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Abstract
We propose a numerical method to simulate and invert the two-dimensional
attenuated Radon transform (AtRT) from full (360◦) or partial (180◦)
measurements. The method is based on an extension of the fast slant stack
algorithm developed for the Radon transform. We show that the algorithm
offers robust and fast inversion of the AtRT for a wide class of synthetic
sources and absorptions. The complexity of the fast algorithm to compute the
AtRT of a n × n image and perform the reconstruction from the AtRT data
is O(Nn2 log n) operations, with N the number of Fourier modes necessary
to accurately represent the absorption map. The algorithm is applied to
the reconstruction of the exponential Radon transform, where the absorption
coefficient is constant, and of the AtRT when only 180◦ measurements are
available. The reconstruction from partial measurements is based on an
iterative scheme introduced recently in Bal (2004 Inverse Problems 20 399–
419). Single-photon emission computed tomography is an important medical
imaging technique based on the inversion of the AtRT.

1. Introduction

SPECT (single-photon emission computed tomography) is a very popular medical imaging
technique to obtain pictures of the brain, the lungs, the liver and the heart for instance. It is based
on the detection of gamma particles emitted from injected radioactive atoms. Mathematically,
the imaging technique involves reconstructing the spatial structure of the source of gamma
particles from boundary measurements. Whereas scattering of the particles can be neglected
as a first approximation (for scattering is mostly inelastic so that reemitted particles have a
lower energy), absorption of the gamma particles from the source term to the detectors cannot
be ignored.
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In the absence of absorption, the imaging problem consists of reconstructing a source
term from its Radon transform. Inversion formulae and numerical techniques to solve this
problem are well known [22, 23, 30]. In the presence of absorption, a recent explicit formula
[24, 27, 28] also allows us to reconstruct the source term from its attenuated Radon transform
(AtRT), the boundary measurements; we also refer to [1, 10] for an alternative approach. The
reconstruction is based for two-dimensional problems on measuring the particle density on the
whole boundary of a domain in which the support of the source term is included. In practice
however one would like to reconstruct the source term from fewer data.

The Radon transform has an obvious redundancy of order two in the sense that it satisfies
g(s, θ) = g(−s, θ + π); see (1). This redundancy is no longer explicit for the attenuated
Radon transform. It was shown in [26, 29] that half of the measurements (180◦ measurements)
are sufficient to reconstruct the source term when the absorption is constant. The iterative
procedure proposed there generalizes the reconstruction formulae from full measurements
derived in [32] for the exponential Radon transform (ERT; the AtRT for a constant absorption
map). More recently, it was shown in [6] that 180◦ measurements are also sufficient to
reconstruct compactly supported source terms from their AtRT provided that the absorption
satisfies certain smallness conditions. This paper addresses the numerical aspects of the latter
reconstruction theory and shows that reconstruction from half measurements is indeed feasible
in cases of practical interest.

The numerical technique we consider here is a generalization of the fast slant stack
algorithm as it was described in [2, 3] to compute and invert the Radon transform. The slant
stack algorithm is also referred to as the linogram algorithm in the literature and has a long
history in medical imaging; see [4, 11, 25]. A crucial property of that algorithm is that it
offers an exactly invertible discrete Radon transform. Moreover this algorithm is fast (its
complexity is in O(n2 log n) to calculate and invert the Radon transform of an n × n image)
and accurate (the Radon transform is calculated with spectral accuracy and its inversion can be
accurately performed relatively easily). The fast slant stack algorithm uses a discrete version
of the Fourier slice theorem, which relates the Fourier transform of the source term to the
Fourier transform of the Radon transform. This important feature of the Radon transform no
longer holds for the AtRT. We show that by decomposing exponential terms in the ERT and
AtRT we can also obtain algorithms that perform the inversion with a complexity of order
O(Nn2 log n), where the constant N is the number of Fourier modes necessary to accurately
represent the absorption map. For the AtRT, this requires preprocessing of the attenuation
map for a higher cost of O(n3 log n) unless the absorption map is represented as a coarser
n2/3 × n2/3 image, which can be justified provided that absorption is sufficiently smooth.

There are other fast algorithms to invert the Radon transform [7–9, 12]. There are also
many other techniques to invert the AtRT, based on the inversion formula (and the filtered
back-projection) [10, 14, 18], or on other methods [16, 17, 25]. One main advantage of
the slant stack method is its accuracy for a reasonable computational cost. Provided one is
careful in choosing a sufficiently large number of measured directions, the spectral radii of the
continuous and discrete operators involved in the calculations are very close to each other. As
we shall see, this is particularly important in the inversion of the AtRT (or ERT) from partial
measurements. Also provided that the absorption map is sufficiently smooth, the fast version
of the algorithm allows us to invert the AtRT quite rapidly.

The rest of the paper is organized as follows. Section 2 introduces the Radon transform in
the slant stack variables and the continuous reconstruction formulae. Section 3 recalls the fast
slant stack algorithm and details its implementation. Section 4 addresses the calculation of the
adjoint operator and the inversion of the Radon transform. Numerical simulations illustrate
the method. Sections 2 to 4 closely follow the presentation in [2] and introduce notation and
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implementation techniques we need in subsequent sections. In section 5, we generalize the
slant stack algorithm to the AtRT with full measurements. Fast algorithms (of complexity
O(Nn2 log n)) for ERT and AtRT are introduced in section 6. Finally we consider in section 7
the reconstruction of source terms from their ERT or AtRT with 180◦ measurements.

2. Radon transform and slant stack

Radon transform. The Radon transform g(s, θ) of a function f (x) over R2 is defined for
s ∈ R and θ ∈ (0, 2π) as

g(s, θ) = Rf (s, θ) =
∫

R

f (sθ⊥ + tθ) dt =
∫

R2
f (x)δ(x · θ⊥ − s) dx. (1)

Throughout we identify θ = (cos θ, sin θ) for θ ∈ (0, 2π) and θ ∈ S1. Let us define the
Hilbert transform as

Hu(t) = 1

π

∫
R

u(s)

t − s
ds, (2)

where the above integrals need be taken in the principal value sense. It is well known that the
function f (x) can be reconstructed from its Radon transform Rf (s, θ) using the formula

f (x) = 1

4π

∫ 2π

0
θ⊥ · ∇(HRf )(x · θ⊥, θ) dθ = 1

4π

∫ 2π

0

(
H

∂

∂s
Rf
)
(x · θ⊥, θ) dθ. (3)

This can be recast as

f (x) = 1

4π
R∗I−1Rf (x), (4)

where R∗ is the formal adjoint to R and I−1 the Riesz potential, defined respectively by

R∗g(x) =
∫ 2π

0
g(x · θ⊥, θ) dθ, I−1 = ∂

∂s
H = H

∂

∂s
. (5)

Let us define the Fourier transform of a function f (x) over Rd as

f̂ (ξ) =
∫

Rd

e−iξ·xf (x) dx. (6)

We still denote by f̂ (σ, θ) the Fourier transform of a function f (s, θ) with respect to the first
variable only. A remarkable property of all the operators involved in the reconstruction (4) is
their local expression in the Fourier domain. Indeed we have

R̂f (σ, θ) = f̂ (σθ⊥), Ĥf (σ ) = −i sign(σ )f̂ (σ ),

R̂∗g(ξ) = 1

|ξ|
(
ĝ
(
|ξ|, ξ − π

2

)
+ ĝ
(
−|ξ|, ξ +

π

2

))
= 2

|ξ| ĝ
(
|ξ|, ξ − π

2

)
,

(7)

where ξ̂ = ξ/|ξ| = (cos ξ, sin ξ), and where the latter equality holds only when g(s, θ) =
g(−s, θ + π), which is the case for the Radon transform (1). These local expressions are very
useful when it comes to discretizing the reconstruction formula and solving it numerically.
There is a major difficulty however coming from the fact that R̂f involves the Fourier transform
of f at σθ⊥. Therefore a discretization of in σ and θ provides a ‘polar’ discretization of f̂ (ξ).
The interpolation from polar coordinates back to Cartesian coordinates, turns out to be rather
challenging, especially if one wants to perform it fast [22].
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(a) (b) (c)

Figure 1. (a) Angular decomposition of (0, 2π). (b) In (13), Ŝf (ω, θ) depends only on f̂ (D1)

for θ ∈ �1 ∪ �3 and on f̂ (D2) for θ ∈ �2 ∪ �4. (c) Domain of validity of CθAu,v in (43) below
using pn × qm arrays.

