥ + tθ, θ) dt .

This can be recast as

lim
t→+∞ψ(sθ

⊥ + tθ, θ) = e−(Pθa)(s)/2(Ra,θ f )(s), (6)

where we have defined the Radon transform and the (symmetrized) attenuated Radon transform
as follows:

Pθ f (s) =
∫

R

f (sθ⊥ + tθ, θ) dt =
∫

R2

f (x, θ)δ(x · θ⊥ − s) dx

(Ra,θ f )(s) = (Pθ (eDθa f ))(s).
(7)

We deduce from (6) that up to a factor e−(Pθa)(s)/2, the (symmetrized) attenuated Radon
transform Ra,θ f (s) is what can be measured physically. Up to this known multiplicative
factor we call Ra,θ f (s) the ‘measured data’.

We now wish to understand how much of f (x, θ) can be reconstructed from the complete
or partial knowledge of Ra,θ f (s) for s ∈ R and θ ∈ [0, 2π). In the case of full measurements
and f (x, θ) = f (x), there exists an exact inversion method [4] and an explicit inversion
formula [18] to uniquely reconstruct f (x) from the AtRT; see [4, 7, 15, 18, 19] for additional
details.

2.2. Riemann–Hilbert problem

To obtain reconstruction formulae we essentially follow the technique of the original derivation
in [18]. We aim to recast the reconstruction problem as a Riemann–Hilbert problem. To do so
we parameterize the unit circle in the complex plane and define

λ = eiθ , θ ∈ (0, 2π). (8)

Using x = (x, y), the transport equation (1) may thus be recast as(
λ + λ−1

2

∂

∂x
+
λ− λ−1

2i

∂

∂y
+ a(x)

)
ψ(x, λ) = f (x, λ) =

N∑
k=−N

λk fk(x).

Identifying x with z = x + iy we can simplify the above equation as(
λ
∂

∂z
+ λ−1 ∂

∂ z̄
+ a(z)

)
ψ(z, λ) = f (z, λ), (9)

where we have used
∂

∂z
= 1

2

(
∂

∂x
− i

∂

∂y

)
,

∂

∂ z̄
= 1

2

(
∂

∂x
+ i

∂

∂y

)
.

The above equation may also be considered for arbitrary complex values of λ. As we shall
now see, ψ(z, λ) is analytic for λ ∈ C\(T ∪ {0}), where T = {λ ∈ C, |λ| = 1} is the unit
circle. The justification is based on the analysis of the Green’s function solution of(

λ
∂

∂z
+ λ−1 ∂

∂ z̄

)
G(z, λ) = δ(z), |G(z, λ)| → 0 as |z| → ∞, (10)
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for λ ∈ C\(T ∪ {0}). Such a spatial decay as infinity is not possible for λ ∈ T . However,
when |λ| �= 1, the above equation is elliptic and its solution is given by

G(z, λ) = sgn(|λ| − 1)

π(λz̄ − λ−1z)
. (11)

Obviously the Green’s function is analytic in λ on C\(T ∪ {0}). Let us now define

h(z, λ) =
∫

C

G(z − ζ, λ)a(ζ ) dm(ζ ), (12)

where dm(ζ ) is the Lebesgue measure on C 	 R2, the solution of(
λ
∂

∂z
+ λ−1 ∂

∂ z̄

)
h(z, λ) = a(z), |h(z, λ)| → 0 as |z| → ∞. (13)

The function h(z, λ) can be seen as a complex extension of Dθa(x, θ). The solution to the
transport equation (9) with vanishing conditions at z → ∞ is then given by

ψ(z, λ) = e−h(z,λ)
∫

C

G(z − ζ, λ)eh(ζ,λ) f (ζ, λ) dm(ζ ). (14)

We verify that ψ(z, λ) is sectionally analytic for |λ| > 1 and 0 < |λ| < 1. As it stands
ψ is not necessarily analytic at λ = 0 unless f is independent of λ. Moreover ψ is not
necessarily of order O(λ−1) at infinity. We shall subtract fromψ the terms that are responsible
for this behaviour. Once this is done we shall observe that the jump of ψ(z, λ) across the unit
circle |λ| = 1 is actually a function of the measured data Ra,θ f (s). This is the setting for the
Riemann–Hilbert problem.

Let us denote D+ = {λ ∈ C, |λ| < 1} and D− = {λ ∈ C, |λ| > 1}. Let φ(λ) be analytic
on D+ and on D− and such that λφ is bounded at infinity. Then we have the Cauchy type
integral

φ(λ) = 1

2π i

∫
T

ϕ(t)

t − λ
dt, λ ∈ C\T, (15)

where

ϕ(t) = lim
0<ε→0

(φ((1 − ε)t)− φ((1 + ε)t)) ≡ φ+(t)− φ−(t). (16)

Thus φ±(t) is the limit of φ(λ) as λ ∈ D± reaches t ∈ T . The Riemann–Hilbert problem
aims to find the sectionally analytic function on D±, which is of order O(λ−1) at infinity and
is such that (16) holds. Its unique solution is given by (15). We refer to [1] for details of the
Riemann–Hilbert problem. For any functionψ(λ), we denote in the sequel byψ±(t) the limit
of ψ(λ) as λ ∈ D± reaches t ∈ T .

The reconstruction formulae for the source term from the AtRT are obtained as follows.

(i) We first replace ψ(z, λ) given in (14) by a function φ(z, λ) that is sectionally analytic
on D± and of order O(λ−1) at infinity. This is done by subtracting from ψ(z, λ) a finite
number of analytic functions on C\{0}. Notice that ψ(z, λ) in (14) already satisfies such
conditions when f (z, λ) = f (z) independent of λ as in [19].

(ii) Second we verify that ϕ(z, t) = φ+(z, t)−φ−(z, t), which is equal toψ+(z, t)−ψ−(z, t)
since (φ−ψ)(z, λ) is analytic, can be written as a function of the measured data Ra,θ f (s).
Thus φ(z, λ) is the solution to the Riemann–Hilbert problem and is given by (15).

