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Abstract

This paper presents a robust and accurate way to solve steady-state linear transport (radiative
transfer) equations numerically. Our main objective is to address the inverse transport problem, in
which the optical parameters of a domain of interest are reconstructed from measurements performed
at the domain’s boundary. This inverse problem has important applications in medical and geophysi-
cal imaging, and more generally in any field involving high frequency waves or particles propagating in
scattering environments. Stable solutions of the inverse transport problem require that the singulari-
ties of the measurement operator, which maps the optical parameters to the available measurements,
be captured with sufficient accuracy. This in turn requires that the free propagation of particles be
calculated with care, which is a difficult problem on a Cartesian grid.

A standard discrete ordinates method is used for the direction of propagation of the particles. Our
methodology to address spatial discretization is based on rotating the computational domain so that
each direction of propagation is always aligned with one of the grid axes. Rotations are performed
in the Fourier domain to achieve spectral accuracy. The numerical dispersion of the propagating
particles is therefore minimal. As a result, the ballistic and single scattering components of the
transport solution are calculated robustly and accurately. Physical blurring effects, such as small
angular diffusion, are also incorporated into the numerical tool. Forward and inverse calculations
performed in a two-dimensional setting exemplify the capabilities of the method. Although the
methodology might not be the fastest way to solve transport equations, its physical accuracy provides
us with a numerical tool to assess what can and cannot be reconstructed in inverse transport theory.

1 Introduction

The radiative transfer (linear Boltzmann or linear transport) equation finds applications in several areas
of applied sciences such as e.g. nuclear reactors, atmospheric science and astrophysics, and medical imag-
ing. The transport equation models the density of particles or the energy density of waves propagating
in a scattering medium. In several of these applications, the ultimate objective is to solve an inverse
transport problem rather than a forward transport problem. The inverse transport problem consists of
reconstructing the constitutive parameters in the transport equation from available (typically boundary)
measurements. In this paper, we refer to the constitutive parameters as the optical parameters. The op-
erator mapping the optical parameters to the available measurements is called the measurement operator
(or albedo operator). Our objective is to develop a numerical tool that allows us to understand what can
and cannot be reconstructed from a given measurement operator and with what type of stability.

Transport regime of propagation. Many numerical tools have been developed to solve the transport
equation; see e.g. [1, 21, 22, 23]. Most are tailored to perform well in the regime of high scattering but
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do not necessarily adequately capture particle propagation in the regime of interest in this paper. The
transport of particles may roughly be characterized by three regimes: (i) the regime of free transport
(or ballistic regime), where particles do not interact with the underlying structure; (ii) the regime of
moderate scattering (referred to as transport regime), where many but not all particles (statistically)
interact with the underlying structure; and (iii) the diffusive regime, where scattering is overwhelming.
We are interested here in the intermediate transport regime, where scattering cannot be neglected and in
fact will be crucial for the inverse problem, but where a significant fraction of the propagating particles
do not interact with the scattering medium. Such a regime is characterized by a mixture of singular
behavior (particles with a given direction have a reasonable probability of keeping that direction) and
smoothing behavior (the distribution of particles becomes smoother as scattering occurs).

Singularities of the albedo operator. Theoretical results on the inverse transport problem show that
the most stable reconstructions of the optical parameters require that the singularities of the measurement
be captured accurately. This implies that the free transport of particles be calculated accurately. This is
where most existing transport codes will be inaccurate because of almost inevitable numerical dispersion.
Arguably no numerical method fails more miserably than the second-order diamond method [8] because
high frequencies are neither accurately estimated nor damped numerically. Higher-order methods will see
a much improved behavior though at the price of a significant unphysical (and typically uncontrolled)
damping of high frequencies [24]. Nonlinear algorithms [17] or unstructured grids based on e.g. discon-
tinuous Galerkin methods [18] might be used with their own limitations. We do not follow that route
here.

In the regime of free transport (no scattering), the transport equation becomes an ordinary differential
equation for which many accurate techniques are available. In the regime of fairly high scattering, as for
instances in applications in nuclear reactor physics and in medical imaging in highly scattering media,
such inaccuracies are not necessarily too important because sources may be relatively smooth and even
when sources are not smooth, multiple scattering is accurately computed thanks to its regularizing effect.

In the intermediate regime of transport propagation, both the free propagation and scattering contri-
butions need to be estimated accurately. Moreover, small scale physical blurring effects may need to be
modeled accurately so that the effects of numerical dispersion need to be minimized as much as possible.
Our methodology to do so is as follows.

Rotations. Because the transport solution is quite singular in the direction of propagation, the angular
variable is best described by using a discrete ordinates method, which replaces the sphere of directions
of propagations by a finite number of directions. The optical parameters are discretized by using a
Cartesian grid, which is the natural pixel-by-pixel representation of pictures. The spatial discretization of
the transport equation is performed by rotating the domain so that each discrete direction of propagation
is aligned with one of the axes of the Cartesian grid. The rotation is performed in the Fourier domain
by using a fast Fourier transform in order to preserve spectral accuracy of the optical coefficient after
rotation. The method is based on the slant stack algorithm developed in [5, 6] and used in [12] to solve the
inverse attenuated Radon transform. This is the most expensive step of the algorithm. For an N¢ picture,
where N is the number of pixels in each dimension and d is spatial dimension, the calculation of the free
transport solution, which after rotation requires that one solve an equation of the form Z—Z +a(z)u=f,
requires O(N9) calculations. The calculation of the rotation is proportional to N%log N and therefore
significantly increases the computational cost of the method. However, the line integral of the coefficient
a(x) is calculated quite accurately independent of the direction of propagation, which is a necessary step
toward obtaining an accurate numerical solution of the inverse transport problem.

The above method allows us to solve the ballistic part of transport accurately. Multiple scattering
is then calculated by using a standard iterative source method, where scatterings of order m + 1 are
calculated iteratively from scatterings of order less m by using the free transport solver described above.



Because we are interested in the transport regime and not the diffusive regime in this paper, the iterative
source method converges relatively rapidly and does not require any acceleration [2, 19].

Physical blurring and ray effects. The methodology based on rotations is a convenient framework
to add physical effects that are responsible for the blurring of the ballistic part. One such physical
blurring is that caused by small-angle diffusion. Such an effect is quite pronounced in highly peaked
forward scattering, which is significant in many applications in medical imaging and remote sensing
(imaging of the atmosphere). Such a blurring is considered by implementing angular and spatial diffusion
in the transverse variables to the main direction of propagation. Such effects are related to the Fermi
pencil beam approximation to the Fokker Planck equations that model angular diffusion. The numerical
method presented here allows us to accurately capture such physical blurring effects, which are important
to understand what can and cannot be reconstructed from available measurements.

A similar type of blurring may be used to combat the so-called ray effect. The ray effect is a numerical
effect caused by the finite number of directions used in the scheme. A physically localized source emitting
smoothly in the angular variable will emit radiation only along these privileged directions of propagation
in the discrete scheme. It will thus generate radiation along a finite number of lines with many pixels
receiving no radiation at all. Such numerical solutions are accurate in a weak sense (i.e., after averaging
over a sufficiently large domain) but not point-wise. We show that the choice of an appropriate diffusion
coeflicient allows one to mitigate the ray effect although this comes at a high computational price.

Numerical inversion. Once the forward transport solutions are simulated, they may be used to recon-
struct the optical parameters from knowledge of various measurement operators. We consider here the
case of the full steady-state measurement operator, in which the transport solution is measured at the do-
main’s boundary for all possible incoming radiation conditions. This measurement operator is known to
uniquely determine the optical parameters and to do so with a good stability estimate [9, 10, 28, 29]. We
present an iterative algorithm that accurately reconstructs the optical parameters from the measurement
operator in the simplified setting of a two-dimensional geometry and isotropic scattering. The methodol-
ogy is presented for general, anisotropic, scattering coefficients and is independent of spatial dimension,
although we demonstrate its effectiveness only in dimension d = 2 and with isotropic scattering in the
section devoted to numerical simulations.

Outline. The rest of the paper is structured as follows. Section 2 recalls the basic ingredients about the
forward and inverse transport problems that we need in the sequel. The numerical method is presented
in detail in section 3. The influence of physical blurring and of numerical blurring to address ray effects is
covered in section 4. Finally, section 5 addresses the numerical reconstructions of the optical parameters
in a two-dimensional setting and shows the accuracy and robustness of the method. Some conclusions
are offered in section 6.

2 Theoretical setting

This section recalls the results we need in the sequel on the forward and inverse transport problem. The
methodology generalizes without serious complications to the case of particles propagating with different
energies or wavenumbers. To simplify the presentation, we assume for the rest of the paper that particles
propagate with speed one so that the space of velocities is the space of directions of propagation.

2.1 Forward transport equation

Let X be a convex bounded domain in R?, where d is spatial dimension and d = 2 or d = 3 in practical
applications. Let S*~! be the unit sphere in R?. The transport equation we consider in this paper takes



the form

v-Veu+o(z,v)u = / k(z, v v)u(z,v")dv', in X x §4°! (1)
§d—1
u(z,v) = g(x,v) onT_.

Here, u(x,v) is the density of particle at x € X propagating with direction v € S¥~!. The sets of incoming
conditions I'_ and outgoing conditions I' are defined by

My =T1(X) = {(z,v) €0X xS st. +v-v(z) >0}, (2)

where v(z) is the outgoing normal vector to X at « € 9X, the boundary of X. The source of incoming
radiation g(z,v) is prescribed on I'_.

The interactions of the particles with the underlying medium are described by the optical parameters
o(z,v), the total attenuation, and k(z,v’,v), the scattering coefficient, which measures the probability
of scattering from direction v to direction v’ at a point x. In practical settings, o(z,v) is the sum of
the scattering contribution oy, (z,v) = [su—1 k(x,v’,v)dv’ and of the intrinsic attenuation o, (z,v). When
the intrinsic attenuation is non-negative, the above equation (1) admits a unique solution in appropriate
functional settings [9, 15, 16, 25].