Slant stack. A way to overcome some of the difficulties is to introduce a different transform
that is more Cartesian-friendly [2, 3, 11, 25]. We first decompose the angular domain into two
subdomains

�1 =
[−π

4
,
π

4

)
, �2 =

[
π

4
,

3π

4

)
. (8)

The integration on lines parametrized with angles in �3 = [3π/4, 5π/4) and �4 =
[5π/4, 7π/4) can be performed by using the symmetry of the Radon transform g(s, θ) =
g(−s, θ + π); see figure 1(a). Up to boundary points, the domain �1 corresponds to those
angles θ such that |tan θ | < 1 whereas �2 corresponds to those angles θ such that |cot θ | < 1.
We then define the Radon transform of a function f (x) over R2 in these coordinates as

Sf (t, θ) =


∫

R

f (x, x tan θ + t)
dx

cos θ
, θ ∈ �1∫

R

f (y cot θ − t, y)
dy

sin θ
, θ ∈ �2.

(9)

It is defined for t ∈ R and θ ∈ �1 ∪ �2 and can be extended to θ ∈ [0, 2π) by
setting Sf (t, θ + π) = Sf (t, θ), which is equivalent in the variables (t, θ) to Rf (s, θ) =
Rf (−s, θ + π) in the variables (s, θ). We verify that Sf (t, θ) = Rf (t cos θ, θ) on �1 and
Sf (t, θ) = Rf (t sin θ, θ) on �2 so that there is a one-to-one correspondence between Rf

and Sf . To differentiate it from the Radon transform in the variables (s, θ) we call Sf (t, θ)

the slant stack transform, in reference to its use in geophysics. The adjoint operator to Sf

(with respect to the usual scalar product in the variables t and θ ) is then, using the notation
x = (x, y),

S∗g(x) =
∫

�1

g(y − x tan θ, θ)
dθ

cos θ
+
∫

�2

g(−x + y cot θ, θ)
dθ

sin θ
, (10)

which we decompose with obvious notation as S∗
1g(x) + S∗

2g(x). Some algebra shows that

(HRf )(s, θ) = (HSf )(t, θ), (11)

where s = s(t) = t cos θ on �1 and s = s(t) = t sin θ on �2. Thus for θ ∈ �1 with
s = t cos θ , we obtain for instance that
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Figure 2. Linogram of the slant stack transform (left) compared with the usual sinogram of the
Radon transform (right) for the phantom given in figure 3.

(
H

∂

∂s
Rf

)
(x · θ⊥, θ) = 1

cos θ

(
H

∂

∂t
Sf

)
(y − x tan θ, θ)

= θ⊥ · ∇(HRf )(x · θ⊥, θ)

= 1

cos θ

∂

∂y
(HSf )(y − x tan θ, θ),

and a similar expression for θ ∈ �2. Thus (4) in the new variables can be recast as

f (x) = 1

2π

(
S∗

1

(
∂

∂y
HSf

)
(x) + S∗

2

(
∂

∂x
HSf

)
(x)

)
. (12)

The derivatives along the direction θ⊥ that appear in (3) are now replaced by derivatives along
the directions of the main axes. This is one reason why this transform is Cartesian-friendly.
We have seen that the operators R and R∗ were local in the Fourier domain. This is also the
case for the operators S and S∗. Some algebra shows that

Ŝf (ω, θ) =


1

cos θ
f̂ (−ω tan θ, ω), θ ∈ �1,

1

sin θ
f̂ (−ω,ω cot θ), θ ∈ �2.

(13)

Ŝ∗g(ξ) = 4π

(
χ(|ξx | < |ξy |)

|ξy | +
χ(|ξy | < |ξx |)

|ξx |
)

f̂ (ξ) = 4πf̂ (ξ)

max(|ξx |, |ξy |) .

Here we have used the notation ξ = (ξx, ξy). In the formula for Ŝ∗g we recognize the sum
Ŝ∗

1g + Ŝ∗
2g. The Fourier transforms thus remain local. Moreover Ŝf involves the direction of

integration θ in only one of the variables of f̂ (ξ). This property is exploited in the numerical
implementation of the inversion using the variables t and θ instead of s and θ . Note that
(−ω tan θ, ω) remains in the domain D1 of figure 1(b) for ω ∈ R since |tan θ | � 1. A
comparison of the slant stack transform and the classical Radon transform for the source term
given in figure 3 is shown in figure 2.

3. Fast slant stack algorithm

We use (12) and (13) to devise a fast and accurate algorithm to calculate and invert the Radon
transform: the fast slant stack algorithm.



1142 G Bal and P Moireau

We have seen that the slant stack transform takes different expressions for θ ∈ �1 and
θ ∈ �2. We can give them a unified expression by realizing that �2 is the rotation of �1 by
π/2. Let us denote by R the (counterclockwise) rotation by π/2 and define �k = Rk−1�1

for k = 1, 2, 3, 4. For θ ∈ [0, 2π), we define the domain index to which θ belongs by

k = k(θ) such that 1 � k � 4 and R1−kθ ∈ �1. (14)

Let us also define the rotation of the function f by R as Rf (x) = f (R−1x). We then define
the slant stack transform as

Sf (t, θ) =
∫

R

(R1−kf )(x, x tanRk−1θ)
dx

cosRk−1θ
. (15)

This implies that we can concentrate on the calculation of Sf (t, θ) for θ ∈ �1 and obtain the
whole slant stack transform by using the same algorithm after rotation of the function f . In
the following, we therefore consider only θ ∈ �1.

Let us describe how we discretize the function f . Let n be a given power of 2 (to simplify).
We consider images composed of n × n pixels, where the first variable refers to the column
index and the second variable to the row index. For the following, we define m = 2n. We
denote by Fu,v for −n/2 � u, v < n/2 the Cn×n array of values at the pixels. We define the
image F 1 augmented by zeros as

F 1
u,v = (E1F)u,v, (16)

where E1 is the operator padding an array n × n to be an n × m array by adding n/2 rows of
zeros ‘above’ and n/2 rows of zeros ‘below’. Let us introduce the set of integers for n an even
integer:

Tn =
{
−n

2
,−n

2
+ 1, . . . ,

n

2
− 1
}

. (17)

Next we define the interpolant

Dm(t) = 1

m

∑
k∈Tm

ei2π(k+ 1
2 )t = sin mπt

m sin t
, (18)

and the interpolations

F 1
u (y) =

∑
v∈Tn

Fu,vDm(y − v) =
∑
v∈Tm

F 1
u,vDm(y − v). (19)

We then define SnFt (θ), the semi-discrete slant stack transform of F, as

SnFt (θ) = 1

cos θ

1

n

∑
u∈Tn

F 1
u (u tan θ + t), θ ∈ �1. (20)

The transform is defined for t ∈ Tm and for the not yet discretized variable θ ∈ �1. We
can interpret the above algorithm as follows. Consider θ ∈ �1 and introduce the translation
operator of length τ acting on Cm-vectors:

(TτV )u =
∑
v∈Tm

VvDm(u + τ − v), u ∈ Tm. (21)

The slanted image is defined by

(SθF )u,v = (Tu tan θF
1)u,v, u ∈ Tn, v ∈ Tm, (22)

where the translation by u tan θ is applied in the vertical v coordinate for each horizontal index
u fixed. We then verify that

SnFt (θ) = 1

cos θ

1

n

∑
u∈Tn

(SθF )u,t , t ∈ Tm, θ ∈ �1. (23)
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The semi-discrete slant stack is thus performed following these steps: we first zero-pad F to get
F 1. We next slant F 1 column by column by an amount −u tan θ proportional to the column
index u. The slant stack transform is finally calculated by summing for each row the terms
across the columns.

Semi-discrete Fourier transform and Fourier slice theorem. A key property of the above
construction is that it satisfies a discrete version of the Fourier slice theorem, the first equations
in (7) and (13). Let us define the semi-discrete Fourier transform of SnF as

ŜnF (σ, θ) = 1

m

∑
t∈Tm

e−iσ tSnFt (θ), σ ∈ R, θ ∈ �1. (24)

We verify that

ŜnF (σ, θ) = 1

cos θ

1

nm

∑
u∈Tn

∑
v∈Tm

F 1
u,v

∑
t∈Tm

e−iσ tDm(u tan θ + t − v).