(iii) Finally we use the expression forφ(z, λ) in the vicinity ofλ = 0 (or equivalently |λ| = ∞)
to obtain reconstruction formulae for the source term f (z, λ).
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2.3. Taylor series expansions (Step 1)

We first analyse ψ(z, λ) in the vicinity of 0 and ∞. Let us consider λ on D+. We observe that
on this domain,

G(z, λ) = λ

π

1

z − λ2 z̄
= 1

πz

∞∑
m=0

(
z̄

z

)m

λ2m+1 ≡
∞∑

m=0

Gm(z)λ
2m+1. (17)

We denote by Gm the integral operator of kernel Gm and thus obtain that

h(z, λ) =
∞∑

m=0

(Gma)(z)λ2m+1, |λ| < 1. (18)

This allows us to obtain the asymptotic expansion of ψ(z, λ) around the pole of finite
multiplicity λ = 0. We therefore recast (14) as

ψ(z, λ) =
∞∑

m=1

(Hm f )(z, λ)λm, |λ| < 1, (19)

for some spatial operators Hm that are explicitly computable. We deduce from (17) and (18)
that H1 = G0, and more explicitly that

H1 f (z) = 1

π

∫
C

f (ζ )

z − ζ
dm(ζ ),

H2 f (z) = 1

π

∫
C

f (ζ )

z − ζ
((H1a)(ζ )− (H1a)(z)) dm(ζ ).

(20)

From the equation that ψ(z, λ) satisfies with f (z) = δ(z), we deduce that
∞∑

m=1

λm

(
λ
∂

∂z
+ λ−1 ∂

∂ z̄
+ a

)
Hm(z) = I. (21)

Equating like powers of λ we obtain
∂

∂ z̄
H1 = I,

∂

∂ z̄
H2 + aH1 = 0,

∂

∂ z̄
Hk+2 + aHk+1 +

∂

∂z
Hk = 0, k � 1.

(22)

This is a triangular system of equations that can be solved by induction. We verify that H1 is
indeed given by (20) and that H2 = −H1aH1 from (22) is indeed equivalent to (20).

Notice that G(z, λ−1) = Ḡ(z, λ̄) and h(z, λ−1) = h̄(z, λ̄), so that when the source is
real-valued on the unit circle, ψ(z, λ−1) = ψ̄(z, λ̄). So we get in the vicinity of λ−1 = 0 by
linearity of the transport equation that

ψ(z, λ) =
∞∑

m=1

(Hm f )(z, λ)λ−m, |λ| > 1. (23)

Using the structure of the source term (2) we obtain that

ψ(z, λ) =



N∑
k=−N

∞∑
m=1

(Hm fk)(z)λ
m+k, |λ| < 1,

∞∑
n=−∞

λn
∞∑

m=1

(Hm fn−m)(z), |λ| < 1,

∞∑
n=−∞

λ−n
∞∑

m=1

(Hm fm−n)(z), |λ| > 1.

(24)
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Here we have defined fn(z) ≡ 0 for |n| > N . To obtain an analytic function at λ = 0 and a
function of order λ−1 at infinity, we define

φ(z, λ) = ψ(z, λ) −
−1∑

n=−∞
λn

∞∑
m=1

(Hm fn−m)(z)−
0∑

n=−∞
λ−n

∞∑
m=1

(Hm fm−n)(z). (25)

Notice that the difference φ(z, λ)−ψ(z, λ) is the sum of a finite number of analytic functions
on C\{0} according to (2). We verify that on D+, we have

φ(z, λ) =
∞∑

n=0

λn
∞∑

m=1

(Hm fn−m − Hm fn+m)(z). (26)

The function φ(z, λ) is now sectionally analytic on D± and of order O(λ−1) at infinity. It is
therefore a good candidate to solve a Riemann–Hilbert problem. We now show that its jump
across T can be expressed as a function of the boundary measurements.

2.4. Jump conditions (Step 2)

The jump conditions for φ(z, λ) across T are the same as those forψ(z, λ) since the difference
is analytic on C\{0}. The latter jump conditions are obtained as follows. First writing λ = reiθ

and sending r − 1 to ±0, we obtain as in [18] that

G±(x, θ) = ±1

2π i(θ⊥ · x ∓ i0 sgn(θ · x))
. (27)

This implies that h±(x, θ) obtained from (12) is defined as

h±(x, θ) = ± 1

2i
(H Pθa)(x · θ⊥) + (Dθa)(x). (28)

Here H is the Hilbert transform defined as

H u(t) = 1

π

∫
R

u(t − s)

s
ds = 1

π

∫
R

u(s)

t − s
ds, (29)

where the above integrals need be taken in the principal value sense. Since Pθ and Dθ involve
integrations in the direction θ only, we easily verify that

Pθ [u(x)v(x · θ⊥)](s) = v(s)Pθ [u](s), Dθ [u(x)v(x · θ⊥)](x) = v(x · θ⊥)Dθ [u](x).
Using the above results we obtain that

ψ±(x, θ) = e−Dθ ae
∓1
2i (H Pθa)(x·θ⊥)∓1

2i
H (e

±1
2i (H Pθa)(s)Pθ (e

Dθ a f ))(x · θ⊥)+e−Dθa Dθ (e
Dθ a f )(x).

(30)

Notice that the difference of the above terms is a function of Ra,θ f (s) = Pθ (eDθa f )(s),
i.e., of the measurements, whereas ψ± individually cannot be written in terms of the sole
measurements. Let us define

ϕ(x, θ) = (ψ+ − ψ−)(x, θ). (31)

We can show using (30) that

iϕ(x, θ) = R∗
−a,θ (2Ha)Ra,θ f (x, θ), (32)

where we have defined the following operators:

R∗
a,θg(x) = eDθ a(x)g(x · θ⊥), Ha = 1

2 (Cc H Cc + Cs H Cs),

Ccg(s, θ) = g(s, θ) cos

(
H Pθa(s)

2

)
, Csg(s, θ) = g(s, θ) sin

(
H Pθa(s)

2

)
.