Moreover, the solution admits a convenient expression in terms of multiple scattering contributions.
We define the times of escape of free-moving particles from X as

T4 (x,v) =inf{s > 0|z £ sv & X}, (3)

and the operators
_(z,v)
Zg(z,v) = exp ( - / o(x — sv, v)ds)g(x —7_(z,v)v,0) (4)
0

T (z,0) t
Ku(z,v) = / exp ( - / o(r — sv,v)ds) /d 1 k(x — tv, v, v)u(z — tv,v")dv'dt. (5)
0 0 se-

We verify that ug(z,v) = Zg(z,v), which is called the ballistic part, solves (1) when k£ = 0. We may
then define 4,11 = Ku,, for n > 0 and obtain that

w= Y un = () Tgla,0) = (1 - K) ' Tg(a,0) (6)

n>0 n>0

solves (1). The term wu,(z,v) is the component of u(z,v) that has scattered exactly n times (i.e., is a
homogeneous polynomial of degree n in the scattering coefficient k).

When the spectral radius p(K) of the operator K is not too large (i.e, bounded significantly away
from 1), then the above series expansion, which is called the source iteration method, converges rapidly
as n — oo. This is the case in the transport regime of propagation we are interested in this paper, where
intrinsic attenuation is not negligible and where the optical depth of the domain of interest is not too
large.

When p(K) is close to 1, which occurs in the diffusive regime, diffusion accelerations of the method
become necessary [2, 19]. It should be relatively straightforward to accelerate the convergence of the
source iteration method for the spatial discretization we propose below. This is not considered further
here.

2.2 Albedo operator and inverse transport

The albedo or measurement operator is defined here as the operator mapping the incoming radiation
to the transport solution ujp, restricted at the domain’s boundary: A : g — Ag = ujp,. The albedo



operator A = A[o, k] depends on the optical parameters and may then be seen as an operator mapping
the unknown optical parameters to the measurements of interest, which here are all possible couples
(gupp,)on ' x I'y.

The theory of the reconstruction of the optical parameters from knowledge of A is well developed.
We refer the reader to e.g. [9, 10, 15, 28, 29]. Stable reconstruction of the optical parameters is based
on capturing the singularities in the albedo operator A as faithfully as possible. More precisely, we have
that

Ag = Ig|F+ + /CIg]F+ + K2(I - iC)—lngF+ = Aog + A19 + Aag, (7)

where Agg correspond to measurements of the ballistic part ug, A;g to measurements of the single
scattering part ui, and Asg to measurements of the multiple scattering. Of course, Ag and A; are not
directly measurable. They have to be extracted from A and this is done by singularity analysis. In
some sense, 4¢ is more singular than Ay, which itself is more singular (in dimension d > 3, and in a
much weaker sense in dimension d = 2) than A;. These singularities allow us to infer .4y and A; from
knowledge of A. Let us denote the kernels of Ay by ay, i.e.,

Arg(z,v) :/ ag(z,v,y,v")g(y, v")du(y)dv', (z,v) €Ty, (8)
where du(y) is the surface measure on the boundary 9X. Then we find that [10, 15]
7— (z,v)
aofeyo,p ) = e (= [ ola = 50,0)ds) 5,06 o) (9)
0

where 0y, is the delta function on the surface 0X defined by [, 014} (y)0(y)du(y) = ¢(x) for z € 9X
and ¢ continuous on X and 6,(v') is defined similarly on S¢~!; and

7_(z,v) t T_(z—tv,v’)
ai(z,v,y,0") = / exp ( - / o(z — sv,v)ds — / oz —tv— sv’,’u/)ds)
0 0 0 (10)

k(:l? — tw, vl7 U)(S{I—tv—T, (z—tv,v")v"} (y)dt

In other words, ap uniquely defines the line integral of o along the line of direction v passing through
2. When o = o(x) independent of v, this information uniquely characterizes o by means of an inverse
Radon transform [26]. Once o(x) is known, then «; uniquely characterizes k(z,v’,v). This is because
when the lines {z —tv,t € R} and {y+7v',7 € R} cross and v # v/, then x —tv = y+7v" = 7_(z —tv, v’ )V’
uniquely determines ¢ in (10).

We thus observe that the singular components of A allow us to uniquely (and stably) reconstruct o(x)
and k(z,v’,v). Moreover the stability analyses in [10, 15, 28, 29] show that Ay and A; can indeed be
extracted from knowledge of A in a stable manner. We refer the reader to the aforementioned literature
and the topical review [9] for more information on this technical topic.

Note that ay in (9)-(10) is obtained by formally setting g(y,v") = d1y,}(¥)dv, (v') in (8). In other
words, the singular structure of the albedo operator is obtained by solving (1) with singular boundary
conditions on I'_ and measuring the singular structure of the solution v on I'y. This is the main task
for the numerical method that is presented below.

3 Numerical method

We now present in detail the numerical method that we use to solve (1). The source iteration method
requires that we solve problems of the form

v-Vyu+o(x)u = f(z,v), in X x S9!
u(z,v) = g(z,v)  onT_,

(11)



where the volume source term f(x,v) takes for instance the form

flz,v) = Kuy(z,0) := / k(z, v, v)up,(z,v")dv’, (12)

gd—1

in the calculation of u,y1(x,v). We assume here that ¢ = o(z) to simplify since this is the setting of
interest for the inverse problem.

The above problems are uncoupled in the variable v. Let some v be fixed. The main practical difficulty
in solving (11) numerically is that the optical coefficients, and hence the source term f(x,v), are defined
on a grid, here a Cartesian grid, independent of v. As we mentioned in the introduction, solving the
hyperbolic problem (11) on a Cartesian grid is a challenge in spite of the apparent simplicity of the
(hyperbolic) equation. Our strategy is based on performing a rotation of the computational domain so
that the main direction of propagation becomes aligned with one of the grid axes.

3.1 Geometrical setting

The proposed method is essentially independent of spatial dimension. To simplify the presentation and
because this is what has been implemented so far, we restrict ourselves to the two-dimensional setting
X = B(0,1) C R?, where B(0,1) is the centered ball of radius unity. The choice of X is such that the
domain where ¢ and k are supported is invariant by rotation. The computational domain however is
made v—dependent as follows. We now denote v = v(f) = (cosf,sin6) € S!, where § € (0,2n), and
vt = v(0)* is the (counterclockwise) rotation of v by 90 degrees, that is v(6)* = (—sin, cos#). For any
function f(v) defined on S!, we define the function f(0) := f(v(#)) on (0,27) and use the same symbol
f for both functions.
For each 6 € (0,2), we define the §— dependent square as

Cy = {x € R? such that |z -v| <1 and |z -v| < 1}. (13)
The incoming and outgoing sets for such a domain are given by
Iy g = {2 € 8Cy such that x-v = £1 and |z -v*| < 1}. (14)

See Figure 1. This geometry is quite practical since it corresponds for each 6 € (0,27) to an array
of sources emitting radiation from the segment (square when d = 3) I'_ y and an array of detectors
present also on the segment (square when d = 3) I'; y. Since scattering and attenuation vanish outside
of X = B(0,1), it is not difficult to map incoming and outgoing conditions from I'y (X) as it was defined
in (2) to incoming and outgoing conditions on I'y ¢ as they are defined in (14).

Let us freeze § and define, for x = (x,y) € [—1,1]?, and given functions v on R? x (0,27) and w on
R2

)

ug(x,y) = [ulo(x,y) (xcosf —ysinf,xsinf + y cosb,0),

=u
wy(x,y) = [w]p(x,y) = w(xcosh — ysinh,xsinf + y cos §).

(We will use the bracket notation whenever u or w already have lower indices.) Note that ug and wy
are the reparameterizations along the axes v and v* of u|c, and w|c, and that both are supported in
X = B(0,1). We now verify that (11) can be rewritten as the following ordinary differential equation
(ODE) for up:

%Ue(x, y) + 0—9(Xa Y)ue(X;Y) = f@(xay)v (X7 Y) S CG (15)
ug(—=1,y) = go(y) ~ onT_p,



Figure 1: A square Cy. The arrows indicate how incoming boundary conditions on I'_ 4y are mapped to
the boundary of the unit disk and how outgoing measurements are measured on I'y 4.

where gy is obtained by projecting the input g(-, #) supported on the set {x, (x,6) € I'_} back onto I'_ 4.
Formally, we have that §g = g(P~'(-,6)), where we have defined the projection operators

Py : Ty 3 (x,0) — Py(x,0) = +v(0) — det(x,v(0))v(0)* € Ty . (16)
When solving equation (15), the measurements we collect on I'y g are expressed as
u9|r+,9 = u|F+ (P;1(7 9))

Equation (15) is what we solve in practice: we first compute oy and fp by rotating the images of o
and f(-,0) clockwise by an angle 6, next solve (15) for ug on a Cartesian grid in (x,y), and finally rotate
the image of uy (i.e. we compute [ug]_g) back to a Cartesian grid aligned with the original frame (ex, ey ).

In order to simulate the albedo operator A, we thus need to solve problems of the form (11) with
g(x,0) = 6(x —xg) for zp an arbitrary point in I'_ y and with f(z, 8) a source term of the form prescribed
above, where u,, (z, 8) is the solution after n scattering iterations of the problem (1) (involving all directions
of propagation) with a boundary condition on I'_ (X) of the form g(x,0) = ;5,3 (2)da, (0).

3.2 Discrete ordinates and iterative source method

The numbers of directions of propagation Ny in (11) needs to be finite in practice. The directions are
chosen uniformly distributed on the unit circle. This is the standard discrete ordinates method to solve
(1). Once the number of directions is chosen, the integral on the right-hand side in (1) also needs to be
discretized.

To this end, we define the angular step size ¢ := ]2\,—1, as well as the sets ©5 = {0,...,0n,} and
St = {v1,...,vn,}, where for each i = 1,--- , Ny, 6; = (i — %)(5 and v; = (cos 8;,sin6;). For a function f
defined on X x ©g, we define on X x ©4 the function
Na
Ksf(x,0;) =08 f(x,0;)k(z,0;,0;), veX,i=1-- Ny (17)

J=1



With the new notation and operators, the semi-discretized problem in order to compute the n*® scattering

term reads
v Vyun(z,0) + o(x)un(x,0) = Ksup—1(x,0), in X x Oy,

un(xael) :g(xaez) on F—,9i7 1= 1) aNd7 (18)

where, by convention for n = 0, Ksu_; = 0. In our geometrical setting, we rewrite the system of equations
(18) as follows:

d—i[un}oi + o, [un}ai = [K(;un,l]gi, onCy,, i=1,--- Ny

- . 19
[un]el(_la}’) :gaz(y)’ on F—,aiv 1= 17 aNd- ( )

Let us denote by N.q¢ the number of scattering terms we want to solve for numerically (this can be
replaced by a criterion stopping the calculation whenever a given accuracy is attained by the iterative
scheme). A schematic presentation of the forward transport code when scattering is isotropic is given by
algorithm 1.