From the definition of Dm we obtain that for a wavenumber of the form σ = 2π
m

(
k + 1

2

)
, we

have

ŜnF

(
2π

m

(
k +

1

2

)
, θ

)
= 1

cos θ
F̂ 1

(
−2π

m

(
k +

1

2

)
tan θ,

2π

m

(
k +

1

2

))
. (25)

This is a discrete version of the Fourier slice theorem, where we have defined the semi-discrete
Fourier transform:

F̂ 1

(
2πl

n
,

2π
(
k + 1

2

)
m

)
= 1

nm

∑
u∈Tn

∑
v∈Tm

F 1
u,v exp

(
−i

(
2πl

n
u +

2π

m

(
k +

1

2

)
v

))
. (26)

Discrete and fractional Fourier transform. We see from (25) that the slant stack transform
can be computed efficiently in the Fourier domain provided one is capable of estimating the
left-hand side in (25) fast. This can be done, using the fractional Fourier transform, provided
that tan θ is linearly related to the first variable in F̂ 1. More specifically let us introduce the
set

�n
1 =
{
θl = arctan

2l

n
, l ∈ Tn

}
, (27)

where tan θ is chosen uniformly distributed on (−1, 1). Then we define the fully discrete slant
stack transform as

SnFt,l = SnFt (θl). (28)

We observe that it can be calculated as

SnFt,l =
∑
k∈Tm

exp

(
i
2π

m

(
k +

1

2

)
t

)
ŜnF k,l, t ∈ Tm, l ∈ Tn, (29)

where

ŜnF k,l =
√

1 +

(
2l

n

)2

F̂ 1

(
−2π

m

(
k +

1

2

)
2l

n
,

2π

m

(
k +

1

2

))
. (30)

The calculation of SnFt,l for (t, l) ∈ Tm × Tn can be obtained from ŜnF k,l for (k, l) ∈ Tm × Tn

in O(n2 log n) by fast Fourier transform (FFT). The fast calculation of ŜnF k,l is obtained as
follows. Using the FFT we can calculate

F̃ 1
u

(
2π

m

(
k +

1

2

))
= 1

m

∑
v∈Tm

exp

(
−i

2π

m

(
k +

1

2

))
F 1

u,v,

for k ∈ Tm in O(n2 log n) operations.
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Let us introduce the discrete fractional Fourier transform, which maps a vector Vu ∈ Tn

to a vector (FαV )l ∈ Tn as

(FαV )l =
∑
u∈Tn

Vu e−i 2π
n

αlu. (31)

For a fixed k ∈ Tm we observe that as vectors indexed by l ∈ Tn,(
F −2(k+1/2)

m
F̃ 1

u

(
2π

m

(
k +

1

2

)))
l

= F̂ 1

(
−2π

m

(
k +

1

2

)
2l

n
,

2π

m

(
k +

1

2

))
. (32)

Thus, the calculation of the right-hand side in (30) can be obtained by applying m fractional
Fourier transforms on vectors of size n. This can be done in O(m × n log n) = O(n2 log n).

Remark on the interpolation. We have chosen to use the interpolant (18) and the corresponding
de-centred discrete wavenumbers 2π

(
k + 1

2

)
for k ∈ Tm for two reasons. First, the interpolant

is real valued so that the slant stack transform SnFt,l is real valued. Second, the definition
of the interpolation involves exactly m discrete wavenumbers (in each dimension), which
corresponds to the image we want to consider.

We could choose different interpolants such as

Cm(t) = 1

m

∑
k∈Tm

ei2πkt = ei π
m

t sin mπt

m sin t
, Km(t) = 1

m

m/2∑
k=−m/2

′ ei2πkt = sin(mπt)

m tan(t/2)
,

where ′ means that the boundary coefficient at k = −m/2 and k = m/2 are halved. The
interpolant Cm involves only m values but is not real valued. Even though the phase ei π

m
t is

small for large m, the calculated Radon transform is not real valued. The main disadvantage is
that applying the inversion operator to the real part of the calculated Radon transform does not
provide as nice results as when it is applied to the complex-valued transform. The operator
Km is real valued but requires consideration of m + 1 wavenumbers instead of m, which makes
the implementation of the reconstruction algorithm slightly more involved.

Implementation. We have seen that the discrete calculation of Sf (t, θ) can be performed
by considering θ ∈ �1 after suitable rotation. Because n × n images Fu,v with n even are
considered, the origin of the image turns out to be the pixel (n/2 + 1, n/2 + 1), which is then
not invariant by rotation by a multiple of 90◦. To overcome the problem we embed the image
into a (n + 1) × (n + 1) image F̃ by adding a column of zeros to the right of F and a row of
zeros to the top of F. Moreover we assume that the bottom row and the left column of F are
filled with zeros. We can then apply rotations to F̃ and remove the extra column and extra
row to come back to an n × n image. This allows us to implement the operator for θ ∈ �1

n

and compute the integrations in other directions by rotation.
For the attenuated Radon transform, we have to consider four operators corresponding

to the angles (−π/4, π/4), (π/4, 3π/4), (3π/4, 5π/4) and (5π/7π/4). The latter three
operators are mapped to the first one by appropriate rotation of the original image. The
implementation of the first operator is obtained as follows:

(i) We add zeros to the image F to obtain F 1.
(ii) We compute a discrete Fourier transform (DFT) on the columns.

(iii) We compute a fractional DFT on the rows.
(iv) We compute an inverse DFT (IDFT) on the columns.

Each of these operations can be performed in O(n2 log n) operations. Note also that the
calculations on each angular domain �k

n can be performed independently, hence in parallel.

Accuracy of the procedure. We can show that the above procedure has spectral accuracy to
estimate the slant stack transform, and equivalently the Radon transform. A proof of this result
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can be found in [3]. It can also be obtained from the following observation. Let us define the
interpolating function

f (x, y) =
∑

u,v∈Tm

F (u, v) sinc
(
π
(
x − u

m

))
Dm

(
y − v

m

)
,

where sinc(x) = sin(x)/x. A direct calculation shows that for t ∈ Tn,

Sf (θ, t) = 2π

cos(θ)

∑
k′∈Tm

ei2π(k′+1/2)t
∑

u,v∈Tm

f (u, v) e−i 2π
m

(k′+1/2)(v−tan(θ)u) = SnFt (θ).

The values of the slant stack transform of suitable polynomial interpolations of the images
F(u, v) at the slant stack grid are thus calculated exactly.

4. Adjoint transform and inversion

A discretization of the inversion of the slant stack transform can also be obtained fast. We see
from (12) that we need to discretize the adjoint operator to S, the Hilbert transform, and the
differentiation in y and x. Again, up to appropriate rotation, it is sufficient to consider θ ∈ �1.
We can thus recast (20)–(28) as

SnFt,l =
√

1 +

(
2l

n

)2 1

n

∑
u∈Tn

∑
v∈Tm

F 1
u,vDm(ul + t − v). (33)

The adjoint of this operator thus takes the form

S∗
nGu,v = 1

n

∑
l∈Tn

∑
t∈Tm

√1 +

(
2l

n

)2

Gt,l

Dm(ul + t − v). (34)

The adjoint operator S∗
n has therefore the same structure as Sn with

√
1 + (2l/n)2Gt,l

playing an equivalent role to Fu,v . It can thus also be estimated with a computational cost in
O(n2 log n) using discrete Fourier and fractional Fourier transforms.

It remains to discretize the Riesz operator in (12), which for the angles θ ∈ �1 corresponds
to ∂

∂y
H . These operators are diagonal in the Fourier domain and so we define I−1

n , the
discretization of the Riesz operator, which acts on vectors, as the succession of the following
three steps:

(i) DFT on vector Vk to obtain V̂k;
(ii) multiplication of V̂ by � of coefficients �k = 2π

m

∣∣k + 1
2

∣∣ for k ∈ Tm;
(iii) IDFT on vector (�V̂ )k .

This step can also be computed in O(n2 log n) operations.
The contributions coming from θ ∈ �2 are calculated similarly after suitable rotation.

We therefore have an algorithm that can calculate the Radon transform (or the slant transform)
of a n×n image in O(n2 log n) operations. It takes the same order of calculations to discretize
the inversion operator.

Exact numerical inversion. With Sn the operator, which to an image F maps the discrete
Radon transform G = SnF , our numerical reconstruction consists then in applying S∗

nI−1
n to

the data G = S. Whereas S∗I−1S = Id, the identity operator, for instance in the L2 sense in
the case of continuous functions, this is no longer the case for the discretized operators. We
define the operator

Gn = S∗
nI−1

n Sn. (35)
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(a)

(b) (c)

(e) (d)

(f) (g)

Figure 3. (a) Initial phantom. (b) Same image and rotated image with vertical zero-padding.
(c) Slant stack transform of images in (b). (d) Reconstructions using data in (c). (e) Fourier
transform of left image in (d) whose support is theoretically in D1. (f) Superposition of left and
right images in (d) after appropriate rotation. Only the central part is of interest. (g) Cross section
of initial and reconstructed images along y = 0.

This is a symmetric operator with two principal characteristics: GnF has a computational cost
of O(n2 log n), and Gn is spectrally relatively close to identity. It can be inverted by conjugate
gradient (CG) [13] as proposed in [2].

Numerical simulations. The fast slant stack algorithm is explained in the numerical simulation
of figure 3. We observe that the reconstruction is visually almost perfect. Only the low
frequencies (note the relatively constant shift between the initial and reconstructed images on
the cross section y = 0) are not perfectly reconstructed.
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Table 1. Spectral data (three smallest and two largest eigenvalues) for different simulations:
n, number of pixels of image; ZP , additional zero-padding such that the algorithm zero-pads the
original image into a 2n × 2n image for ZP = 1; CG, the number of conjugate gradient iterations
to invert Gn.