(33)

Here R∗
a,θ is the formal adjoint operator to Ra,θ . This shows that the jump of ψ , hence of

φ, across T can be written in terms of the boundary measurements. Notice that iϕ(x, θ)
is real-valued and that ϕ(x, θ) is of the form e−Dθ a(x)M(x · θ⊥, θ) so that ϕ satisfies that
θ · ∇ϕ + aϕ = 0.
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2.5. Reconstruction formulae (Step 3)

We still denote ϕ(x, t) = ϕ(x, θ) for t = eiθ . We observe that φ(z, λ) defined in (25) is
sectionally analytic on D+ and D−, of order |λ|−1 at infinity, and such that

ϕ(z, θ) = φ+(z, θ)− φ−(z, θ) on S1.

Thus it solves the Riemann–Hilbert problem and we have that

φ(z, λ) = 1

2π i

∫
T

ϕ(z, t)

t − λ
dt, λ ∈ C\T . (34)

Using the Taylor expansion of the right-hand side we obtain that

φ(z, λ) =
∞∑

n=0

λn 1

2π i

∫
T

ϕ(z, t) dt

tn+1
, λ ∈ D+.

Comparing with (26) we obtain that for all n � 0,
∞∑

m=1

(Hm fn−m − Hm fn+m)(z) = 1

2π i

∫
T

ϕ(z, t) dt

tn+1
≡ ϕn(z). (35)

There are actually only two independent equations in the above system, corresponding to n = 0
and 1. Indeed, after change of variables, we obtain that

ϕn(z) = 1

2π i

∫
T

ϕ(z, t) dt

tn+1
= 1

2π

∫ 2π

0
e−inθϕ(z, θ) dθ.

Since θ · ∇ϕ + aϕ = 0 as noted below (31), we have that(
eiθ ∂

∂z
+ e−iθ ∂

∂ z̄
+ a(z)

)
ϕ(z, θ) = 0,

which implies that

∂ϕn−1(z)

∂z
+
∂ϕn+1(z)

∂ z̄
+ a(z)ϕn(z) = 0, n � 1. (36)

We thus deduce equivalently that

ϕn(z) = −H1aϕn−1(z)− H1
∂

∂z
ϕn−2(z) for all n � 2. (37)

Since these constraints are independent of the source term f (x), this implies that the
relations (35) for n � 2 do not bring any additional information.

Reconstruction in a simplified setting. The above relations (35) for n = 0 and 1 are all that
we can obtain from the measurements. The measurements Ra,θ f (s) are not sufficiently rich
to allow us to reconstruct all the terms fk(x). However, assuming that N = 1 and that only
two terms are present in (2), they can be reconstructed uniquely. We obtain from (35) that

H1 f−1(z)− H1 f1(z) = 1

2π i

∫
T

ϕ(z, t) dt

t
= ϕ0(z),

H2 f−1(z) + H1 f0(z) = 1

2π i

∫
T

ϕ(z, t) dt

t2
= ϕ1(z).

(38)

Some algebra (identifying t with eiθ ) shows that

ϕ0(z) = 1

2π

∫ 2π

0
ϕ(z, θ) dθ,

ϕ1(z) = 1

2π

∫ 2π

0
(cos θ − i sin θ)ϕ(z, θ) dθ.

(39)
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We observe that ϕ0(z) ∈ iR, which is consistent with (38). The latter system cannot be solved
with three unknowns. We need to specify the relationship between the real and imaginary parts
of f1. Let us define ω = (cosω, sin ω) and assume that

f1(z) = eiωρ1(z), f−1(z) = e−iωρ1(z),
so that f1(z)eiθ + f−1(z)e−iθ = 2 cos(θ + ω)ρ1(z),

(40)

with ρ1(z) real-valued. We can now solve (38) uniquely. We have seen in (20) that H1 is a
convolution operator of kernel 1/(πz) = 1/(π(x + iy)). In the Fourier domain we thus verify
that

Ĥ1 f (ξ) = −2(ξy + iξx)

|ξ|2 f̂ (ξ), Ĥ1 f (ξ) = 2(ξy − iξx)

|ξ|2 f̂ (ξ). (41)

Denoting by ωs = (sinω, cosω), we therefore obtain that

ρ̂1(ξ) = −|ξ|2
4ξ · ωs

ϕ̂0(ξ), or equivalently f1(x) = 1

4
Dωs�(iϕ0)(x), (42)

where� is the usual two-dimensional Laplace operator and Dωs is the symmetrized beam (4)
in the direction ωs. We recall that θ · ∇Dθa = a.

Once f1(x) is reconstructed, we use the relations

∂

∂ z̄
H1 = I,

∂

∂ z̄
H2 = −a(z)H1, (43)

to obtain

f0(z) = ∂

∂ z̄
ϕ1 + a(z)H1 f−1(z)

= 1

4π

∫ 2π

0
θ⊥ · ∇(iϕ) dθ +

1

4π

∫ 2π

0
θ · ∇ϕ dθ + a(z)H1 f−1(z)

= 1

4π

∫ 2π

0
θ⊥ · ∇(iϕ) dθ + a(z)

(
H1 f−1 − ϕ0

2

)
. (44)

Here we have used that θ · ∇ϕ + aϕ = 0 as was noticed below (31). We deduce from (38)
that the last term in the above equation is real-valued so that f0(z) is real-valued as expected.
When f1 is given by (40) some algebra shows that

Ĥ1 f−1(ξ)− 1

2
ϕ̂0(ξ) = 1

2

iξ · ω⊥
s

iξ · ωs
(iϕ̂0)(ξ).