Algorithm 1 Forward transport solver (case of isotropic scattering)

1: Prescribe boundary conditions and optical parameters {ggi}f\;ﬂ ,o,k;
2: {Computation of the ballistic part}

3: for i =1 to Ny do

4:  compute oy, by rotation;

5. solve for [ug]g, the equation

%[UO]Gi + g9, [UO]Gi = O, on Cgl.
[“O]oih“_,ei = go, onT_g.;

6:  compute [[ugle,]—p, by rotation as an approximation of ug(-, 6;);
7: end for

8: {Computation of the scattering terms}

9: for n =1 to Ngcay do

10:  compute the source term f, := Ksu,_1;

11: for¢=1to N,y do

12: compute oy, and [f,]g, by rotation;

13: solve for [uy]p, the equation
d%([uﬂ}@i + o9, [un}ei = [fn]97:7 on 091‘,
[Un]gih“_,gi = Jo, on F*,Gi;

14: compute [[u,]g,]—g, by rotation as an approximation of w, (-, 6;);

15:  end for

16: end for

This algorithm requires image rotations and solutions of ordinary differential equations. We now
describe how these operations are performed.

3.3 Rotation of the computational domain and ODE solver.

The salient feature of the paper is the way we solve the free transport equation (11) by using rotations.
We rewrite it as (15), where the computation of oy and fy requires the computational domain to be
rotated in such a way that the v—axis becomes one of the axes ey or ey, of the Cartesian grid. We
then solve the ODE on this grid and rotate the computed solution back to the initial grid. Hence the



two elementary functions are the image rotation and the ODE solver on a Cartesian grid, which we now
describe in detail.
The square [—1,1]? is discretized into n x n equispaced points of coordinates

x@y = (@Y ey where x() =y() = 1+ + (= 1) (20)

~
This grid is centered at 0, and rotations are performed to keep 0 invariant.

Image rotation: We now want to rotate an n-by-n image by an angle §. The image represents the
values of a mapping over the grid x®y defined in (20). The mapping is further assumed to be supported in
X. The main idea is to realize a rotation by means of image shearing (slanting) and dilation, successively
along the columns and rows of the image. Each operation is performed in the Fourier domain using a
fast Fourier transform to preserve spectral accuracy.

We describe the rotation technique for 6 € [0, §]. For other values of §, we use rotations by 7 and
reflections about the axis e, (which are simple re-indexing exercises) to bring ¢ into the interval [0, 7].
We decompose the rotation function ry : R? — R? defined by

To: (X,¥) — ro(x,y) = (xcosf + ysinf, —xsinf + y cos §), (21)

as a product of four Cartesian-friendly operations. This decomposition can be achieved by the following
composition of elementary functions:

Ty = dx’ 1 5 O Sx,—sinf © dy,cos@ O Sy tan @, where for (Xu }’) € R27
Sy,a(xa y) = (Xv y = aX)) a < R7 Sx,ﬂ(Xa y) = (X - ﬁya Y)7 6 S R7
dx,t (X7 y) = (tX7 Y)7 t S R7 dy,t (X7 y) = (X7 tY)7 t S R (22)

The s operators are slant (shearing) operators, where the first index indicates the axis that is parallel
to shearing and the second gives the rate of shearing: sy 1an¢ aligns the axis (0,v(0)) with the axis (0, ex).
This slant induces a vertical stretching that is compensated by the vertical homothecy dy cos9. Then
the horizontal shearing sx _sing aligns the axis (0,v(6)*) with (0,ey), inducing a horizontal stretching
that is compensated by the horizontal homothecy dy _ sing. Numerically, the shearing uses the ’slanting’
technique, in which we embed the image in a bigger image and slant it. The homothecy (dilation) is
achieved by a resampling done in the Fourier domain with spectral accuracy of the sheared image, which
brings it back to its original size. These two steps are now spelled out in detail.

Vertical shearing: We now explain how to shear, or ’slant’ an image vertically. Horizontal shearing
is performed similarly. The idea behind vertical slant is to shift each column of the image independently
with a shift that increases linearly with the column index at rate —t. This produces a globally sheared
image, in which lines with slope ¢ become horizontal.
In order to avoid that the upper-left and lower-right corners of the image share a common row in the
sheared image, we embed the n-by-n image into a 2n-by-n image prior to shearing. We do this by adding
5 x n arrays of zeros above and below the image, which allows for shearing of angles § < 7. This
non-overlapping condition is important in order to perform the shearing in the Fourier domain after
periodization of the image.

The operation of shifting a vector x = [z1,...,2,]T by a shift s is done as follows. We first define the
2n-periodic function

sin(7y)

nsin(ZX)’

Dy(y) = yeR (23)



1: initial image, max=1.7 2: vertical shearing, max = 1.7453 3: vertical resampling, max = 1.7602
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Figure 2: The steps involved in an image rotation by § = §. We use the Shepp-Logan phantom with a
cross superimposed at its center to indicate which axis is straightened during each of the shearing steps.
By looking at maximum values of the pixels, we observe that the spectral rotations create overshoots and
oscillations near discontinuities as a standard manifestation of the Gibb’s phenomenon.

and assume that x represents the values of a mapping on a grid yq,--- ,y, of step-size 1. Now we define
the n-periodic continuous interpolant of  as Z(y) = >, ;D (y — j), and the resulting shifted vector
is defined as

zy = [#(1+5),...,2(n+s)]7.
Numerically, the operation of spectral shifting consists of a convolution of the initial vector x with

{Dn(j + s)}7_;. This can be done in O(nlogn) operations using the Fast Fourier Transform (FFT)

algorithm. We recall the N-point Discrete Fourier Transform (DFT) and its inverse (IDFT) are defined
as: . o

X(k) :FN [x(‘j)] :Zm(g)e_%u_l)(k_l)y k;:]_7 ’N’

i (24

N
#() = F s [X()] = 5 SO X(ReHF 0060, o N
k=1

Because of the vertical zero-padding mentioned earlier, we now assume that N = 2n and that our vectors

10



represent N-periodic functions on a grid yi,...,yn of step-size 1. The shift s is scaled on the interval
[0, N], and we will make use of the following interpolating function

1 n—1

sin(mt) ix (o L
Doy (t) = =0 2 m(E+3)t ¢ e 0, 2n).
2n(t) 2nsin% 2n k;ne ’ [0,2n]

Now the spectral interpolant of x is given by Z(y) = 2321 2(7)Dan(y — j), and looking at the function
z1(y) = Z(y — s) on the initial grid, expanding Ds, as a sum of complex exponentials and using the
definition (24), we obtain after some algebra:

m(g) = e F D prian [t pin, et (U] | =1 2n (25)
Using the N = 2n variable, equation (25) reads:
21(y) = e ROENFDID N =i F 22N gl (e RENFDU-D]] =10 . (26)

This is how we have implemented the shift function with the FFT and IFFT functions.

Resampling: Now we want to resample each column with a different step-size in order to compensate
for the stretching effect induced by the image shearing and bring the image back to its original size.
In order to do that, we work again with the spectral interpolating function D5, and pick values of the
interpolated columns at new gridpoints. In our case, we want to resample a vector x of size N = 2n down
to a vector x; of size n with a different step-size. Assume that the vector = takes values at the gridpoints
{j - 1}?11 and the vector 7 takes values at y; = s+ h(l—1), I=1,--- ,n, with h <1 and s fixed. The
interpolant of x is, again, defined with the function Dy, and a similar calculation to (26) gives

1 .= _A [ ia . .
21 (y) = Nezﬁ(—N—ﬁ-l)h(l—l)GiV;lN [ezﬁ(2k—N—2+1)sF]j\’Lk x(j)e—zﬁ(—zvﬂ)(]_nﬂ 7 (27)

where the operator GV is a N-point fractional Fourier transform of coefficient v (see [7]):

N
X(1)=GNox] = a(k)e2rak-D-1), (28)
k=1
In order to compute this transform with O(nlogn) complexity, we implemented the “chirp z-transform”
technique described in [7]. This technique allows us to express (28) as a 2N-point circular convolution,
which can then be computed with FFT’s and IFFT’s, hence with a complexity of order O(N log N).

Complexity: As we have seen, the image rotation function is a succession of FFT’s, IFFT’s and frac-
tional Fourier transforms of computational complexity O(2nlog(2n)) and component-wise multiplications
of computational complexity O(2n), applied for each column or each row (i.e. n times). Hence for an
n-by-n image, the overall computational cost is of order O(n?logn).

ODE solver: Every time we rotate images into the appropriate grid, we then need to solve an ODE
on this grid. Our equations have the form

du

&(Xv Y) + a(X’ y)u(x, Y) = f(X’ Y)v (29)

and need to be solved on the grid x ® y defined in (20), with initial conditions set on the side {x = —1}.
In order to solve this ODE, we use a finite difference scheme, marching along the columns from the
incoming boundary {x = —1} to the outgoing boundary {x = 1}. We have restricted ourselves to the
simplest of schemes here, namely the Explicit Euler scheme though higher order schemes may obviously
be considered as well.
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A note on resampling. Note that the slant s, tang in the rotation in (22) maps the line with slope
6 onto the x-axis and thus also maps (11) to an ODE of the form (29). The above ODE is therefore
not affected by the other steps involved in the rotation as in the references [5, 6, 12]. If we were only
interested in solving the above ODE and the radiative transfer equation (1), then the slanting step alone
would be sufficient. Though still of complexity O(n?logn), the computational cost would be significantly
reduced by not performing the second slant and the two homothecies. We will see below that the full
rotation allows for a simple accounting of noise effects such as the highly peaked forward scattering effect,
which is difficult to handle by only shearing the images. The ray effect treated below is also more easily
handled after full rotation of the computational domain. This is the reason why we have presented the
setting with full rotations. Again, only one slant s, (an¢ is sufficient to solve (11), and hence (1), by a
Cartesian-friendly method. The treatment of the incoming boundary conditions, however, needs to be
addressed with some care and slightly differently from what we are doing here in the framework of full
rotations. We do not consider this difficulty here.