Case (n, ZP,CG) First Second Third n − 1 Last

16, 0, 0 0.886 86 0.886 86 0.978 78 1.089 7 1.3531
32, 0, 0 0.825 01 0.825 01 0.977 95 1.0984 1.4539
32, 1, 0 0.995 66 0.995 66 0.997 55 1.0204 1.0615
32, 0, 4 0.999 93 · · · · · · · · · 1.0001
64, 0, 0 0.759 9 0.759 9 0.962 66 1.1097 1.534
64, 1, 0 0.995 85 0.995 85 0.996 9 1.0212 1.0657
64, 0, 4 0.999 83 · · · · · · · · · 1.0004
128, 0, 0 0.696 75 0.696 75 0.938 82 1.1543 1.5977

The quality of the reconstruction is closely related to the quality of the near identity matrix
Gn introduced in (35). We have estimated its spectrum numerically using Matlab standard
procedures. The results are reported in table 1. We observe that few eigenvalues depart
significantly from 1 though this number does not improve as n → ∞. A better numerical
inversion can be obtained in two ways. One can either apply several iterations of conjugate
gradient to invert Gn, or zero-pad the image into a bigger image (2n × 2n in our simulations).

The cost of zero-padding the image into a 2n × 2n image is roughly four times the initial
cost since there are twice the directions θl and twice the offsets tk . Note however that the
inversion, which is very easy to implement, also requires four times more measured data. The
cost of p iterations of conjugate gradient is 2p + 1 times the initial cost. Indeed the cost I−1

n

is asymptotically negligible compared to that of Sn and S∗
n . So the cost of one CG iteration

(multiplication by Gn) is roughly twice the cost of a multiplication by S∗
n .

5. AtRT reconstruction from full measurements

Let us introduce the symmetrized beam transform of a(x) as

Dθa(x) = 1

2

(∫ ∞

0
[a(x − tθ) − a(x + tθ)] dt

)
. (36)

The AtRT is then the weighted Radon transform defined by

Raf (s, θ) = R[eDθa(x)f (x)](s, θ) ≡ Ra,θf (s). (37)

In practice the measured data are given by e−Ra(s,θ)/2Raf (s, θ) [6, 22]. In the numerical
calculation of Raf (s, θ), a difficulty arises from the fact that the weight eDθa(x) depends
on the angular direction θ . It is also the main obstacle to generalizing the reconstruction
formula (4). A reconstruction formula was recently obtained in [27]. Let us define

iϕ(x, θ) = R∗
−a,θ (2Ha)Ra,θf (x), Ha = 1

2 (CcHCc + CsHCs), (38)

where R∗
a,θg(x) = eDθa(x)g(x · θ⊥) and

Ccg(s, θ) = g(s, θ) cos

(
HRa(s, θ)

2

)
, Csg(s, θ) = g(s, θ) sin

(
HRa(s, θ)

2

)
. (39)

The operator Ha can be seen as a generalization of the Hilbert transform, with Ha = H/2
when a ≡ 0. The Novikov reconstruction formula (see [6, 18, 27]) states that

f (x) = 1

4π

∫ 2π

0
θ⊥ · ∇(iϕ)(x, θ) dθ. (40)
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We generalize the slant stack transform and its numerical implementation to the calculation
of the attenuated Radon transform Raf (s, θ) and to its inversion via (40). Because there is no
generalization of the Fourier slice theorem to the case of the attenuated Radon transform, we
cannot use the fractional Fourier transform and obtain a computational cost in O(n2 log n).
However, we can still use the idea that it is easy to sum coefficients along the axis x after
slanting the image by the correct amount. This is the technique we have implemented to solve
the AtRT. A fast algorithm, based on a Fourier decomposition of the weight eDθ a , will be
presented in section 6.

In order to discretize (37) we need first to calculate Dθa(x) and second to perform the
one-dimensional integration.

Calculation of the attenuation weight. To calculate Dθa(x) it is sufficient to estimate terms of
the form

Cθa(x) =
∫ ∞

0
a(x + tθ) dt =

∫ ∞

0
a(x + t, y + t tan θ)

dt

cos θ
, (41)

which we recast as

Cθa(x) =
∫ ∞

0
(Tt ⊗ Tt tan θ )a(x, y)

dt

cos θ
. (42)

Here Tta(x) = a(x + t). The action of Tt ⊗ Tt tan θ is local in the Fourier domain. We shall use
this property to discretize Cθa. Let Au,v for u, v ∈ Tn be the discrete attenuation map and let
us define A

pq
u,v the pn× qn array composed of the coefficients Au,v surrounded by (p − 1)n/2

columns of zeros to the left and to the right and by (q − 1)n/2 rows of zeros above and below.
We discretize (42) as

CθAu,v = 1

cos θ

(q−1)n−1∑
t=0

(Tt ⊗ Tt tan θ )A
pq
u,v. (43)

We verify from the continuous expression (41) that CθA is correctly estimated for u ∈ T(p−1)n

and v ∈ T(q−1)n; see figure 1(c). The parameters p and q need to be chosen according to the
size of the array on which one wants to obtain an accurate approximation of Cθ . In the Fourier
domain we obtain

ĈθAξ,ζ =
(q−1)n−1∑

t=0

exp

(
i
2πt

m
(pξ + q tan θζ )

)
Â

pq

ξ,ζ

cos θ

=
1 − exp

(
i2π
(

q−1
q

ξ + q−1
p

tan θζ
))

1 − exp
(
i 2πt

n

(
ξ

q
+ ζ

p
tan θ
)) Â

pq

ξ,ζ

cos θ
. (44)

For each θ ∈ �1 we can thus calculate CθAu,v in O(n2 log n) by using the FFT.
The numerical simulation of Cθl

Au,v for u, v, l ∈ Tm can thus be performed in O(n3 log n)

calculations. Since the array is three dimensional, there is little hope to obtain a better
computational cost if one neglects the log n term. Note that since θ · ∇Cθa + a = 0 with
appropriate boundary conditions, we could solve the latter partial differential equation by
finite differences in O(n3) operations [19]. However the line integrations are not necessarily
performed very accurately [5, 20]. We thus prefer to use the accurate method based on the
same ideas as for the fast slant stack algorithm.

Attenuated slant stack. Let us now come back to the calculations of the AtRT Raf (s, θ).
Once eDθa is calculated, this can be written in the form of a generalized Radon transform as
follows:

Rf (s, θ) =
∫

R

f (sθ⊥ + tθ, θ) dt. (45)
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In the slant stack variables, this is equivalent to

Sf (t, θ) =
∫

R

f (x, x tan θ + t, θ)
dx

cos θ
, (46)

assuming that θ ∈ �1. We want to perform the calculation by first slanting f and then
integrating along a horizontal line. Let us define Fu,v(θ) the image, which now depends on
the variable θ , and its extension F 1

u,v(θ) where now v ∈ Tm. We define the discrete slant stack
transform as

SnFt (θ) = 1

cos θ

1

n

∑
u∈Tn

(SθF (θ))u,t , t ∈ Tn. (47)

Here Sθ is the slanting operator defined in (22). This operation can be calculated relatively
fast in the Fourier domain. Let us define F̃ u,ξ as the Fourier transform with respect to the
second variable only. We verify that

S̃θF u,ξ = exp

(
i
2π

m
u tan θ

(
ξ +

1

2

))
F̃ 1

u,ξ , u ∈ Tn, ξ ∈ Tm. (48)

So for each θ ∈ �1 we can compute SnFt (θ) in O(n2 log n) operations. The global calculation
of SnFt (θl) for t ∈ Tm and l ∈ Tn can thus be performed in O(n3 log n) operations. In the
general case where f (x, θ) genuinely depends on θ , there is little hope to do any better.
However we show in the following section how we can obtain a fast algorithm when f (x, θ)

can be written as a sum of products of functions that depend only on space and direction,
respectively.

Inversion of the AtRT. We have shown how to calculate the AtRT Raf (s, θ) in O(n3 log n)

operations. We now show that the complexity of the inversion using the Novikov formula is
of the same order. Let us define the attenuated slant stack transform as

g(t, θ) = Sa,θf (t) = Saf (t, θ) =
∫

R

eDθ a(x,x tan θ+t)f (x, x tan θ + t)
dx

cos θ
, (49)

for θ ∈ �1 and similar expressions for θ ∈ �k for k = 2, 3, 4 obtained by suitable rotations.
Then using (11), we can verify that the Novikov formula in the slant stack variables is given
by

f (x) = 1

4π

(
∂

∂y

∫
�1∪�3

S∗
−a,θHag(x) dθ +

∂

∂x

∫
�2∪�4

S∗
−a,θHag(x) dθ

)
. (50)

We define the operators Sk∗
a = ∫

�k
S∗

a,θ dθ, k = 1, 2, 3, 4, as the adjoints to Sa on R×�k . The
numerical inversion thus requires to approximate Hag(t, θ), the derivatives in x and y, and the
adjoint operators Sk∗

a . The operator Ha , involving multiplications and the Hilbert transform
H, is dealt with easily in the Fourier domain. The operators ∂

∂x
and ∂

∂y
are also easily handled

in the Fourier domain as a multiplication by 2π
m

(
k + 1

2

)
for a cost proportional to O(n2 log n).