This implies the reconstruction formula

f0(x) = 1

4π

∫ 2π

0
θ⊥ · ∇(iϕ)(x, θ) dθ +

1

2
Dωsω

⊥
s · ∇(iϕ0)(x). (45)

This is the generalization of the Novikov formula as it appears in [15, 19]. Notice that our
reconstruction is parameterized by the rotation factor ω. Unless ϕ0(x) uniformly vanishes, the
reconstruction of f0(x) will depend on the choice of ω.

Compatibility condition. In the case where f (z, λ) = f (z) we deduce that

0 = 1

2π i

∫
T

ϕ(z, t)

t
dt = 1

2π

∫ 2π

0
ϕ(z, θ) dθ,

f (z) = 1

2π i

∫
T

∂ϕ

∂ z̄
(z, t)

dt

t2
= 1

4π

∫ 2π

0
θ⊥ · ∇(iϕ)(z, θ) dθ.

(46)
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The latter equation is the usual Novikov formula [15, 19]. The former equation is a
compatibility condition (the Range condition in [18, 19]) ensuring that measured data indeed
correspond to a source term of the form f (z, λ) = f (z). When the compatibility condition is
not satisfied, for instance because the measured data are noisy, we may be able remove part of
this noise from the reconstruction by reconstructing f1 and f0 as was done in (45).

2.6. Compatible reconstructions

We have seen in the preceding section that full measurements allowed us to reconstruct two
spatially dependent functions f0 and f1 (assuming that (40) holds). We claim that the above
reconstruction is in some sense optimal as the AtRT of the reconstructed source yields back
the data we started with. This is in some sense a Range condition for the AtRT reminiscent
of the one in [19]. Not surprisingly the derivation is very similar to that in [19]. The main
argument in the proof is the uniqueness of the solution to the Riemann–Hilbert problem we
introduced earlier. To avoid technical details that are well explained in [19] we assume that all
our functions are sufficiently smooth, and refer to [19] for additional details.

The uniqueness of the reconstruction is demonstrated as follows. Let g(s, θ) be given
‘measured data’ on R × (0, 2π). We define iϕ(x, θ) = R∗

−a,θ Hag(x) following (32). Notice
that iϕ(x, θ) is real-valued. We now solve the Riemann–Hilbert problem for φ(z, λ). Thus
φ(z, λ) is the unique function analytic (in λ) on D+ and D− such that φ(z, λ) is O(λ−1) as
|λ| → ∞, and such that φ+ − φ− = ϕ on T . We may now define the functions

φ(z, λ) =
{
φ−1(z)λ

−1 + O(λ−2) λ → ∞,
φ0(z) + φ1(z)λ + O(λ2) λ → 0.

(47)

We shall show in step 1 below that φ−1(z) = φ1(z). We also define f0(z) and f1(z) as the
functions given by (45) and (42), respectively, for an arbitrary fixed value of ω ∈ S1.

Let us now define ψ(z, λ) = φ(z, λ) + H1 f1. We shall prove in step 2 below that

Taψ(z, λ) ≡
(
λ
∂

∂z
+ λ−1 ∂

∂ z̄
+ a

)
ψ(z, λ) = f (z, λ), (48)

with f (z, λ) = f0(z) + λ f1(z) + λ−1 f−1(z) and f−1(z) = f̄1(z). We recognize the transport
equation (9) with appropriate source term. We can thus calculate the new AtRT and apply
R∗−a,θ Ha to obtain

gr (s, θ) = Ra,θ ( f0 + eiθ f1 + e−iθ f−1)(s), iϕr (x, θ) = R∗
−a,θ Hagr (x). (49)

We next verify that

ϕr = ψ+ − ψ− = φ+ − φ− = ϕ.

It remains to verify that R∗
−a,θ Hah = 0 implies that h = 0 (see step 3 below) to conclude that

gr (s, θ) = g(s, θ).
We have thus shown that for any (sufficiently smooth) data g(s, θ), we can construct

source terms f0, f1, and f−1 = f̄1 such that g(s, θ) is the AtRT of the source term
f (z, θ) = f0(z) + eiθ f1(z) + e−iθ f−1(z). The source term is by no means unique since a
whole family parameterized by ω ∈ S1 can be obtained.

Verification of the three steps. Step 1. Let λ = eiθ on T and define the limiting points
λ± = (1 ∓ 0)eiθ . We observe that (λ̄±)−1 = λ∓. Thus φ(λ̄−1) satisfies the same Riemann–
Hilbert problem as φ but with ϕ replaced by −ϕ. Now since iϕ is real, −ϕ = ϕ̄. By uniqueness
of the solution to the Riemann–Hilbert problem (including the constraint that the solution be
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of order O(λ−1) at infinity), we deduce that φ(z, λ̄−1) − φ0(z) = φ̄(z, λ). This implies that
φ−1(z) = φ1(z).

Step 2. Using (34) and (35), we deduce that φk = ϕk for k = 0, 1. We now remark
that Taφ, where Ta is defined in (48), is analytic on D+\{0} and D−. From the asymptotic
expansion of φ, we deduce that

u(z, λ) = Taφ(z, λ) − ∂

∂z
ϕ̄1(z)− λ−1 ∂

∂ z̄
ϕ0(z)

is sectionally analytic on D+ and D− and is of order O(λ−1) at infinity. It is thus the unique
solution of the Riemann–Hilbert problem with jump condition ϕu = u+ −u−. Since, however,
u+ −u− = Taφ

+ − Taφ
− = Taϕ = 0 as was remarked below (33), we deduce that ϕu = 0 and,

by uniqueness of the solution to the Riemann–Hilbert problem, that u = 0. By construction
of ψ , this implies that

Taψ = TaH1 f1 +
∂

∂z
ϕ̄1 + λ−1 ∂

∂ z̄
ϕ0(z).

Upon equating like powers of λ, we obtain that Taψ = f (z, λ) is equivalent to the system of
equations:

λ−1: f̄1 = ∂

∂ z̄
ϕ0 +

∂

∂ z̄
H1 f1,

λ0: f0 = ∂

∂z
ϕ̄1 + aH1 f1,

λ1: f1 = ∂

∂z
H1 f1.