3.4 Computational results for ballistic and single scattering parts.

As advertised earlier, the main advantage of the method developed in this paper is that it allows us
to estimate the singularities of the transport solution with reasonable accuracy. In order to find the
limitations of the method, it is worth looking at how such a singularity is shifted by the spectral method
during rotation. Like any Fourier-based method, this method conserves the high frequency content of the
initial singularity and we thus expect some oscillations on the resulting image. Let s be the value of the
shift and h the step-size of the grid. A good indicator is how well the method does versus the quantity
mod (s, h) (s modulo h). See figure 3.

Effects of spectral shifts and slants. When mod (s, h) = 0, the singularity is shifted by an integer
number of grid points and is thus exact. In every other case, shifting a singularity to a location between
two gridpoints (the case mod (s, h) # 0) creates oscillations of period 2h and delocalizes the singularity.
This is because in the discrete world, a Dirac is replaced by the function D,, defined in (23) on a grid that
coincides with the zeroes of D,,. When the grid is shifted and no longer coincides with these zeroes, we
observe oscillations. The amplitude of the oscillations increases as the shift moves away from a gridpoint
and this amplitude is maximal at the middle of two gridpoints (i.e., mod (s,h) = %) There, the
intensity of the peak drops by 36% and the peak is essentially spread over two pixels.

— modish) =0 ——mod(sy=0 |
modis,h) = hf10 mod{s,h) = hi10 |
mod(s,h) = h/5 mod(s,h) = h/5
—— mod(s,h) = 3h/10 ——mod(s,h) = 3h/10 |
0.5¢ ——mod(s,h) = 2hi5 || —— rnod(s,h} = 2h5
mod(s,h) = h/2 —=-mod(s,h) = h/2
0 . ‘ A
L e
v
05 L i L L L L L L L L L L L
50 100 150 200 250 300 127 128 129 130 131 132 133 134

Figure 3: Spectral numerical shifts of the Dirac function (right: close up). The amplitude of the oscilla-
tions is maximal when the singularity is shifted to the middle of two gridpoints.
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Now we have seen that slanting an image requires shifting each column with a shift that increases
linearly with the column index. It is interesting to mention that if this rate of increase is rational ¢t = %,
then the shift is periodically exact every ¢ columns and spreads out transversally in-between (see Fig.4,
left). If ¢ is irrational, then the shifted column is never exact and oscillations ’spread’ along the transverse
direction.

slant of a line slant of a gaussian beam, o = 1.5h cut at x=0

10 10

20 20

30 304

40 401

50 504

60 50

10 20 30 40 50 B0 ’Ib 20 30 40 50 60

Figure 4: Slanting a line with a rate 1—10 (tan @ = %) Left: ray coming from a Dirac pulse, where we

observe the periodicity of the transversal spreading pattern. Middle: Gaussian beam of width 1.5k, where
oscillations are essentially suppressed. Right: vertical cross section at ’x = 0’ of the slanted images of a
Dirac pulse and a few Gaussian beams with variable width.

Figure 4 shows the effects of slanting images of ballistic parts computed by the forward solver, as we
send a Dirac pulse or a Gaussian beam through the domain. Sending these inputs through the domain
creates a line of variable width that will be rotated later on in order to compute the single scattering
term. The Dirac case is seen on the left image, which shows oscillations that create ghost sources when
the multiple scattering contributions to the transport solution are computed. Sending even quite narrow
Gaussian beams instead of delta pulses suppresses most of the oscillations (see middle plot of Fig.4 ).
Despite the resulting slight loss in resolution, the information that travels across the domain is quite well
localized, which allows for an accurate computation of the singularities in the transport solution. As one
can see from Fig.4 (right), the beams become quite smooth when o a 1.5h, which roughly corresponds
to encoding a singularity over two-to-three grid points.

Effects of rotations. In the transport code, a rotation by 6 requires a vertical slant with rate tan#é,
followed by a horizontal slant with rate sinf. For the uniform ordinate discretization we chose, these
rates are usually irrational.

The rotation of a line typically first creates vertical oscillations after vertical slant. These vertical
oscillations are then slanted horizontally, which creates new horizontal oscillations. The resulting image
displays oscillations along two directions (see Fig.5, second from left). As we refine the grid, the amplitude
of the oscillations does not change relative to the peak (this is the Gibb’s effect) although their support
decreases.

The rotation becomes much more accurate when the singularity is regularized. As we can see in
Fig.5 (second half), the oscillations disappear rather quickly as we approximate a point singularity with
a narrow Gaussian spot. The finer the grid, the narrower is the Gaussian spot that prevents oscillations.
Gaussian spots with width between 1 and 1.5 grid points, thus resulting in a loss of resolution comparable
to 2 — 3 grid points, are sufficient to prevent spurious oscillations in practice.
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Figure 5: Effects of rotations on singularities. Left: effect of a rotation (# = ) on a singular image.

We observe oscillations along two directions and a peak of weaker intensity. Right: same with a narrow
Gaussian spot of width 1.5k, where h is the spatial grid size. Oscillations almost disappear in that case.

Fig.6 shows the effect of widening incoming Gaussian beams on the superposition of the ballistic part
corresponding to the incoming direction 6, = 0 and single scattering propagating in direction fout = 5.
Single scattering has been rescaled for better contrast. Images A,B,C correspond to Gaussian beams
with widths given by 0, 1.5k, and 5h, respectively (thus image A corresponds to a Dirac input). Wide
Gaussian beams may be useful numerically, but can also be used to model sources with limited spatial
resolution. Sub-plot D shows the outgoing measurements on I'y g, for the previous three calculations.
We observe that the wider the beam, the bigger is the support of the information that is reemitted after
scattering and thus the weaker is the resolution capabilities of the measured signals. At the same time,
singular (Dirac) incoming conditions create singular sources in the single scattering calculations, which
generates spurious oscillations as the singular source is rotated. Such oscillations are apparent on images
A&D.

A: dirac pulse B: gaussian beam, o= 1.5h C: gaussian beam, o = 5h o D: outgoing single scattering
. —dirac
10 . 10 r 10 0.02 —+—gauss, o=1.5h
J y - —-gauss, c=5h
20 j 20 I;' 20 : 0.015
30 30 : 30 . 0.01
40 40 40
0.005
50 50 50 !
0
60 60 60
20 40 60 20 40 60 20 40 60 0005 05 o 05 1

Figure 6: Ballistic and single scattering contributions with different regularity of the incoming conditions.
We send rays of increasing width on images A,B,C, and look at the impact of the width on the reemitted
energy and the outgoing measurements (plots D) in direction F. The scattering map may be seen in

Fig.7, image H. See text for more details.
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4 Physical and controlled numerical blurring

4.1 Fokker Planck and Fermi pencil beam approximations.

The numerical method presented above allows us to precisely capture the singularities of the albedo
operator. In many practical settings, these singularities are substantially modified by some noisy physical
effects. One such effect is the angular diffusion caused by peaked forward scattering. We refer the reader
to [20] (see also [9]) for the derivation of Fokker Planck equations that model angular diffusion. We take
here a slightly different route to obtain a model with angular diffusion. To simplify, we assume that d = 2
although the results (as in the rest of the paper) easily generalize to d > 3.

Let v; a discrete ordinate and v;- its rotation by 90 degrees. Let C; C (0, 27) the interval of measure
0 centered at 6;. Then we have

v - Veu+ oi(z)u = /

k(x,0",0;)u(t,z,0")do’ —|—/ k(z,0,0;)(u(t,x,0") —u(t,z,0;))do’. (30)
(0,20\C: c

Here, o;(z) = fc x,0',0)df’, which we assume depends only on z. The first term on the
right-hand 81de above is dlscretlzed as before. The second term, however, is approximated by a Taylor
expansion

1
u(t, x, =u(t,z,0) + — ou(t, x,0) + = (0" — u(t,z,0) 4+ l.o.t.
o’ 0 0 — 0)0, 0 5 0 —0 283 0)+1

Assuming that k(x,6’,0;) is symmetric in 8’ about 6;, we find that fCi k(x,0',6;)(0" — 6;)d0’ = 0. Thus,
we observe that

/ k(x,0,0:) (u(t,z,0) —u(t,z,0;))d0’ = d(x)0au(t,z,0;) + lo.t.,
C;

where the effective angular diffusion coefficient is given by d(z) = [, k o k@, 0,0 )5(0" — 6;)>d6’. When
k(0,0") is large for 6§ — 0’ close to 0, as it is the case for hlghly peaked forward scattering, the above
coefficient d(z) is non-negligible. Then (1) should be replaced, in all dimension d > 2, by

v Vouto(z,v)u = d@)Avu(z, v) + / k(z, o', v)u(z,o')dv’,  in X x ST (31)
gd—1
u(z,0) = g(z,0) onl_,

where o and k have been renormalized to account for the loss of the integral over C; in the scattering
coefficient and where A, represents the Laplace Beltrami operator on the sphere, which generalizes 83
to arbitrary dimension d > 2.
In the setting of the source iteration method presented earlier, we thus want to solve problems of the
form
v-Vyu+o(z)u = d(z)Ayu(z,v) + f(z,v), in X x S-1

uw(z,v) = g(x,v) onI_. (32)

Here again, we assume that o = o(x). The above equation generalizes (11).