It thus remains to deal with the adjoint operators Sk∗
a . By appropriate rotation, it is sufficient

to consider S1∗
a , which takes the form

S1∗
a g(x) =

∫
�1

S∗
a,θg(x) dθ =

∫
�1

eDθa(x,y)g(y − x tan θ, θ)
dθ

cos θ
. (51)

The discretization of Saf (s, θ) obtained earlier is

SanFt,l = 1

cos θl

1

n

∑
u∈Tn

Sθl
[F eDθa(θl)]u,t = 1

cos θl

1

n

∑
u∈Tn

(Tul[F eDθ a(θl)]
1)u,t . (52)
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The index [·]1 means here that the array is n × m and the translation T acts on the second
variable, here t. Now we have T ∗

ul = T−ul so that

S∗
anGu,v = 1

n

∑
l∈Tn

1

cos θl

[eDθ a(θl)]u,v(T−ulG)v,l . (53)

Here the translation T−ul is with respect to the first variable v. We see that the expressions for
the discrete operators San and S∗

an are symmetrical. The calculation of Hu,v,l = (T−ulG)v,l for
v ∈ Tm, u, l ∈ Tn, can be performed in O(n3 log n) in the Fourier domain. Indeed we verify
that

H̃ u,k,l = exp

(
−i2π

(
k +

1

2

)
ul

)
Ĝk,l,

where H̃ is the discrete Fourier transform of H in the second variable only. Note that we could
obtain the summation in l of the above expression for a cost of O(n2 log n) operations as we
did in the preceding section by using the fractional Fourier transform. Here, however, because
the exponential term depends on l, u and v, the summation in l cannot be performed fast. This
shows that (53) can also be completed in O(n3 log n) operations.

Exact numerical inversion. The generalization of (35) to the AtRT can formally be written

Gan = (S∗H)anSan, (54)

where San is the discretization of the AtRT and (S∗H)an the discretization of the reconstruction
operator. Unlike Gn however, the approximation of identity Gan need not be symmetric. In
order to obtain a better approximation of identity, we thus use the fact that

I ∼ (G∗
anGan)

−1G∗
anGan. (55)

This can be solved by conjugate gradient (we assume that the matrix is sufficiently well
behaved) as in the case a ≡ 0. Other techniques such as GMRES [13] could certainly also be
used to invert Gan directly. We do not consider them here. The cost of CG becomes relatively
high and the implementation of G∗

an, which goes along the same lines as that of Gan needs to
be implemented with some care. Assuming the inverse operator exists, the inversion of the
numerical AtRT is thus given by

S−1
an = (G∗

anGan)
−1G∗

an(S
∗H)an. (56)

We shall see that G∗
anGan need not be invertible for certain choices of n and the absorption. To

obtain an invertible operator, which is a good approximation of identity, we need to zero-pad
the image into a bigger image. We consider below the case of zero-padding into 2n × 2n

images, which provides good inversions even for practically very high values of absorption.

Numerical examples. The above calculations show that the attenuated Radon transform
can be computed and inverted in O(n3 log n) operations. This is not competitive with
the computational cost of order O(n2 log n) we obtained for the calculation and inversion
of the Radon transform. We shall see in section 6 how the inversion can be sped up by
using a Fourier decomposition of eDθ a . We consider two types of absorption maps given in
figures 4(i) and (ii). The left figure (i) represents an absorption map used in [18]. The right
figure (ii) represents a smooth version of it obtained by multiplication in the Fourier domain
by ĝp(ξ) = exp(−np|ξ|2/2) with p = 4.

We consider two different experiments with two types of sources given in figure 4(a)
and (b). These source profiles have been proposed in [18]. We now consider the reconstruction
of the first source terms from its AtRT using the ‘slow’ algorithm in O(n3 log n) operations.
We use the non-smoothed absorption map (left of figure 4). The numerical simulation is
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(a) (b) (i) (ii)

Figure 4. Left: two different source terms: (a) two ellipsoids; (b) nine spots. Right: two
attenuation maps: (i) attenuation from [18]; (ii) regularization of the same attenuation map with
p = 4.

presented in figure 5. Four iterations of conjugate gradient are used in the reconstruction
(chosen to obtain a very accurate reconstruction). We observe again that the reconstruction
from each quadrangle �i provides only very partial information about the true source but that
the sum of the four contributions offers a very good image.

In the absence of conjugate gradient iterations, we observe quite poor reconstructions.
The results are shown in figure 6. The structure of the absorption map is clearly noticeable on
the reconstructed image though this is only a numerical artefact. Two iterations of conjugate
gradient (not shown) would be sufficient to render the absorption map almost unnoticeable.
The reason for this behaviour is that the operator Gan moves further away from identity as
the absorption parameter increases. The spectral analysis of Gan is more complicated than
that for the classical Radon transform. The results presented in table 2 show extreme singular
values of Gan, i.e. eigenvalues of the symmetric operator (G∗

anGan)
1/2. For large values of

the absorption map, several eigenvalues significantly depart from 1. In the case of constant
absorption a ≡ µ on the unit disc, where the operator Gµn ≡ Gan is self-adjoint, we show in
table 3 below in section 6 that some eigenvalues of Gµn even become negative. This implies
that for intermediate values of the absorption parameter µ, zero can be an eigenvalue of Gµn,
which is therefore no longer invertible. The good properties of the operator Gn (symmetric
with positive eigenvalues) obtained in [2] for the Radon transform are therefore no longer true
for the attenuated Radon transform.

There are two remedies to this instability. For sufficiently small absorption, where the
singular values of Gan remain sufficiently far away from 0, conjugate gradient iterations (of
G∗

anGan) bring the spectrum closer to identity. The cost of the inversion with p � 1 iterations
of CG is then roughly 4p + 3 times more expensive than the cost of the inversion (S∗H)an.
When several singular values of Gan are close to 0, conjugate gradient iterations may not be
sufficient (since (G∗

anGan) may no longer be invertible). The remedy to the latter situation
is zero-padding. Although we do not have any theoretical proof, numerical evidence shows
that, as for the Radon transform, the inversion is substantially improved by zero-padding
the image (hence also the absorption map) into a 2n × 2n image, even at intensities of the
absorption map for which many singular values of Gan are close to 0. The cost of this zero-
padding is then roughly eight times the initial cost for an algorithm of order O(n3 log n).
For sufficiently large absorptions, zero-padding the image becomes necessary if one wants all
the singular values of Gan to be far away from 0. Note however that zero-padding not only
increases the computational cost but also requires additional measurements. Indeed, in the
slant stack method, the number of directions is equal to 4n and the number of offsets equal
to 2n. Inversions with zero-padding require 8n directions θl and 4n offsets tk . Zero-padding
will prove quite useful in the iterative reconstructions from 180◦ measurements proposed in
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(a)

(c)

(d)

(e) (f)

(b)

Figure 5. Numerical inversion of AtRT. Top line: image (left) and attenuation (right). Second line:
AtRT as a function of t (vertical axis) and θ (horizontal axis); only one out of four measurement
points is represented. Because of the zero-padding process into a 2n× 2n image, the measurement
space is of size (2 × 512) × (2 × 256). Third line: four partial reconstructions using data in the
four domains �k . Bottom line: sum of the previous four partial reconstructions and cross section
along the line x = −23.

section 7. Figure 7 shows the singular values of Gan with n = 16 and the same singular
values after zero-padding. By oversampling the image, the zero-padding technique allows us
to obtain a much better approximation of identity.

At the level of absorption (a) in figure 4, all the singular values of Gan are sufficiently far
away from 0. We thus do not need to use zero-padding. However to obtain visually almost
perfect image reconstructions, we have used four iterations of conjugate gradient to invert the
operator G∗

anGan. The method is thus roughly 19 times more expensive than the method with
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Figure 6. Numerical inversion of the same AtRT as in figure 5 except that no iterations of conjugate
gradient have been used.

Table 2. Extremal singular values of Gan (three smallest and two largest) for different simulations:
n is the number of pixels of the image; ZP = 1 corresponds to zero-padding into a 2n×2n image;
CG is the number of conjugate gradient iterations; λ is the multiplicative factor in front of the
absorption (a) in figure 4.