ApplyingH1 to the first equation yields the first equation in (38). The third equation is nothing
but (43). Applying H1 to the second equation and recalling that H2 = −H1aH1, the second
equation is equivalent to

H1 f0 + H2 f1 = ϕ̄1.

This is equivalent to the second equation in (38) because f0 is real-valued by construction.
Step 3. This is a corollary of statement 3.5 in [19]. This concludes our derivation of

the reconstruction of a source term of the form f (z, λ) = f0(z) + λ f1(z) + λ−1 f−1(z) from
arbitrary (smooth) AtRT data g(s, θ).

2.7. Doppler tomography

The attenuated Doppler transform can be seen as an attenuated Radon transform with source
term of the form

f (x, θ) = θ · F(x), F(x) = (F1(x), F2(x)). (50)

In the absence of attenuation, it is known that only ∇ × F(x) = ∂
∂x F2(x) − ∂

∂y F1(x) can be
reconstructed. In the presence of absorption, we now show that both components of F(x) can
be reconstructed on the support of a(x). We first verify that

f (x, θ) = λ

(
F1(x)

2
− i

F2(x)
2

)
+ λ−1

(
F1(x)

2
+ i

F2(x)
2

)
.

So we can identify the above source term with (2) choosing f1(x) = 1
2 (F1(x) − iF2(x)) and

fk(x) ≡ 0 for |k| �= 1. Therefore, (38) holds with f0(z) ≡ 0. From the first equation we
deduce that

Im(H1 f−1(z)) = iϕ0(z), (51)
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which upon using (41) yields

∇ × F(x) = ∂F2(x)
∂x

− ∂F1(x)
∂y

= 1

2
�(iϕ0)(x). (52)

This is the usual reconstruction that also holds in the absence of absorption. We can also use
the second constraint in (38) to obtain that

H2 f−1(z) = ϕ1(z).

Since H2 = −H1aH1, we deduce that

H1 f−1(z) = 1

a(z)

∂ϕ1(z)

∂ z̄
, whence

1

2
(F1(z) + iF2(z)) = − ∂

∂ z̄

1

a(z)

∂ϕ1(z)

∂ z̄
. (53)

The imaginary part of the first relation yields (51) since Im(∂z̄ϕ1) + aϕ0 = 0, which follows
from θ · ∇ϕ + aϕ = 0. The latter relation holds on the support of a(x) and is equivalent in the
spatial variables to

F1(x) = −
(
∂

∂x

fR(x)
a(x)

− ∂

∂y

fI (x)
a(x)

)
, F2(x) = −

(
∂

∂x

fI (x)
a(x)

+
∂

∂y

fR(x)
a(x)

)
,

fR(x) = 1

4π

∫ 2π

0
θ⊥ · ∇(iϕ)(x, θ) dθ, f I (x) = a(x)

4π

∫ 2π

0
(iϕ)(x, θ) dθ.

(54)

Similar (equivalent) formulae were first proposed in [7, 8].

3. Reconstruction from partial measurements

We have seen in the preceding section that full measurements Ra,θ f (s, θ) for s ∈ R and
θ ∈ (0, 2π) allow us to reconstruct two spatial functions. It is therefore natural to try and
reconstruct one spatial function from half of the boundary measurements. In this section we
assume that f (x, θ) = f (x) and consider reconstruction algorithms from partial measurements
in the angular variable θ . We assume that f (x) has compact support and to simplify assume
that the support is included in the unit ball B . Let us denote the measured data by

g(s, θ) = Ra,θ f (s). (55)

We assume that g(s, θ) is available for all values of s ∈ R and for θ ∈ M ⊂ [0, 2π). The
assumption on M is that Mc = [0, 2π)\M ⊂ M + π . This implies that measurements are
available for at least one of the angles θ or θ + π . For simplicity of analysis, we assume that
M is composed of a finite number of intervals in [0, 2π) closed on the left and open on the
right. The simplest example is M = [0, π) and Mc = [π, 2π). Notice that uniqueness of
the reconstruction is also ensured when fewer data are available (see [18] for the AtRT and
[13] for the Radon transform). However, the result is based on analytic continuation and thus
results in a much more severely ill-posed problem than what is proposed below.

Let us recast (31) as

iϕ(x, θ)
2

= R∗
−a,θ Ha Ra,θ f (x) ≡ �a,θ f (x) (56)

and define the operators

Fθ = θ⊥ · ∇�a,θ = F1,θ + F2,θ ,

F1,θ = R∗
−a,θ

∂

∂s
Ha Ra,θ ,

F2,θ =
(

θ⊥ · ∇ R∗
−a,θ − R∗

−a,θ

∂

∂s

)
Ha Ra,θ .

(57)
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Formally, the reconstruction formulae obtained in earlier sections show that

2π I =
∫ 2π

0
Fθ dθ. (58)

We shall see in the next section that this equality holds in the L2 sense for compactly supported
functions. Since information is available on M only we would like to obtain reconstruction
formulae involving an integration over M . We propose the following decomposition:

2π I =
∫

M
Fθ dθ +

∫
Mc

F∗
1,θ dθ +

∫
Mc

(F1,θ − F∗
1,θ ) dθ +

∫
Mc

F2,θ dθ. (59)

The main reason for introducing this decomposition is that

F∗
1,θ = R∗

a,θ Ha
∂

∂s
R−a,θ , (60)

so that F∗
1,θ on Mc involves

R−a,θ f (s) = Ra,θ+π f (−s), (61)

where now θ + π ∈ M by construction. So F∗
1,θ is an operator that involves the measured data

only. The third operator on the right-hand side of (59) is now formally skew-symmetric. It
remains the operator F2,θ , which unfortunately does not seem to have any useful symmetry
properties. We can always recast it as

F2,θ = Fs
2,θ + Fa

2,θ , Fs
2,θ = 1

2 (F2,θ + F∗
2,θ ). (62)

By doing so we recast (59) as

I = Fd + Fa + Fs, (63)

where

Fd = 1

2π

∫
M

Fθ dθ +
1

2π

∫
Mc

F∗
1,θ dθ,

Fa = 1

2π

∫
Mc
(F1,θ − F∗

1,θ + Fa
2,θ ) dθ, Fs = 1

2π

∫
Mc

Fs
2,θ dθ.