When d(z) is small, the above diffusion term does not significantly modify the direction of propagation.
It is therefore possible to approximate the angular diffusion by a diffusion in the transverse angular
variables only. When d = 2, this means a diffusion in the transverse variable v(6)* only. More precisely,
let us assume that the main direction of propagation vy = e, (for instance after rotation in the numerical
setting). When d = 0, the direction of propagation is fixed and equal to 3. When d > 0, angular diffusion
causes 6 to change. However, when d is small, the angular diffusion remains small when the particles
exit the domain on I'y. This allows us to formally replace the angle of propagation (cos®,sin @) by (1,6)
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as a first approximation. Then, the angular diffusion becomes the tangential diffusion 83 so that a good
approximation of (32) when d(z) is small is the following Fermi pencil beam (FPB) approximation

ou ou &*u
& + Qaiy + O’(X, y)'u, = d(X, y)ﬁ + f(X, s 9) (33)

u(0,y,0) = 6(y)o(0)

We recall that @ = (x,y). The boundary conditions become initial conditions at x = 0, say. We are
interested in singular incoming conditions so that y = 0 and § = 0 at x = 0. Because d is small,
variations in 6 are small so that variations in y are also small. As a result, o(x,y), d(x,y) and f(x,y,6)
may be replaced, up to an order of accuracy comparable to the difference between the solutions (32) and
(33), by 0(x,0), d(x,0) and f(x,0,8). We are thus interested in the evolution equation (in the x variable)

ou ou d*u
o=+ 9§ +o(x)u = d(x) 557 + f(x.0)
u(0,y,60) = 6(y)(6),

(34)

where the dependence of o, d, and f in y has been neglected.
When f = 0, the above equation admits an explicit expression:

1 1
L/ (- g [P0 =307 + 2010~ 98+ Da(x067] ).
where  Dj;(x) =/O tid(t) dt, i =0,1,2,  C(x) = Do(x)Ds(x) — D?(x).

U(X,y,e) — e Joo(t) dt

(35)
This explicit expression allows us to replace the angular diffusion coupled with the spatial drift by a
spatial diffusion in the y variable with a x— dependent diffusion coefficient. Averaging over the angular
variable in (35), we obtain after some algebra that
[Xo(t) dt 1 v
Ul(x, = / u(x,y,0) dd =e Jo 7 76_2“’2@‘), 36
(x,y) R(y) SN (36)

where w?(x) = 2(Da(x) — 2xD;(x) + x2Dg(x)). Then we can show that U(x,y) satisfies the parabolic
equation

I +o(x)U = dFPB(X)Tyg’ (37)
U(0,y) =6(y),

where the diffusion coefficient has the following expression

w(x)? *
deB(X) = % ( (2) ) = 2/0 (X - t)d(t) dt. (38)

Equation (37) is the equation we solve numerically. This equation allows us to incorporate the physical
effect caused by small angular diffusion. Note that when d(t) = d is constant, then w(x) is proportional
to z%. This shows that that U(x,y) is then a function of -%. Diffusion in the FPB model increases
super-linearly in the x variable. v

4.2 Blurred ballistic and single scattering components

We now consider the effect of blurring by angular diffusion on the transport solutions. We consider two
types of blurring, the Fermi pencil beam (FPB) blurring presented in the preceding section and the linear
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diffusion (LD) blurring, which is also of the form (37) though with a different form for the diffusion
coefficient than (38). The latter diffusion will be described in detail in the next section. Our numerical
results correspond as in Fig.6 to an incoming direction #;, = 0 and single scattering propagating in
direction Oouy = 5.

The numerical results are gathered in Fig. 7. Images A,B,C show the ballistic parts passing through
the domain in the case of no blurring (A), FPB blurring (B), and LD blurring (C). The scattering map
given in Image H is also represented in the background of Images A to C. The source term Kug(x)
generated as in (12) for the construction of the single scattering contribution is presented in images E,
F, and G after rotation by an angle % for the three cases of images A, B, and C, respectively. Note that
single scattering is much more diffuse in the presence of angular or linear diffusion away from the location
of the incoming source term (point with coordinates (33,1) in images A to C and coordinates about
(22,14) in images E, F, and G after rotation). Close to that location, the single scattering term displays
some oscillations caused by the rotation as for the results presented in Fig.6. The superposition of the
ballistic and single scattering (rescaled for better contrast) in the three scenarios is presented in Images
I, J, and K, respectively. Unlike the situation encountered in Fig.6, the ballistic and single scattering
terms are seen to become smoother as the distance to the location of the incoming source term increases.
Such smoothing is very damaging for the inverse problem since the blurred small scale structures are
essentially lost in the measurements. A cross section of the single scattering measurements on top of the
domain 2 is shown in Image L.

4.3 Blurring and ray effects.

As we mentioned in the introduction, one of the drawbacks of the discrete ordinates method is the so-
called ray effect; see Fig.8. Angular diffusion, giving rise to spatial diffusion, may be used to combat the
ray effect. With a diffusion coefficient that depends on the distance to the localized source term, we can
construct a solution that is very close to the exact ballistic part.

The diffusion coefficient is derived so that the spatial density of the ballistic part best approximates
that of the solution of the continuous problem. Let us consider the free transport equation in X with a
point source at 0 and zero incoming boundary condition:

v-Veu=26(x)p@), ze€X,0cS ulp_=0. (39)
Then the spatial density U of the solution u is given by:

U(a:):/Slu(as,Q) df = %

z|

@(0). (40)

This has to be compared with the spatial density of the solution, which solves the same problem in
discrete ordinates,
v - Veu=90(x)p(0;), ze€X,i=1,--- ,Ng; ulr_=0. (41)

The approximate spatial density is supported on Ny rays emanating from the point source position and
has the expression

U(z) = Z 0(6,)6 <9i - il) . A0 (42)

See figure 8, where we used the phase function
1—g¢?
(14 g2 —2gcosh)?

p(h) = , with g = 0.5, (43)
which is referred to as the Henyey-Greenstein phase function with anisotropy coefficient g = 0.5.
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A no diffusion B: Fermi pencil diffusion C: linear diffusion D: ballistic parts,cut at x=0
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E: source, no diff F: source, Fermi pencil G: source, linear H: scattering map
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Figure 7: Different types of diffusion and their effects on ballistic parts and single scattering; see text for
details. The linear diffusion leads to a linear widening, whereas the Fermi pencil diffusion with constant
diffusion coefficient leads to a geometric widening of rate %

This effect induced by the angular discretization is called the ray effect, and in order to reduce it, we
need to spread the rays over the gaps between discrete rays. Since each ray is computed by solving an
ODE along the direction of the ray, we can use diffusion to spread each ray transversally. Looking at the
spatial densities on concentric circles centered at 0 with increasing radii, the graph of ¢(0) is stretched
linearly and decreases like ﬁ whereas the discretized solution is a Dirac comb. By adding transverse
diffusion, we approximately convolve this Dirac comb with a Gaussian function (the Green’s function
for the diffusion equation). When the variance of the Gaussian function is chosen appropriately and
@ is a smooth function, then the numerical density is quite close to the exact solution. On a circle of
radius R, the comb’s step-size is Ro, o = 12\,—: Then, for each direction 6;, we replace a delta pulse by a
normalized Gaussian beam, the width of which increases linearly with the distance to the source point.
For a direction 6;, we want the expression

P 2 ) (@) -
u(z,0;) = o2l ] exp ( 202 (z Ui)2> , x-v; > 0. (44)
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Figure 8: Illustration of the ray effect. The spatial density of the discrete ordinates solution (middle) is
supported along rays emanating from the source point. Right: values of exact and approximate angular
densities on a circle centered at the point source. The function ¢ is defined in (43). The singularities at
x = 0 are removed from the pictures to increase contrast.

This function can be generated by solving the parabolic equation (on the half-domain X N {z - v; > 0})

v - Veu = a2(z-v) (v - Vi)2f, x-v; >0,

(45)
| {g-v,—0} = ©(6:)d0.
Figure 9 shows the numerical superposition of these beams for a few values of o.
o =5/4 s =812 5=8 values on a circle ot radius 1
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Figure 9: We address the ray effect by spreading the beams transversally. Compare with the results in
Fig.8 (left) where the same phase function is used. When the spreading is too small, the gaps between
the rays are not filled (left). As the constant o becomes close to ¢ (middle two), we recover the shape
of the continuous density. Right: values of the three solutions on a disk of radius 1 centered at 0. The
singularities at £ = 0 are removed to increase contrast.

As an implementation in the forward solver, Fig.10 shows a small scatterer being hit by a beam with
or without transverse diffusion, as well as the single scattering part that is re-emitted from it. The mid-
left picture shows the ballistic part, whereas the mid-right and rightmost pictures show single scattering
without and with blurring. The input beam loses energy as it hits the scatterer at the center of the
image, and this energy is redistributed through space in the two pictures on the right. We can observe
a clear manifestation of the ray effect in the re-emission images, where the single scattering is present
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Figure 10: Effects of blurring on single scattering

everywhere in the domain in the presence of blurring, and is concentrated along rays otherwise. It should
be noted that the diffusion coefficient depends on the source location. The numerical tool to address
ray effects therefore becomes much less tractable when the source is not supported on a small number of
point in the domain or at its boundary.

We conclude that in order to detect a localized scatterer, it is crucial to add transverse diffusion to
the forward solver since otherwise, any object located in one of these non-emission areas (see Fig.10,
mid-right) would not receive any energy from the first scatterer. The solution we propose is not very
practical since the diffusion depends on the scatterer position, and this information may not be known in
practice. A method that would be independent of the source position consists of implementing angular
(rather than spatial) diffusion. Such diffusion would be significantly more costly numerically and is not
considered here.

5 Inverse transport reconstructions

This section addresses the numerical simulation of the inverse transport problem presented in section
2.2 using the method described in section 3. The albedo operator (7) involves the solution of forward
transport equations and is thus discretized using the numerical method of section 3. The inverse problem
consists of reconstructing the discretized optical coefficients from the discretized albedo operator.

The reconstruction of optical parameters from boundary measurements has been considered in many
settings and regimes of transport; see e.g. [4, 14, 27]. Most techniques are based on optimization
procedure that minimize the error between predicted and available measurements. Rather, we base here
our inversion algorithm on the singular decomposition (7) and the explicit formulas (9) and (10). A
similar strategy was considered in [3]. The first formula allows us to estimate line integrals of the total
attenuation coefficient o. The reconstruction of ¢ from its line integrals requires that we apply an inverse
Radon transform. Our practical choice for the discrete inverse Radon transform is a standard filtered
back-projection function iradon as it is implemented in MatLab. The second formula (10) is then used
to solve for the scattering coefficient by a point-wise estimate. The inverse transport simulation is thus
directly related to the exact, continuous, decomposition of the albedo operator. It is therefore crucial
that these terms be calculated accurately, which is done by the numerical tool presented in the preceding
sections.