Case (λ, n, ZP,CG) First Second Third n − 1 Last

0.5, 16, 0, 0 0.8217 0.8240 0.8540 1.0927 1.3806
0.5, 16, 0, 4 0.9997 0.9998 0.9998 1.0001 1.0001
0.5, 16, 1, 0 0.9671 0.9675 0.9770 1.0225 1.0913
1, 16, 0, 0 0.3747 0.4922 0.5514 1.5186 1.6228
1, 16, 0, 4 0.7209 0.8743 0.9142 1.0146 1.0156
1, 16, 1, 0 0.8678 0.8717 0.9090 1.0633 1.0678
1, 32, 0, 0 0.3548 0.3972 0.5340 1.5317 1.9680
1, 32, 0, 4 0.6507 0.7086 0.8877 1.0162 1.0169
1, 32, 1, 0 0.8671 0.8891 0.8970 1.0701 1.0816

no conjugate gradient iteration. Though CG iteration may not be the fastest available method,
it provides accurate reconstructions for moderate values of absorption.

Compatibility conditions. Let us conclude this section with a remark on compatibility
conditions. As in the case of the Radon transform where g(s, θ) = g(−s, θ + π), the
measured data have a redundancy of order 2 [6, 28]. In order for the data to be the AtRT of a
spatially dependent but angularly independent source term, they must satisfy a compatibility
condition, which can be expressed as follows:

0 =
∫ 2π

0
S∗

−a,θHag(x) dθ =
4∑

k=1

Sk∗
−aHag(x). (57)

This is similar to (50) with no differentiation. We have estimated the right-hand side in
(57) numerically in the framework of figure 5. The relative L2 error of the right-hand side
compared to the L2 norm of the data g(s, θ) is of the order of 4 × 10−3, which shows that
the slant stack algorithm verifies quite accurately the constraint (57). We have remarked
that the compatibility condition was slightly better satisfied (by about 10%) for the smoothed
absorption map.

6. Fast reconstruction

The Radon transform can be computed and inverted in O(n2 log n) operations using the fast
slant stack algorithm. This cost is O(n3 log n) in general for the AtRT because of the absence
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Figure 7. Singular values of the operator Gan (left) without zero-padding, (right) with zero-padding
into a 2n × 2n image.

of a Fourier slice theorem. In this section, we show that the calculation and inversion of the
AtRT can be approximated by solving N slant stack transforms, where N is small compared to
n in practice. The AtRT can thus be computed and inverted in O(Nn2 log n) operations. We
first present the algorithm on the simpler exponential Radon transform, which corresponds to
a constant absorption coefficient.

6.1. Fast reconstruction for ERT

The ERT is defined as

Tµf (s, θ) =
∫

R

eµtf (sθ⊥ + tθ) dt. (58)

We can verify that Tµ = Ra when a = µ on the unit disc and a = 0 elsewhere [6, 18]. An
exact inversion formula is based on

f (x) = 1

4π
T ∗

−µI−1
µ Tµf (x), (59)

where the adjoint operator T ∗
µ and the generalized Riesz potential I−1

µ are defined by

T ∗
µg(x) =

∫ 2π

0
g(x · θ⊥, θ) eµx·θ⊥

dθ, Î−1
µ g(σ, θ) =

{|σ |ĝ(σ, θ), |σ | > µ

0 |σ | < µ.
(60)

Note that we recover the notation of the Radon transform when µ = 0. There is an extension
of the Fourier slice theorem for the ERT. However it involves complex wavenumbers of the
image f (x) and its numerical use is difficult (see [26] for a nice application).

Let us now consider θ ∈ �1 and introduce the slant stack transform as

Sµf (t, θ) =
∫

R

f (x, x tan θ + t) exp
(
µ
(
t sin θ +

x

cos θ

)) dx

cos θ
. (61)

We verify that Sµf (t, θ) = Tµf (t cos θ, θ). Similarly the adjoint on �1 is

S1∗
µ g(x) =

∫
�1

g(y − x tan θ, θ) exp (µ(x cos θ + y sin θ))
dθ

cos θ
. (62)

As for the AtRT, the contributions on �k for k = 2, 3, 4 can be obtained using the same
algorithm by appropriate rotations. The fast algorithm is based on the following expansion:

SµNf (t, θ) = eµt sin θ

N∑
p=0

µp

p! cosp θ
S[xpf (x, y)](t, θ). (63)
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Table 3. Extremal eigenvalues of GµNn (three smallest and two largest eigenvalues) for different
simulations: n × n is the number of pixels, µ is absorption, ZP = 1 corresponds to zero-padding
into a 2n × 2n image.

Case (µ, n, ZP ) First Second Third n − 1 Last

1, 16, 0 0.1842 0.1842 0.9169 1.4434 2.1438
1, 16, 1 0.9838 0.9838 0.9912 1.0222 1.0392
3, 16, 0 −1.768 −1.768 0.7081 2.0247 4.6536
3, 16, 1 0.8950 0.9592 0.9592 1.0161 1.1125
3, 32, 0 −3.637 −3.637 0.3983 3.3206 7.0992
3, 32, 1 0.8896 0.9612 0.9612 1.0152 1.1207

We verify that limN→∞ SµNf = Sµf , for instance in the Lq(R × (0, 2π)) sense for
1 � q � ∞. The error after simple calculations using |xp| � 2−p and (cos θ)−p � 2p/2 and
the Stirling formula is then of the form(

(1 + ε)eµ√
2N

)N

,

for all ε > 0, which goes to 0 exponentially as N → ∞. This shows that the ERT can be
calculated in O(Nn2 log n) operations with an error exponentially small in N.

Reconstruction. Let us now consider the discretization of the reconstruction formula (59). The
generalized Riesz operator I−1

µ is diagonal in the Fourier domain and can thus be estimated in
O(n2 log n) as in the case µ = 0. It remains to solve T ∗

µ or equivalently S∗
µ in the slant stack

variables. This is done by introducing

S∗
µNg(x) =

N∑
p=0

µpxp

p!
S∗
[

eµt sin θg(t, θ)

cosp θ

]
(x). (64)

We observe that S∗
µN is indeed the adjoint operator to SµN and that it converges to S∗

µ as
N → ∞. Moreover, as S∗, it can be calculated in O(Nn2 log n) operations.

In discrete form, we thus introduce the operator

GµNn = S∗
−µNnI

−1
µn SµNn, (65)

where the operators with index n are the discrete version of the continuous operators using the
fast slant stack algorithm presented in section 3. We can verify that GµNn is still a symmetric
operator as in the case µ = 0. However, it need no longer have non-negative eigenvalues.

Numerical simulation. Although GµNn remains a symmetric operator as for the Radon
transform, its largest and smallest eigenvalues depart further and further from 1 as the
absorption parameter increases; see table 3. Without zero-padding, the matrix GµNn is
not close to the identity matrix for n = 16. By zero-padding the image into a 2n × 2n image,
the accuracy of the reconstruction improves drastically.

It is interesting to compare the reconstruction accuracy depending on the number of terms
in the expansion (64). We have chosen to calculate the ERT of the phantom in figure 3 with
µ = 3 and N = 50. In figure 8(a) we show the accuracy of the reconstructed phantom as
the number of coefficients N increases. We see a very rapid convergence of the reconstructed
solution to the solution reconstructed with N = 50 terms. However, in the absence of zero-
padding, the latter solution is not very accurate. The fast solution with zero-padding converges
quite rapidly to a good approximation of the true image.
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(a) (b)

Figure 8. Quality of the reconstruction with an increasing number of terms in relative L2 norm:
(a) fast ERT with µ = 3 and N terms, solid line: error in the reconstruction with N = 50 terms;
dotted line: error of solution with zero-padding (into a 2n × 2n image) in the original image;
dashed curve: error (without zero-padding) in the original image. (b) Fast AtRT with N terms,
solid line: error in the reconstruction obtained using the slow algorithm of section 5; dashed line:
error in the original image.

6.2. Fast reconstruction for AtRT

The structure of the ERT and of the slant stack transform allows us to obtain an efficient
algorithm based on (63). There does not seem to be any equivalent structure for the AtRT.
Nevertheless one can still devise a fast AtRT provided that sufficient information about eDθ a

is pre-calculated. When the absorption map a(x) is represented as a n × n image, the cost
of the pre-calculation is O(n3) operations. The term eDθa indeed involves three variables and
O(n3) unknowns once discretized and there is little hope that it can be estimated in less than
O(n3) operations. We can also assume that the absorption map is represented as a n2/3 × n2/3

image. In that case, the pre-calculation of eDθ a can be obtained in O(n2) operations.
When eDθ a is sufficiently regular, it can be approximated quite accurately by a few terms

in its Fourier series, defined by

eDθ a(x) =
∑
k∈Z

wk(x) eikθ , where wk(x) =
∫ 2π

0
eDθ a(x) e−ikθ dθ

2π
. (66)

Using this decomposition we recast the AtRT as

Saf (t, θ) =
∑
k∈Z

eikθS[wk(x)f (x)](t, θ). (67)

The discrete approximation of S[wk(x)f (x)](s, θ) can be estimated in O(n2 log n)

calculations. Assuming that N coefficients are sufficient to obtain the expected accuracy
in (66), we obtain a complexity of O(Nn2 log n) to estimate the AtRT.