(64)

The operator Fd involves only the measured data g(s, θ) on M , whereas the operators Fa and
Fs are formally skew-symmetric and symmetric, respectively.

We show in theorem 4.1 in the next section that all operators are bounded in L(L2(B)),
where B is the unit ball (or any arbitrary ball by rescaling). Moreover, the operator Fs is
compact in the same sense.

We define d(x) = Fd f (x) obtained from the measured data. The problem we aim to
solve is thus to find f (x) such that

f (x) = d(x) + Fa f (x) + Fs f (x). (65)

Our main result is the following.

Theorem 3.1. Let us assume that Fs as an operator in L(L2(B)) has spectral radius
ρ(Fs) < 1. Then we can reconstruct f (x) uniquely from the measurements g(s, θ) on M.
The reconstruction is obtained as follows. We have that

f (x) = (I − Fs)−1/2h(x), (66)

where h(x) is the unique solution to the following equation:

h(x) = (I − Fs)−1/2d(x) + (I − Fs)−1/2 Fa(I − Fs)−1/2h(x). (67)

The above equation admits a unique solution that can be computed explicitly by an iterative
method; see (69) below.
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Proof. Since Fs is self-adjoint and has spectral radius less than 1, I − Fs is also a self-adjoint
operator with non-negative spectrum, and we can define (I − Fs)−1/2, which is also a self-
adjoint and bounded operator. We obtain then that Ga = (I − Fs)−1/2 Fa(I − Fs)−1/2 is
a bounded and skew-symmetric operator in L(L2(B)). This implies that iGa is Hermitian
with real-valued spectrum. Hence i is in the resolvent of iGa and iI − iGa is invertible with
bounded inverse in L(L2(B)). This ensures the existence of a unique solution to the Fredholm
equation (67). We can also obtain an explicit iterative algorithm as, for example, in [17].
Indeed we recast (67) as

h(x) = γ (I − Fs)−1/2d(x) + ((1 − γ )I + γGa)h(x), (68)

and choose γ = (1 + ‖Ga‖2
2)

−1. Because Ga is skew-symmetric, one observes that

‖(1 − γ )I + γGa‖2 = ‖Ga‖2

(1 + ‖Ga‖2
2)

1/2
< 1,

so that (68) can be solved iteratively:

hk+1(x) = γ (I − Fs)−1/2d(x) + ((1 − γ )I + γGa)hk(x) (69)

with hk → h in L2(B) as k → ∞. �
The case where Fs is of spectral radius greater than 1 remains open. In such situation it is

unclear whether (65) admits any solution. However we can use the regularization properties
of Fs to obtain some information about f (x). For instance let us denote by f a the solution to

f a(x) = d(x) + Fa f a(x). (70)

Then we obtain that the source term f (x) that generated the data d(x) is such that

f (x)− f a(x) ∈ Range(Fs). (71)

So f a(x) captures the most singular part of f (x) since Fs is compact.

Remark in the case of constant absorption

In the case where a is constant on the unit ball, we can show that F2,θ = 0 so that the
reconstruction is always possible. Indeed, let us assume that f is compactly supported in the
unit ball and that the absorption parameter a(x) = µ for |x| < 1 and a(x) = 0 otherwise. We
verify that

eDθ a(x) = eµx·θ, |x| < 1,

i.e., on the support of the source term f . We thus deduce in this case

θ⊥ · ∇(eDθa(x)g(x · θ⊥, θ)) = eDθa(x)
(
∂g(s, θ)

∂s

)
(x · θ⊥),

which implies that F2,θ ≡ 0. We thus recover the results of [17, 20] that a complete
reconstruction is possible when half of the measurements are available. More specifically,
assuming that Mc = M + π (so that M and Mc both have measure π), we can verify in the
case of a constant on the unit ball that

Ha
∂

∂s
= ∂

∂s
Ha,

since both operators Ha and ∂
∂s are diagonal in the Fourier domain. More specifically, we

obtain that [12]

Ĥau(σ ) = −i sgnµ(σ )û(σ ), sgnµ(σ ) =
{

sgn(σ ), |σ | � µ,

0, |σ | < µ.
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The product Ha
∂
∂s = ∂

∂s Ha is thus the generalized Riesz operator with symbol rµ(σ ) = |σ |
for |σ | � µ and rµ(σ ) = 0 for |σ | < µ, as it appears in the inversion formula proposed in
[28]. These observations imply that

F∗
θ = F∗

1,θ = Fθ+π .

We have thus in this case the following decomposition of identity:

I = 2

2π

∫
M

Fθ dθ +
1

2π

∫
M+π

(Fθ − Fθ+π ) dθ = Fd + Fa, (72)

where Fd is the operator that depends on the measured data on M and Fa is a skew-symmetric
operator. So in practice (72) implies that the measured data are multiplied by a factor 2 to
obtain a first guess of the reconstruction. The error between the guess and the exact solution is
modeled by a skew-symmetric operator and (72) can therefore be solved iteratively as in (69).
This is the procedure first suggested in [17] for M = [0, π) and extended to more general
domains of data acquisition in [20].