In preparation for the numerical inversion, we recall the definition of the Radon Transform. For r € R
and 6 € (0,27), the line of coordinates (r, ), is defined as the set

L(r,0) == {rvt +tv, teR}, v=cosb,sind). (46)
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For a sufficiently smooth function f defined in R?, we define its Radon Transform Rf on R x (0, 27) as

Rf(r,0) :z/ f= / f(rot +tv) dt, reR,0 e (0,2m). (47)
L(r,0) R
Note that the lines L(r, 0) and L(—r, —0) are equal so that R f(r,0) = Rf(—r,—0) for (r,0) € Rx (0, 27).

5.1 Singular decomposition of the discrete albedo operator

In the rest of the section, we consider inverse transport problems of the following type. We assume that
the scattering coefficient k = k(z) is independent of 6 and ¢’ and is smooth. The intrinsic attenuation
coefficient o, (z) is allowed to be singular (i.e., have jump discontinuities). This setting is adapted e.g. to
optical tomography, where the scattering coefficient is typically relatively smooth and the absorption co-
efficient provides a large contrast between healthy and un-healthy tissues. Note that the total absorption
o(z) = 04(x) + op(x) with o,(x) = 2wk(x) is thus also possibly singular.

The ballistic part is calculated with some blurring corresponding to angular diffusion. We recall that
the angular diffusion model developed in (4) requires that we know the (localized) source location. For
smooth, delocalized, scattering coefficients, blurring is not very important and would be very expensive
to compute. The single and multiple scattering components are therefore treated without any blurring.

The measurements are therefore modeled as follows. Following the geometry described in Fig.1, the
set of incoming conditions is parameterized by r € [—1, 1] for each 6 € (0,27). The ballistic term is also
parameterized by 6 € (0,27) and r € [-1,1] on I'; . More precisely, let g be a singular incoming bound-
ary condition supported at position ri, € [—1,1] and of intensity I;,. Then in the presence of blurring
caused by angular diffusion, Agg is supported on I'; ., and in the Fermi pencil beam approximation, is
given by

N Iin _(T_zzign)z —Ro(Tin,0in)
Aog(r, Oin) Udme e , re[-1,1], (48)
where the width o4 is related to the diffusion coefficient by the relation 02 = 2RdprpB(Tin, Oin)-

As we mentioned already, the scattering terms are calculated numerically in the absence of any
numerical blurring. Though the source generated by the ballistic contribution indeed was blurred, it is
still concentrated in the vicinity of the line of support of the exact ballistic part. Under these hypotheses,
the single scattering contribution is then approximately given by

Iin

/a1 N ins You Ea in, 45 Lout /5 4
Sin((‘)out—Qin)k(x’H Oout) Es (Tin, T, Tout) (49)

A19(7“out , eout) =

where z = (x,y) is the intersection of the lines L(7iy, 0in) and L(rout, Gout) given by

{x] _ 1 cos oyt — cos by ][ Tin ]

y o sin(@out — ein) sin eout —sin ein Tout ’

and E,(Zin, T, Tout) encodes the exponential terms in (10) that account for the total attenuation along
the broken line [Zin, T, Tout]. It remains to choose 6, and 0., among the set of discrete ordinates ©5 and
rin and 7oy as one of the spatial grid points to obtain a discretization of the ballistic and single scattering
contributions of the measurements.

Let us for the moment assume that Ay and A; have been measured. Then the reconstruction of the
the optical coefficients is performed as follows.

(i) From knowledge of Ay, we extract the term Ro(riy, bin) for all (riy, 0in) in the discretized spaces for
[—1,1] x (0, 27). We then apply the inverse Radon transform (MatLab’s function iradon) to the data to
reconstruct the total attenuation o(x).
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(ii) From knowledge of A; and of o(z) reconstructed in the preceding step, we reconstruct k(z, Oin, Oout) =
k(x) on the Cartesian grid.

Since k(x) is independent of the directions 64y, Oous, we can choose them freely. We consider here the
case 0;; = 0. We will present reconstructions based on several values of 6,,t, which show how the images
degrade as 6, converges to 0;,. The attenuation coefficient E, needs to be estimated carefully. Several
methods for doing so are described below.

The next two paragraphs show how the total attenuation and scattering coefficients may be recon-
structed from knowledge of Ay and A;. The available measurements, however, consist of the full albedo
operator A := A(7in, 0in; Tout, Gout ), the value of the measurements taken at coordinates (rout,fout) €
It 6., when sending a (delta or Gaussian) beam centered at (rin,6in) € ' g,,.

Since measurements A are well approximated by Ag when 6;, = 0,u and by A; when 6, # Oous,
we may replace Ay and A; above by the available measurements A and obtain a first reconstruction of
the optical parameters. Once the parameters are estimated, the transport solution (1) can be solved to
estimate A — Ag and A — A;. Such residuals can then be removed from the measured operator A to
obtain better approximations for Ay and A;. These new approximations may then be used to estimate
the optical parameters more accurately, which in turn improve the estimate of the terms A — Ay and
A— A;. This generates an iterative algorithm that converges to the “true” optical parameters, at least in
the absence of noise, provided that the initial step offers a sufficiently accurate description of the optical
parameters; see also [28] for a theoretical justification of the algorithm in dimension d = 2. The iterative
algorithm is described in section 5.4 after we present the initial step, which consists of reconstructing the
optical parameters from knowledge of Ay and A;.

5.2 Reconstruction of the total attenuation map

This section considers the reconstruction of o(z) from knowledge of Ag. For every discrete radius r; and
ordinate ;, we propagate a Dirac pulse of intensity I;,, through the domain X starting from position
(r4,0;) and collect the ballistic measurements on I'y o, after solving a forward transport problem.

Reconstructions without blurring. In the absence of noise, we have
Ao(ri,05574,0;) = Line” Roradi),

and the Radon transform of o(x) is obtained as

(50)

1’,0'; i794
Ra(ri,ﬁj):—log(AO(T ZAKL J))

I
The total attenuation coefficient is then reconstructed by application of an inverse Radon transform.

Figs.11 and 12 show reconstructions for a smooth map and a discontinuous map, respectively. In each
case, we have 128 x 128-size images with 128 discrete ordinates.

Reconstructions with blurring. In the presence of blurring caused by angular diffusion as modeled
in section 4.1, the ballistic measurements are given by

L 5"
Ao(ri, Oy, 0) & e i e o) e [-1,1], (51)
d

where 04 < 1 is the width of the Gaussian blurring. Several methods can then be devised to extract
Ro(r;,0;) from such a term. We propose four similar formulas. The first two formulas are independent
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Figure 11: Reconstruction of a smooth attenuation map. The relative (discrete) L? error is approximately
1.1%.

of the spatial discretization and are given by

V9 0. .
Ro(r;,0;) = —log <0d WAO(;“ ZHAL 9j>> , (ratio of the peaks), (52)
1
Ao(ri,0557,05) dr
Ro(r;,0;) = —log <f1 ol T 7 85) ) , (ratio of the energies). (53)

Formula (52) measures the outgoing density at the peak of the Gaussian blurring caused by angular
diffusion. It requires prior knowledge of the smoothing coefficient o4. Formula (53) is based on the fact
that the angular diffusion preserves particles. When [—1, 1] is replaced by R, the above formula is exact
at the continuous level. Note that it does not require prior knowledge of o4 and is therefore the only
choice in a situation where the blurring caused by angular diffusion is not known. In our simulations,
reconstructions based on (53) appeared to be more robust than the ones based on (52). This is because
when blurring is small, rays that are sent close to the edges of the interval [—1,1] do not sufficiently
diffuse to resemble Gaussian functions when they exit the domain. Formula (52) is then inaccurate.
Formula (53) is not affected by such an effect. Even when the diffusion scheme is not very accurate,
it still preserves the number of particles. This artifact can be lessened by having the support of the
optical coefficients strictly smaller than the computational domain so that the quantities of interest are
not significantly affected by this artifact.

In practice, we also expect (53) to be more useful as it does not assume any specific structure for
the blurring function and does not require exact knowledge of the exiting point r; as (52) does. Both
formulas assume that the angular diffusion is accurately captured by the numerical scheme, which implies
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Figure 12: Reconstruction of a discontinuous attenuation map. The relative (discrete) L? error is on the
order of 10%. Most of the error is supported in the vicinity of the discontinuities.

that o4 is large compared to the spatial grid size. This constraint is very difficult to meet in practice.

Two similar formulas are useful when the spatial discretization occurs at the same scale as the angular
diffusion, for instance when the variance o4 corresponds to a few grid points. Then the blurring caused by
the noise is not well approximated by the continuous formula (51). To account for the numerical artifacts,
we can calculate the blurring that would occur in the absence of absorption, i.e., calculate Agq := Ao
with ¢ = 0, and calibrate the albedo operator accordingly. This yields the formulas

Ao(ri, 0551:,05)
0,) = —1
Ra(ri;6;) o8 <Ao,d(7“i,9j;7“i,9j)
I Ao(ri, 055, 05) dr )
f_ll u4()7d(7‘i,9]‘;7°7 Hj) dT‘

) , (ratio of the peaks), (54)

(ratio of the energies). (55)

Ro(r;,0;) = —log <

Such formulas require that the angular diffusion coefficient be known in order to calculate Ag 4. They
are useful in the sense that the ratios %M depend very little on the discretization used in the
numerical simulation. As such, they provfde a good tool to understand the effect of given, known, angular
diffusion on the physical measurements used in the reconstructions. Which formula is best thus depends
on the practical situation of interest. The numerical tool developed in section 3 allows for sufficient
flexibility to handle several practically relevant noise models in the ballistic measurements. A numerical

application of the formulas involving blurring is presented in Fig.13.
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Figure 13: Total attenuation reconstructions with diffusion effects of ’Fermi Pencil-Beam’ type. The
coefficient d from formula (38) equals 2.5107% in the top row and 2.5 1072 in the bottom row. Errors are
relative L2. A&E: reconstructions using formula (53). B&F: reconstructions using formula (52). C&G:
reconstructions using formula (54) (very similar results to (55)). D&H: cross section at @ = 0 for all
reconstruction formulas. All formulas give very similar results, and give a regularized version of the total
attenuation coefficient, all the more regularized that d is large. We observe artifacts at the boundary of
the domain for formula (52) when diffusion is small.