Fast inversion. The adjoint operator on �1 in the reconstruction is given by

S∗
−ag(x) =

∑
k∈Z

w̃k(x)S∗[e−ikθg(t, θ)](x), (68)

where

w̃k(x) =
∫ 2π

0
e−Dθ a(x) e−ikθ dθ

2π
. (69)

Provided that the weights w̃k can be pre-calculated (fast or not depending on whether
the absorption map is an n2/3 × n2/3 image or an n × n image) and that e−Dθ a can be
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well approximated by N Fourier coefficients, we obtain that S∗
−ag can also be estimated in

O(Nn2 log n) operations. To complete the inversion as in (50) requires the same procedure as
in section 5 since the operators ∂

∂y
and Ha can be performed in O(n2 log n) operations.

Implementation. The numerical implementation of the above reconstruction formula is
relatively straightforward. The weights e±Dθ a(x) are approximated using CθAu,v introduced in
section 5. Note that the values of θ can be chosen arbitrarily in order to calculate the weights
wk(x) that we approximate by Wk,u,v in (66) and the weights w̃k(x) that we approximate by
W̃k,u,v in (69). Since the functions are periodic in θ we have chosen a uniform discretization
θj = 2πj/M for j = 1, . . . ,M and M > N sufficiently large so that the integrals in (66) and
(69) are calculated accurately. The only difficulty arises when one applies the operator ∂

∂y
.

Since the latter is estimated in the Fourier domain, it requires that at least m × m coefficients
be calculated accurately. Thus we need that Wk,u,v and W̃k,u,v be accurately estimated for
u, v ∈ Tm, which requires taking p = q = 3 in the approximation of Cθa; see figure 1(c).

Note also that the Fourier coefficients can be calculated using a coarser spatial
discretization of the absorption parameter. Assuming that the absorption is represented by a
n2/3 ×n2/3 image, the total cost of the integrating factor eDθ a and of the Fourier coefficients can
then be performed in O(n2 log n) operations. The total cost of the fast algorithm, including
the pre-calculation of the Fourier coefficients, is thus of order O(Nn2 log n).

Numerical simulation. We have implemented the fast reconstruction within the framework
presented in section 5. The absorption map is given in (ii) of figure 4. The source terms are
given in (a) and (b) of figure 4. For each source term, we perform three reconstructions from
the same AtRT. The first calculation is performed with no noise. The second calculation is
performed with 1% uniform noise added to the data multiplied by eSa(t,θ)/2. The latter weight
is included because our computational ‘data’ are eSa(t,θ)/2 times larger than the physical data
that would be measured in a real experiment as we noted at the beginning of section 5. In
a third experiment the same noise level is added to the data and a Tikhonov regularization
technique is used to smooth out the noise [31, 33] (by smoothing out the derivation at the
end of the calculation in the last CG iteration; see (50)). The regularization parameter has
been tuned to minimize the error in the reconstructed image. We do not pretend to perform an
extensive analysis of noise reduction, and rather want to point out that ‘classical’ regularization
techniques used in projection–back-projection or Fourier methods can also be applied here.
We refer to [14, 15, 18, 21] for additional information about noise treatment in SPECT.
Figures 9 and 10 present the results for the two different source terms. In both calculations,
the simulation of the AtRT and of the reconstruction is performed with N = 21 terms. All
the inversions are performed with four iterations of conjugate gradient to obtain a faithful
inversion of the discrete AtRT San.

The reconstructions are quite satisfactory. To obtain more quantitative information about
the fast algorithm we have performed an analysis of the matrix Gan for a value of N = 11
terms and a zero-padding of the image into an 2n × 2n image. The spectral data of the
method are very similar to what we observed in table 2. For the absorption map (ii) in figure 4
multiplied by a coefficient λ > 0, the extremal singular values of Gan in a few cases are given
in table 4.

This shows that the spectrum of the fast AtRT algorithm behaves very similarly to that
of the slow AtRT algorithm. It is also interesting to compare the reconstructions versus the
number of Fourier coefficients used to represent eDθ a . Starting with a forward calculation with
N = 25 terms we compare in figure 8(b) the reconstruction for varying N. We also observe a
relatively rapid convergence to the exact solution although this convergence is not as fast as
for the ERT.
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Figure 9. Fast AtRT with ellipsoids. First column: reconstruction with N = 21 terms. Second
column: reconstruction with 1% noise on the data multiplied by eSa(t,θ)/2. Third column: same
noise level and Tikhonov regularization. The bottom figures present the cross section along
x = −23.

Figure 10. Fast AtRT with spots. First column: reconstruction with N = 21 terms. Second
column: reconstruction with 1% noise on the data multiplied by eSa(t,θ)/2. Third column: same
noise level and Tikhonov regularization. The bottom figures present the cross section along y = 0.

7. Reconstruction from 180◦ measurements

Let us assume that the measured data Raf (s, θ) are available for θ ∈ M = �1 ∪ �2 and not
on Mc = �3 ∪ �4 = M + π . We consider in this section the reconstruction of f (x) from
these measurements following the method proposed in [6]. Let us define the reconstruction
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Table 4. Extremal singular values of Gan (three smallest and two largest) for different simulations:
n is the number of pixels of the image; ZP = 1 corresponds to zero-padding into a 2n×2n image;
CG is the number of conjugate gradient iterations; λ is the multiplicative factor in front of the
absorption (ii) in figure 4.

Case (λ, n, ZP,CG) First Second Third n − 1 Last

0.5, 16, 1, 0 0.9820 0.9828 0.9841 1.0205 1.0559
1, 16, 0, 0 0.6330 0.6506 0.6867 1.1567 1.3903
1, 16, 0, 2 0.7546 0.7800 0.8975 1.0189 1.0541
1, 16, 0, 4 0.9960 0.9827 0.9925 1.0062 1.0068
1, 16, 1, 0 0.9278 0.9321 0.9332 1.0399 1.0561
1, 32, 1, 0 0.8987 0.9060 0.9065 1.0722 1.0619

operators

Fθ = F1,θ + F2,θ , F1,θ = R∗
−a,θ

∂

∂s
HaRa,θ ,

(70)

F2,θ =
(

θ⊥ · ∇R∗
−a,θ − R∗

−a,θ

∂

∂s

)
HaRa,θ .

The reconstruction formula (40) is equivalent to I = 1
2π

∫ 2π

0 Fθ dθ . It is recast in [6] as

I = Fd + Fa + F s. (71)

The operators in (71) are defined as

Fd = 1

2π

∫
M

Fθ dθ +
1

2π

∫
Mc

F ∗
1,θ dθ

(72)
Fa = 1

2π

∫
Mc

(
F1,θ − F ∗

1,θ + Fa
2,θ

)
dθ, F s = 1

2π

∫
Mc

F s
2,θ dθ,

with F s
2,θ = 1

2

(
F2,θ + F ∗

2,θ

)
and Fa

2,θ = 1
2

(
F2,θ − F ∗

2,θ

)
. Because

F ∗
1,θ = R∗

a,θHa

∂

∂s
R−a,θ , (73)

and R−a,θf (s) = Ra,θ+πf (−s), we verify that the operator Fd depends on the measured
data Ra,θf (s) for θ ∈ M . We thus define d(x) = Fdf (x). The operator Fa is bounded in
L2(B), where B is the unit ball in which the support of f is assumed to be included, and
skew-symmetric. The operator F s is self-adjoint and compact.

Iterative reconstruction. The reconstruction is then performed as follows [6]. Let us first
assume that F s = 0, as is the case when a is constant on the unit disc and vanishes outside.
We aim to solve

f (x) = d(x) + Faf (x). (74)

This is done iteratively (with f 0 = 0 unless a better initial guess is available) as

f k+1(x) = γ d(x) + [(1 − γ )I + γF a]f k(x), (75)

where γ = (1 + ‖Fa‖2
2

)−1
, with ‖F‖2 the L2(B) norm of an operator F. The norm of the

operator [(1−γ )I +γF a] is given by ‖Fa‖2/
√

1 + ‖Fa‖2
2 < 1. This ensures the convergence

of f k to the solution f of (74).
In the general case, F s does not vanish and we aim to solve

f (x) = d(x) + Faf (x) + F sf (x). (76)
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It is shown in [6] that an iterative reconstruction is possible provided that ‖F s‖2 < 1. When
there exists a value of γ such that ‖(1 − γ )I + γ (F a + F s)‖2 < 1 we can use the same
algorithm as above with Fa replaced by Fa + F s . In all practical cases considered in this
paper, we have observed that we could use this simple algorithm with γ = 1 since the radius
Fa + F s = I − Fd was always found to be less than 1.