4. Regularity results

We have seen in the preceding section that the reconstruction from partial measurements
involves operators of the form

H β
α = 1

2π

∫ β

α

θ⊥ · ∇�a,θ dθ, (73)

where 0 � α < β � 2π and�a,θ is defined in (56). Up to rescaling we assume that the source
term f (x) has support in the unit ball B . We still denote by f (x) the function extended to R2

by 0 outside the unit ball B . We want to show that the operators H β
α are uniformly bounded

in L(L2(B)).
Let us denote h(x) = H β

α f (x) and consider first the case where a ≡ 0. We deduce that

(�a,θ f )(x) = H Pθ f (x · θ⊥)
2

.

Some algebra, see [13], shows that the operators Pθ in (7) and H in (29) are given in the Fourier
domain by

̂Pθ [ f (x)](σ ) = f̂ (σθ⊥), Ĥ u(σ ) = −i sgn(σ )û(σ ). (74)

We recognize in the first equality the Fourier slice theorem. We deduce that

�̂a,θ f (ξ) = −i sgn(ξ·θ⊥) f̂ (ξ · θ⊥θ⊥)πδ(ξ·θ) = −i sgn(ξ·θ⊥) f̂ (ξ)πδ(ξ·θ).
Denoting ξ = |ξ|ξ̂ and ξ̂ = (cos ξ, sin ξ), we verify that

�̂a,θ f (ξ) = −i sgn(ξ·θ⊥) f̂ (ξ)π
1

|ξ · θ⊥|δ(ξ̂ · θ) = −i

ξ · θ⊥π f̂ (ξ)δ(ξ̂ · θ).

The measure δ(ξ̂ · θ) is supported on the values

θ = ξ − π

2
≡ ξB for ξ̂ = θ⊥ and θ = ξ +

π

2
≡ ξF for ξ̂ = −θ⊥. (75)

This implies that for h(x) = H β
α f (x), we have

ĥ(ξ) = 1
2 (χ(α,β)(ξB) + χ(α,β)(ξF )) f̂ (ξ). (76)

Here,χ(α,β)(θ) = 1 for θ ∈ (α, β) andχ(α,β)(θ) = 0 otherwise. This shows that h(x) ∈ L2(R2)

independently of the interval (α, β) and that h(x) = f (x) when (α, β) = (0, 2π). Thus the
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restriction of h(x) to B belongs to L2(B) and H β
α is bounded in L(L2(B)) independently of

the interval (α, β).
We aim to extend these results to the case a �= 0. To do so we recast H β

α f (x) using (33)
and (57) as a sum of terms of the form

h(x) = 1

2π

∫ β

α

θ⊥ · ∇(u(x, θ)H [v(s, θ)Pθ (w(x, θ))(s)](x · θ⊥)) dθ, (77)

where the functions u(x, θ) and v(s, θ) are smooth since the absorption map a(x) is smooth
and w(x, θ) = eDθ a(x) f (x) ∈ L2(B; C0(0, 2π)) since f (x) ∈ L2(B).

Following the decomposition Fθ = F1,θ + F2,θ in the preceding section we split h into
two contributions ha + hb as follows:

ha(x) = 1

2π

∫ β

α

(θ⊥ · ∇u(x, θ))H [v(s, θ)Pθ (w(x, θ))(s)](x · θ⊥) dθ,

hb(x) = 1

2π

∫ β

α

u(x, θ)θ⊥ · ∇(H [v(s, θ)Pθ (w(x, θ))(s)](x · θ⊥)) dθ.

(78)

The first term ha involves two one-dimensional integrations of f (x) and no differentiation, so
it is natural to assume that it corresponds to a compact operator. The second term hb involves a
derivation applied to the function f (x) as in the case a = 0, and so we expect that it corresponds
to a bounded operator in L2(B).

Compactness of the first contribution

Let us consider the bound for ha first. Since w(x, θ) ∈ L2(B; C0(0, 2π)), we obtain that
Pθ (w(x, θ))(s) ∈ H 1/2(Z) with Z = R × S1. We follow here the notation in [13] and define
H α(Z) as the Sobolev space of functions g(s, θ) bounded for the norm(∫ 2π

0

∫
R

(1 + σ 2)α|ĝ(σ, θ)|2 dσ dθ

)1/2

,

where ĝ(σ, θ) is the Fourier transform of g(s, θ) in the first variable only.
For v sufficiently smooth, we deduce that H [v(s, θ)Pθ (w(x, θ))(s)](s) belongs to

H 1/2(Z) since the Hilbert transform preserves functions in the Hilbert scale as can be seen in
(74). This implies that

H [v(s, θ)Pθ (w(x, θ))(s)](x · θ⊥)ϕ(|x|) ∈ H 1/2(R2 × S1),

where H 1/2(R2 × S1) is defined as above with R replaced by R2, and where ϕ(r) is a smooth
function over R+ such that ϕ(r) = 1 on [0, 1] and ϕ(r) = 0 for r > 2. For u sufficiently
smooth, we obtain that

(θ⊥ · ∇u(x, θ))H [v(s, θ)Pθ(w(x, θ))(s)](x · θ⊥) ∈ L2((0, 2π); H 1/2(B)),

since ϕ(|x|) = 1 on B . Since the interval (α, β) is bounded, we deduce from the Cauchy–
Schwarz inequality that ha(x) ∈ H 1/2(B). We thus obtain that the operator

f (x) → ha(x) is compact in L(L2(B)). (79)

L2 bound for the second contribution

We now obtain a bound for the L2(B) norm of hb(x). We want to use (76) to obtain a bound
in the L2(B) sense. There are three issues to consider: u(x, θ) depends on θ , v(s, θ) is not 1,
and w(x, θ) depends on θ .
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We first decompose

u(x, θ) =
∞∑

n=1

un(θ)φn(x), (80)

where φn(x) are uniformly bounded functions that form an orthonormal (in the L2(B) sense)
basis of the unit ball B (the eigenvectors of the Laplacian for instance). We thus have that

un(θ) =
∫
�

u(x, θ)φn(x) dx.