5.3 Reconstruction of the scattering coefficient

We now address the reconstruction of k(x,#’,0) from knowledge of A; and o(x). This requires that we
estimate Ey(Zin, T, Zouy) accurately. Assume that 65, and 0., are fixed and define o = 0oy — ;. Let
also

ri=—1+ , 1<i<n. (56)
n
We run n forward solvers with incoming boundary conditions on I'_ g, located at z; = —wvi, + Tivﬁ for
i=1,...,n (we recall that vy, = (cosbin,sinb,) and vy is defined equivalently). We then reconstruct
(-, 0, Oout) at the points {z;; }?:1 defined by
Tij = —TjVin + Tivfr‘l, 1<j5<n.

These points project on to the boundary I'y g, . at the points

out
+ . 1 — ; ;
Ty 7= Vout + TijVous> where 7;; := —r;sina + r; cos o, 1<j<n.

For 1 < j < n, we find that

Iin —
A1 (73, 0in; 7i5, Oout) = Eo(x7, xij, x5 k(2ij, Oin, Oout)- (57)

sin «
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Here, Ey(z; , 245, x:;) is the inverse of the exponential of the broken line integral of ¢ along [z; , x;;, x:;]
This broken line integral is estimated numerically by a standard quadrature rule using the absorption

map o(x) constructed from 4. This provides a first formula for k given by

Al(ri» Oin; Tijy aout)

IinEO'(xi_; Tij, l’;;) .

k(2ij, Om, Oout) = sina (58)

The numerical integration of E, may be avoided again by a calibration technique. Let us define the
single scattering contribution obtained with a scattering coefficient k = 1:

Iin
sin «

Al,kzl(riyein;rijaeout) = EU(xi_7xij’x7-l;)'

Then, a natural formula for the reconstruction of k£ that is quite insensitive to discretization effects is

given by:

_ Al (T‘i, ain; Tij; eout)
At k=1(ri,0in; Tij, Oout)

In our numerical simulations, we saw fairly minor differences between the reconstructions because our

scattering coefficient is chosen to be smooth. In particular, the error in the L? norm is relatively insensitive

to the method that we use. Still, the second formula tends to produce smoother reconstructions. Fig.14

illustrates these statements.

k<$ija einy eout) (59)

A: without corrector B: with corrector C: cutatx=0 D: cut at y=0
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Figure 14: Scattering reconstructions when Gaussian beams of width 2.5k (h the step-size) are sent
instead of Dirac pulses. Formula (58) does not take into account the beam width, hence the numerical
artifacts (horizontal lines) in image A. These artifacts vanish with formula (59) (image B), though the
L? errors remain similar. Plots C,D show cross sections of both reconstructions.

Impact of the angle a = 0,y — 6;,. In our numerical simulations, the physical size of the support of
the ballistic part is equal to 2 = |[—1,1]|. The cone of lines emitted with direction 6., has a trace on
I'y 6., With support of size bounded by 2sin a; see Fig.15. The compression is therefore quite severe when
a is close to 0. The information on k£ encoded on n pixels along the ballistic part is therefore shrunk to
information encoded over nsin « pixels at best. High frequencies in k are therefore irretrievably lost and
even low frequencies component are lost when « tends to 0 until only the spatial average of k is available
and (59) fails to adequately reconstruct the scattering coefficient. The resolution clearly improves when
n increases at a fixed value of « since we can roughly reconstruct nsin a Fourier modes of k along the
segment t — xj, + tvy,. But loss in resolution is unavoidable when « is small. The most favorable
situation is obviously sina = 1, which should clearly be chosen to reconstruct k¥ = k(x) independent of
the angular variables.

Since Oous # Oin, the ballistic part needs to be rotated first in order for 4, to be aligned with one of
the grid axes. Such a rotation may induce strong oscillations of the source term in the transport equation
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Figure 15: Geometry for the single scattering. Legend: o: measurement points; ¢: reconstruction points;
—: input. Left: a favorable case with o = %. Right: a less favorable case with o = 5.

and generate oscillations on the single scattering measurements. We have observed that such effects were
amplified when a was small. A solution to such numerical instabilities is to send regularized (Gaussian
beams) on I'_ or to have angular diffusion in order to regularize the ballistic term. Figure 16 shows how

o = x/8, Error = 50% o = a/6, Error = 33% o« =nf3, Error = 17.5% «=q/2, Emor=4.7%
20 20 20 20
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20 40 60 80 100 120 20 40 60 80 100 120 20 40 60 80 100 120 20 40 60 80 100 120

Figure 16: Quality of scattering reconstructions versus deviation angle . From left to right, 0oyt —0in = 5,

Z,Z and I (best case). Errors are relative L? and 6;,, = g.
the reconstruction degrades when o decreases.
Different scattering scenarios. In the most general case, when k = k(x,6i,,0ou) depends non

trivially on 6y, and oy, the above formulas (58) and (59) can hardly be improved. In many practical
settings, k = k(x, vin - Vous) depends only on the difference of the two angles 6;,, and 6. This situation
arises when scattering is isotropic, i.e., when scattering is independent of rotations of the configuration
domain. Such assumptions are sometimes violated, for instance in absorption and scattering through
canopy, but are valid in many practical settings of medical and geophysical imaging. The reconstructions
in (58) and (59) may then be improved by averaging over angles, e.g.,

A (ri, Oin + &5 745, Oout + @) @ (60)
o Aik=1(ri,0in + @3 735, Oous + @) 27

k(xijv 9in7 eout) =
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Here, ; and r;; depend implicitly on ¢ by replacing 6i, and 0oyt by Oin + ¢ and O + ¢, respectively.
Averaging over only two directions already yield some reasonable gains in the reconstructions as may be
s

seen in Fig.17. When k = k(z) is independent of angles, then the choice « = % and 6;,, = 0 is optimal.

2
A o Tid-8/2, o« = ni8, Error = 35% B: em = 3n/4-5/2, o = n/8, Error = 35% C: Averaged reconstruction, Error = 28.6%
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Figure 17: Averaging over a few scattering reconstructions for 0y.¢ — 6, = 5. Images A,B show re-
constructions from single, different configurations 6;,, 60,4, and present strong oscillations along their
respective f,-axes. Image C is averaged over 7 reconstructions with 6, = i7 — g,i =1,---,7. Errors
are relative L2.

5.4 Iterative reconstruction of the optical parameters

We now return to the iterative algorithm briefly mentioned at the end of section 5.1. The previous
sections show how o(z) and k(z,6’,0) may be reconstructed from knowledge of A4y and A;. It remains
to calculate the latter terms from knowledge of the full operator A. This may be done iteratively for
sufficiently small values of k£ in two space dimensions and for sufficiently small noise as is e.g. justified
in [11, 28]. The reason why this may be done is that A — Ay and A — A; can be estimated numerically
by solving a transport equation once o(z) and k(z,6’,0) are known approximately. Knowledge of .4 and
of A — Aj obviously gives us knowledge of Aj for &k = 0,1. More formally, the iterative algorithm is
structured as follows.
Let us denote the full measurement data by

D = Ao(O‘) + .Al(O', k‘) + AQ(O‘, k’)

Let us further denote formally by Ay ! any of the reconstruction formulas that give us an approximation of
o from the ballistic measurements Ag(c) (this involves one of the formulas (52), (53), (54) or (55), followed
by an Inverse Radon Transform), and by Al_l’o, any of the reconstruction formulas that reconstruct k
from the single scattering measurements A; (o, k). Then we can write the following

o~ Ayt Ao(o) = Ay H(D — A (o, k) — Ag(0, k).
ko~ ATV A (0, k) = AT (D — Ao(o) — As(a, k).
Assuming that the operators in both right-hand sides are contractions, then iterating over these operators

with good initial guesses should converge to improved reconstructions of both optical parameters. The
iterative scheme reads as follows:

oo :AalD, ko :A1—1,00D7
/N ZASI(D—J‘M(U[) — Az(o1, k), (61)
kip1 =A] i (D — .A()(O'l) — Ag(O’l, kl))
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Theoretical results show that the above operators are indeed contractions at the continuous level (i.e.,
before spatial and angular discretizations) and in the absence of noise (i.e., no angular diffusion) inde-
pendent of k£ in dimension d > 3 and for small k in dimension d = 2. It is highly likely though not proved
rigorously mathematically that the algorithm is also a contraction when the angular diffusion is small
(see e.g. [11]) and the grid size h = 2 and angular size § are sufficiently small.

In the numerical simulations presented below, we assume that the scattering kernel is a function of
position only (i.e. k(z,6,0") = k(x)) and we define the quantity

op(x) := . k(z) df = 27k (x).

Thus, o, is the scattering contribution to the total attenuation with o(z) = ga(z) + op(z), where o, is
the intrinsic absorption. We are interested in a situation where the intrinsic attenuation may have jump
discontinuities and/or localized inclusions and the scattering coefficient is smoother, see Fig.18 A,B,C. In
such a setting and with relatively small angular blurring, the single and multiple scattering contributions
hardly affect the measurements of Ag. In other words, on the support of Ay, the remainder A — Ag
is rather small. As a consequence, our strategy to recover the optical parameters o,(z) and k(z), or
equivalently o,(z) and o, (), is as follows: we first compute the total attenuation o(z) by applying Ay "
to the full measurement data D. We then reconstruct k(x) using the iterative scheme that can be deduced
from (61). At each iteration, we estimate the terms o, and o, as

Op,l :27Tkl7 Oa,l =0 — Op, l:07 7Niter'
The iterative scheme thus reads:

c=A;'D, ko= A;"D,

Fien = AT (D — Aol0) — As (0,k1)) = ko — AT (Ao(0) + Az (0, 11)) (62

The iterative scheme converges rather slowly and oscillates about its limit. Since measurements include
multiple scattering and the first reconstruction kg of the scattering map is based on single scattering, the
latter is overestimated. The forward map then also overestimates the influence of multiple scattering in
the data and thus removes “too much” multiple scattering for the next reconstruction k; of the scattering
map, which is therefore smaller than the true map, and so on. Even iterates of k; therefore overestimate
the true scattering map while odd iterates of k; underestimate it. More formally, the equality

ki — k= — A7 (Az (0, k) — As (0, k1))

shows the change of sign of k; 1 —k; at each iteration since Aj is monotonically increasing in its arguments.
To reduce these oscillations and accelerate the convergence, we need a scheme that better utilizes previous
iterations, for instance the following relaxation scheme

bir = B (A7 7D = AT (Ao(0) + A2 (0. k) ) + (1= Bk (63)

for some (8 € (0,1). Numerical results with the value g = % show that this scheme indeed converges quite
rapidly; compare Fig.19, plots A and B.