Let us mention that when no such γ exists and we have ‖F s‖2 < 1, we can still solve
(76) by posing

f (x) = (I − F s)−1/2h(x)
(77)

h(x) = (I − F s)−1/2d(x) + (I − F s)−1/2Fa(I − F s)−1/2h(x).

The equation for h can be solved iteratively as it has the form (74) since (I − F s)−1/2Fa(I −
F s)−1/2 is skew-symmetric. Since I − F s has a real valued and positive spectrum, the
operator (I − F s)−1/2 exists and admits the converging (in the L2(B) sense) expansion
(I − F s)−1/2 = ∑∞

k=0 4−k
(2k

k

)
(F s)k. Solving for f (x) in (77) is therefore feasible although

expensive numerically. We do not consider this method further here.

Implementation. Compared to the reconstruction from full measurements, the solution of (76)
requires discretization of the operators F1,θ , F2,θ , and their adjoints. In the variables (t, θ),
the operator F 1 consisting of the integration only on �1 is given by F 1f (x) = S1∗

−aHaSaf (x),
where S1∗

a is defined in (51). As in earlier sections, the integration over �k for k = 2, 3, 4
is dealt with similarly using appropriate rotations. The operator can be decomposed as
F 1 = F 1

1 + F 1
2 , which is the integration of the first line of (70) over �1. In the variables (t, θ)

these operators take the form

F 1
1 f (x) =

∫
�1

S∗
−a,θ

∂

∂t
HaSaf (x) dθ,

(78)

F 1
2 f (x) =

∫
�1

(
∂

∂y
e−Dθ a(x)

)
HaSaf (y − x tan θ, θ)

dθ

cos θ
.

The operator F 1
1 and its adjoint F 1∗

1 pose no specific implementation difficulty. The only
difference with respect to F is that the derivation ∂

∂t
is now taken just before or just after the

operator Ha . The implementation of Fd in (72) to calculate d(x) is therefore very similar to
earlier implementations in sections 5 and 6.2. The operator F 1

2 is also very similar. We have
to make sure that e−Dθ a(x) is sufficiently well approximated so that we can take its derivative in
the variable y on an array of size n × m to use the algorithm presented in section 5 and m × m

for the algorithm in section 6.2. This requires choosing p = 2 and q = 3 and p = 3 and
q = 3, respectively, in the approximation of Cθa calculated in section 5. The adjoint operator
F 1∗

2 is defined by

F 1∗
2 f (x) =

∫
�1

S∗
a,θHaS

[(
∂

∂y
e−Dθ a(x)

)
f (x)

]
(s, θ) dθ. (79)

Its implementation is quite similar to that of the operator F. Note that the fast implementation
of F 1

2 and F 1∗
2 as in section 6.2 requires replacing the coefficients wk and w̃k by their derivatives

in the variable y.
Similarly to what we obtained in earlier sections, the cost of a single iteration is

O(Nn2 log n) for the AtRT. The cost of the full algorithm will then be of order O(NNn2 log n),
where N is the total number of iterations. The latter number depends on the spectral
radius ρ(F a + F s) or ρ(F s). In the applications considered in this paper, the radius
ρ = ρ(Fa + Fs) < 1, which implies an accuracy of the reconstruction after N steps of
order O(ρN ).



Fast numerical inversion of the AtRT with full and partial measurements 1161

Figure 11. ERT reconstruction with fast algorithm (N = 20) and zero-padding ZP = 1 (except
for the calculation of d(x)) after N = 0 and N = 15 iterations and at convergence. The bottom
figure represents a cross section along x = −23.

7.1. Numerical simulation for ERT

In the case where a = µ is constant on the unit disc and 0 elsewhere, we can show [6] that
F ∗

θ = Fθ+π and that F2 ≡ 0. We are thus in the situation where

Fd = 1

π

∫
M

Fθ dθ, F a = 1

2π

∫
M+π

(Fθ − Fθ+π ) dθ. (80)

With different notation, this is the procedure implemented in [26, 29]. All we have to do is
to multiply the data we have on M by 2 and to subtract what we have added as a contribution
on M + π . Since the operator Fa is skew-symmetric, we are in the situation where we need
to solve for f (x) in (74) with d(x) = Fdf (x) can be reconstructed from the measured data.

Numerical results. We have considered the benchmark proposed in [26]. The source term
is reproduced in figure 11. The absorption parameter is µ = 3 and the number of terms in
the reconstruction (and simulation of the synthetic data) is N = 20. As we saw in table 3
the eigenvalues of GµNn depart substantially from 1 in the absence of zero-padding. It is
important to ensure that no spurious numerical modes arbitrarily increase the radius of the
operator Fa in (80) if one wants to use a physical value of γ in (75). We have therefore
performed the iterations of the algorithm with zero-padding (ZP = 1) so that the operators
act on images of size 2n×2n = 256×256. The calculation of d(x) has however been obtained
with no zero-padding though four iterations of CG have been used. It is thus calculated from
measurements on 256 directions (for half of the measurements) and 256 offsets and not four
times that amount. Once d(x) is calculated, the operator Fa is calculated on 2n × 2n images.
By doing so, we have obtained a spectral radius of the discretization of Fa of roughly 0.8,
which allows us to choose (the non-optimal but very convenient) γ = 1. The spectral radius
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Figure 12. AtRT reconstruction from partial measurements with fast algorithm (N = 21) and
zero-padding ZP = 1 (except for the calculation of d(x)). The images after N = 0 and N = 15
iterations and at convergence are represented. Bottom: (left) cross section along y = −23 and
(right) relative L2 error compared to the true image (dashed line) and compared to the solution at
convergence (solid line).

of the discretization of     Fa without zero-padding is above 1 and requires choosing γ < 1 as
in [26]. Figure 11 displays the image reconstructed from data on M = �1 ∪ �2 after one
iteration, corresponding to N = 1 in (75), and the image after N = 15 iterations.

7.2. Numerical simulation for AtRT

In the examples of source and absorption maps presented earlier in the paper, we have observed
that the spectral radius of the discretization of the operator Fa + F s always remained below
1 provided that zero-padding was used in their estimation. This is to be compared to the
results shown in figure 7 and implies that we can use the algorithm (75) (with Fa replaced
by Fa + F s) with γ = 1. As before the calculation of the approximation of d(x) is obtained
without zero-padding the image. We have observed that the radius of Fa +F s becomes greater
than 1 when no zero-padding is used. The main advantage of zero-padding the image is that
it avoids the purely numerical increase of the radius of the operators involved in the iterative
technique. Let us mention that the radii of these operators become larger than 1 for sufficiently
large absorptions independently of the discretization. We do not consider this case further
here.

Let us consider the first source term (a) and the regularized absorption map (ii) in figure 4.
The reconstruction after N = 0 and N = 15 is compared to the true image in figure 12.
We observe that the discontinuities of the source term are well reproduced after the first
iteration. However the values of the intensity are poorly reconstructed. The solution after
N = 5 iterations however is almost perfect and visually perfect after N = 15 iterations. The
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convergence of the iterative procedure to the true image as N increases is represented in
figure 12.

8. Conclusions

We have extended the fast slant stack algorithm to the calculation of the exponential Radon
transform and the attenuated Radon transform. The calculation is accurate and can be
performed in O(Nn2 log n) operations, where N depends on the smoothness of a and the
required accuracy, provided that the Fourier coefficients of eDθ a are pre-calculated. The pre-
calculation can also be performed in O(n2 log n) operations when the sufficiently smooth
absorption map is represented as a n2/3 × n2/3 image. This is automatically the case for the
ERT.

We have then used the Novikov formula and results in [6] to address the reconstruction
of the source term from its ERT or AtRT with full or partial measurements. The slant
stack algorithm has been shown to provide robust and accurate reconstructions provided
that conjugate gradient iterations and possibly zero-padding techniques are used. Under the
assumption that the Fourier coefficients of e−Dθ a are pre-calculated or that the absorption map
is represented as a n2/3×n2/3 image, the reconstruction can also be performed in O(Nn2 log n)

operations.
How large N has to be in practical reconstructions remains to be determined. Assuming

that N is not too large, the present algorithm offers an interesting technique to invert the
AtRT quite rapidly. A practical determination of N will also depend on the noise level in the
measurements (the higher the noise level, the smaller N in some sense since the accuracy of
the absorption map matters less). How the method behaves as the noise level increases remains
to be investigated.
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