Let us now define

hb(x) =
∞∑

n=1

hn(x), hn(x) = φn(x)
1

4π

∫ β

α

un(θ)τ (x, θ) dθ,

where

τ (x, θ) = θ⊥ · ∇(H [v(s, θ)Pθ (w(x, θ))(s)](x · θ⊥)).

We thus have

‖hb(x)‖2 �
∞∑

n=1

‖hn(x)‖2 �
∞∑

n=1

‖φn(x)‖∞
∥∥∥∥ 1

4π

∫ β

α

un(θ)τ (x, θ) dθ

∥∥∥∥
2

.

Here ‖ · ‖2 and ‖ · ‖∞ are the L2(B) and L∞(B) norms, respectively. Therefore we have to
estimate terms of the form

pn(x) = 1

4π

∫ β

α

un(θ)θ
⊥ · ∇(H [ν(s, θ)](x · θ⊥)) dθ,

where we have defined ν(s, θ) = v(s, θ)Pθ (w(x, θ))(s). We observe that

p̂n(ξ) = 1
2

∫ β

α

un(θ)|ξ · θ⊥|δ(ξ · θ)ν̂(ξ · θ⊥, θ) dθ

= 1
2χ(α,β)(ξB)un(ξB)ν̂(−|ξ|, ξB) + 1

2χ(α,β)(ξF )un(ξF )ν̂(|ξ|, ξF ).

The notation ξB and ξF is defined in (75). Thus independently of the interval (α, β), we have

2π‖pn(x)‖2 = ‖ p̂n(ξ)‖2 � sup
θ

|un(θ)|N ,
where N = sup(‖ν̂(|ξ|, ξF )‖2, ‖ν̂(−|ξ|, ξB)‖2). This implies that

‖hb(x)‖2 �
( ∞∑

n=1

sup
θ

|un(θ)|
)
N . (81)

The infinite sum in n converges provided that u(x, θ) is sufficiently regular. It thus remains
to show that ξ �→ ν̂(|ξ|, ξF ) is bounded in L2(R2). The term involving ξB is treated similarly.
From the definition of ν and the Fourier slice theorem (74), we deduce that

ν̂(|ξ|, ξF ) = v̂(|ξ|, ξF ) ∗ ŵ(ξ, ξF ) =
∫

R

v̂(|ξ| − t, ξF )ŵ(t ξ̂, ξF ) dt . (82)

The L2 norm squared of the above quantity in polar coordinates is thus bounded by∫
|v̂(|ξ| − t, ξF )ŵ(t ξ̂, ξF )v̂

∗(|ξ| − s, ξF )ŵ
∗(sξ̂, ξF )| ds dt|ξ|d|ξ|dξ̂.

We assume that v is sufficiently regular so that

|v̂(t, θ)| � C

1 + |t|m , (83)
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with m > 2. Let us first integrate over t > 0 and s > 0. The integration in r = |ξ| above
yields then a term bounded by∫ ∞

0

r

(1 + |t − r |m)(1 + |s − r |m)dr � Cm
sup(t, s)

1 + |t − s|m
when m > 2. We thus obtain that the integration for s, t > 0 is bounded by∫

S1

∫ ∞

0

∫ ∞

0
|ŵ(t ξ̂, ξF )ŵ

∗(sξ̂, ξF )|Cm sup(t, s)

1 + |t − s|m dt ds dξ̂

� 1

2

∫
S1

(∫ ∞

0
|ŵ(t ξ̂, ξF )|2

(∫ ∞

0

Cm sup(t, s)

1 + |t − s|m ds

)
dt

)
dξ̂,

using 2|ab∗| � |a|2 + |b|2 and the symmetry (t, s) → (s, t). So we have that∫
S1

∫ ∞

0
t|ŵ(t ξ̂, ξF )|2 dt dξ̂ � ‖ŵ‖2

L2(B;C0(0,2π)).

The latter term is bounded by a multiple of ‖ f ‖2 provided that a is sufficiently smooth. The
integral over s < 0 or t < 0 is dealt with in a similar (and slightly simpler) fashion.

This shows that the operator that maps f (x) to h(x) defined in (12) is bounded inL(L2(B))
independently of the interval (α, β). We summarize the above results in the following theorem.

Theorem 4.1. Let us assume that M is a finite union of intervals in [0, 2π) of the form [αk, βk)

and that Mc is [0, 2π)\M. Then for the domains D = M and D = Mc, the operators∫
D

Fk,θ dθ ∈ L(L2(B)), for k = 1, 2,

and moreover the operators∫
D

F2,θ dθ are compact in L(L2(B)) with range in H 1/2(B).

The operators Fk,θ are defined in (57).

5. Conclusions

Using a variation of the Novikov formula derived in [18, 19], we have shown that a source term
of the form f (x)+2 cos(θ +ω) f1(x) can be reconstructed from the attenuated Radon transform
g(s, θ) for all s ∈ R and all θ ∈ (0, 2π). The reconstruction is based on recasting the inverse
problem as a Riemann–Hilbert problem. The same procedure allows us to reconstruct source
terms of the form f (x) = F1(x) cos θ + F2(x) sin θ on the support of a(x), which is of interest
in Doppler tomography.

When only partial angular measurements are available for θ ∈ M , with M such that
(0, 2π)\M ⊂ M + π , we have shown that a compactly supported source term of the form
f (x) can be reconstructed provided that the variations of the absorption term a(x) are not
too large. The theory is based on showing that the Novikov reconstruction formula can be
decomposed as the sum of three bounded operators in the L2 sense. The first operator is a
function of the measured data, whereas the second operator is of arbitrary size and is skew
symmetric, and the third operator is symmetric and must be of spectral radius strictly bounded
by 1. For constant absorption a on the support of f (x) we recover results obtained earlier
in [17, 20].

The case of arbitrary large spatial variations of the absorption parameter a(x) is still open.
However, we show in [5], devoted to the implementation of the fast slant stack algorithm in the
context of the attenuated Radon transform, that the algorithms proposed in section 3 provide
accurate reconstructions in situations of practical interest.
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