Numerical reconstruction in the absence of angular blurring. In all simulations, we have n =
Ny = 128. The reconstruction settings for the scattering coefficient are: 6;, = g (i.e., the incoming
direction is very close to e,; this maximizes the numerical effects of the rotation), o = Oguy — Oin = 7,
inputs are Dirac pulses. In a first numerical experiment, we assume no angular diffusion. The forward
simulation is obtained by computing scattering terms up to order 5.
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Figure 18: Iterated scattering reconstruction. Sub-plots A,B,C show the exact parameters. Sub-plots D
and E show the reconstructions of o, and o, after convergence of the iterative scheme, while sub-plot F
shows the reconstruction of the total attenuation. The last row displays pointwise errors for all coefficients
Oq, 0p and o.

As in section 5.2, the total attenuation is reconstructed using an inverse Radon Transform (IRT).
The error is mainly localized at the discontinuities (see Fig.18 D). The modified iterative scheme (63)
converges after 3-4 iterations and we achieve a relative error of 2.2% on o, and 10.6% on o, (see pointwise
errors on Fig.18 G,H). The error on the reconstruction of the intrinsic attenuation map is therefore similar
to the setting obtained earlier in the absence of scattering.

The reconstruction contains two main sources of error: the error caused by the Inverse Radon Trans-
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form (IRT), and the error caused by the non-ballistic part of the measurements (which were neglected at
first). In a discrete setting, the IRT does not recover singularities well and creates radial artifacts caused
by the angular discretization. Thus, Aj 1.AO(U) — o presents peaks close to the singularities of o as well as
radial noise. Since the iterative scheme uses Ay *Ag(c) and scattering is smooth with Ay ' Ag(op,) ~ oy,
a good approximation, the iterations on the intrinsic absorption should provide a much better approxi-
mation for A 1A0(oa) than for o,. We indeed observe that the relative L?-error of 0a,5 With respect to
Ay le(Ua) is 1.4%. Fig. 19 F shows that the errors are no longer as localized near the singularities unlike
Fig.18 G, where we display |0, 5 — 0a]. We do notice some of the scattering coefficient in that error plot,
in the same way that we notice some intrinsic absorption in the scattering reconstruction error in Fig.18
H. This cross-over in the reconstructions is probably unavoidable. However, it is significantly smaller
than the error we expect when we apply the IRT. In this sense, the iterative reconstruction algorithm
successfully separates the intrinsic attenuation and scattering components of the total attenuation map.

A iterations % with initial scheme, cut at 'x=0" B: iterations I with modified scheme, cut at 'x=0' o L2 convergence
2
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A —
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Figure 19: Remarks on the convergence. Plot A shows a cross section of iterations of the scattering
coefficient using the initial oscillatory scheme. Plot B shows the same iterations using the modified
scheme (63) with 8 = % Plot C displays L? convergence of both iterative schemes. The second row

compares the reconstructed intrinsic absorption with Agy 1Ao(aa).

Numerical reconstruction with angular blurring. We now consider the framework where the
ballistic part is blurred by some Fermi pencil beam transverse diffusion with a constant coefficient d =
2.510~* in formula (38). Fig.21A displays how the beam widens as it passes through the center of
the domain. We still compute full measurements using 5 scattering terms in the forward solver. We
then reconstruct the total absorption coefficient o by using formula (55). In other words, we assume
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f Ao(ri,05;r,05) dr
f .Aogl(n, 0;;r,05) dr’
approximation of the physical blurred measurements that depends very little on the discretization used
in the simulations. The reconstruction of o, and o, is performed using the modified scheme (63).

The results are gathered in Fig.20. As in the absence of angular blurring, we observe that the

that the physical measurements are given to us by

which corresponds to a faithful
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Figure 20: Results of reconstructions. The exact coefficients in Fig.18, first row. Relative L? errors drop
from 39% to 2.2% in 3 iterations for o, and from 28% to 11% for o,.

scattering coefficient is reconstructed accurately. The smoothness of the latter coefficient makes the
reconstructions quite robust with respect to angular diffusion. Note also that the coefficient E,, appearing
in the reconstruction of the scattering coefficient is estimated more accurately than o itself because it
involves (broken) line integrals of o, which are more robust with respect to noise than point-wise estimates.

Errors on 0 = o0, + o, are therefore inherited by the intrinsic attenuation coefficient o,. The re-
constructed coefficient o, unsurprisingly has smoother edges than in the case without diffusion. Hence
the larger error at the edges, see Figs.18G and 20D. As in the case without diffusion, we notice that o,
actually converges to the function o#=0 = Ag ! Ao(o,), which is what we would reconstruct from ballistic
measurements with angular diffusion and no scattering; see Fig.21, where we observe a relative L? error
of 1.4%.

To conclude this section, we would like to stress that the iterative algorithm accurately separates the
scattering and intrinsic attenuation components of the total attenuation coefficient also in the presence
of small angular diffusion. Whether we pick a reconstruction formula that requires knowledge of noise a
priori or not, a smooth scattering coefficient is always reconstructed well, whereas the intrinsic attenuation
inherits the imperfections of the reconstruction formula for the total attenuation, may these imperfections
come from the inverse Radon Transform or from the inaccurate estimation of the numerical noise. Finally,
let us insist on the fact that even in the setting where noise is known, the above results show how the
discontinuities are blurred in the reconstructions, and irretrievably so in the absence of prior knowledge
about the objects we wish to reconstruct.
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Figure 21: Remarks on the simulation with blurring.

Summary of algorithmic complexity and parallelizability. Let us conclude this section by a
summary of the various computational costs of the forward and inverse transport codes. We recall the
notation; n: the size of the reconstructed (square) image; Ng: number of directions in the discretization
of S'; Nycat: number of scattering terms that we compute when solving a forward transport problem;
Niter: number of iterations in the iterative reconstruction scheme (61); N,y.: number of scattering
reconstructions over which we average in order to get better accuracy.

The complexities of the numerical algorithms presented in this paper are summarized as follows:

e a single propagation of ray along the grid requires O(n?) operations and an image rotation,
O(n?logn) operations.

e solving a forward problem for one given input requires one ballistic propagation and NgNgcat scat-
tering propagations, so it requires O((1+ Nycat Ng)n? log n) operations. Creating full measurements
requires solving a forward problem for each input pulse at position (7;,6;), hence measurements
have a computational cost of O(nNy(1 + Ngcat Ng)n? logn).

e In the most general case of scattering, all iterative schemes require the computation of full mea-
surements at each iteration, so the iterative reconstruction will be of the order O(Nise;nNg(1 +
Nycat Ng)n?logn). When the scattering is only function of position k(z), it can be reconstructed
from measurements with only one input direction, which reduces the latter cost by a factor Ny.

In the presence of parallel architectures and the availability of p x Ny processors, 1 < p < n X Ny,
the total computational time may be reduced by a factor close to p x Ny. Creating the measurement
operator requires that we run n x Ny independent forward solvers. For each of these solvers, one step
of the iterated source method requires N, independent solutions of the free transport equation. Hence
the strategy with p x Ny processors is to create p groups of Ny processors. Each group can then run a
forward solver with complexity O((1 + Ngcat)n?logn) (instead of O((1 + NgcatNa)n?logn) on a single
processor). We then create the full measurements by splitting the n x Ny-long loop over the p groups of
processors. Neglecting communications, which should be minimal in practice for sufficiently large spatial
domains, we obtain a gain of time p X Ny provided the latter number of processors is available.

6 Conclusions

This paper presents a numerical methodology to solve the inverse transport problem, which consists of
reconstructing the optical parameters in a transport equation from full knowledge of the albedo operator.
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The main message that can be drawn from the mathematical analysis of the inverse transport problem
is that reconstructions of the optical parameters are stable when the singular structure of the albedo
operator can be used. This requires that the singularities of the forward transport operator be estimated
accurately, a task that is difficult to do on a Cartesian grid because of the hyperbolic structure of the
transport equation.

The method based on slanting or fully rotating the computational domain to solve the free transport
equation allows one to devise a Cartesian-friendly method that accurately captures the ballistic and single
scattering components of the transport solution. The equation after rotation is sufficiently simple that
various physical blurring effects such as those caused by angular diffusion can be accounted for. The
numerical tool we have presented then allows one to understand what can and cannot be reconstructed
in an object of interest based on various measurement configurations. We have presented numerical
reconstructions based on full knowledge of the ballistic part and full knowledge of scattering for the angle
Oout — Oin = 5. In this setting, the separation of a smooth scattering coefficient from a more singular
absorption coefficient, which is an interesting configuration in practice, was shown to be performed
accurately.

The methodology easily generalizes to the three dimensional transport equation, where polarization
effects such as those described in [13] can also be included. The computational cost of the method however
becomes quite high. The price to pay for the rotations is unavoidable if some spectral accuracy in the
rotations is to be maintained. More local interpolants can also be developed to account for the rotations
and this is being considered elsewhere. The setting based on rotations is however fairly robust as it allows
one to account for several physical blurring mechanisms relatively painlessly. The total computational cost
of the method is however an issue. It can be reduced significantly by carefully analyzing the singularities
of the transport solution. For instance, contributions for high orders of scattering are much smoother
than the ballistic contribution. They can therefore be captured by spatial and angular grids that are
much coarser than the grid used for the ballistic part. Multi-grid and Sparse techniques (see e.g. [30])
might then be used to reduce the computational cost of the method, which is arguably quite high.
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