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Time Reversal framework
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Numerical Experiment: Initial Data
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Numerical Experiment: Forward Solution
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Numerical Experiment: Truncated Solution
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Numerics: Time-reversed Solution
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Numerics: Solution pushed forward (no TR)
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APAM

Zoom on Refocused and Original Signals

Zoom on the Refocused Signal

Zoom on the Initial Condition
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Time-reversal in changing 3D media

We consider time reversal with possibly a change of media between the
forward (¢ = 1) and backward (p = 2) stages. The forward problem for

u? = (v,p) = (v1,v2,v3,p) IS
ou®(t, x) n Dj(?u@(t,x)
ot 8:1;J

AP (x) =0, xeR3 ¢=1,2

with initial condition ul(t = 0) = ug; A¥(x) = Diag(p, p, p, k¥ (x)).

Using Green's propagators G¥(t¢,x;y), the back-propagated signal is

w(x) = [ FGATxyIMGHT, Y D) xa(M)xa(y) f(y - y)uo(2)dydy'dz

e[ = Diag(—1,—1,—1,1) models the time reversal process
oxo(y) models the array of detectors and f(y) blurring at the detectors
o' is the duration of each propagation stages.
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High Frequency scaling

We are interested in high frequency (O(s~1)) wave propagation and thus
wish to analyze the refocusing signal at distances O(e) away from the
source center.

X—X(0

Rescale the problem with ug(x) = S and accordingly with a filter
0

/
6%f’(%). An observation point x close to xg is written as x = xqg + €&,
so that in the new variables

uB(&; xo) =/Rg FG2(T,xo + & y)FGH(T,y'; x0 + €2)

xS(z)xo(¥)xa(y') f(

y—y
We thus want to understand the limiting properties (as € — 0) of the
4 x 4-matrix G2(T,xg + &, y)FGHNT,y';xo + €z). We use kinetic models
for this.

)dydy'dz.
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An adjoint Green’s matrix

Recall that the Green function G1(¢,x;y) solves the equation

A13G1(t,X; y)
ot

. 0
+ Dﬂgwlu, x;y)) = 0, G1(0,x;y) = 6(x — y)I.
J

Introduce the adjoint Green’s matrix Gi, solution of

8Gi(t,x;y)+8Gi(t,x;y)
8t 83;3
We verify the following Maxwell reciprocity-type result

DI(AHYTI(x) =0, GL(0,x;y) = 6(x—y)FA~L(y)r.

rGl(t,y;x) = Gi(t,x; y) AL (x)r.

This allows us to recast the back-propagated signal as
ul (& x0) = /Rg FG2(T, %0 + & y)GL(T, x0 + ez; y') AL (xq + €2)T

xS(z)xo () xa(y) FC—

3

)dydy'dz.
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T heory of time-reversal refocusing

Introduce now the Wigner transform

ik-z 2 €Z. N ~1 €z, 4\ dz
G2(t,x — —:yv)GL (¢, x + ==

We(t,x, k) = /

R6

/

y—Y

)dydy’,

which satisfies the same equation as we have seen before. This allows
us to write the refocused signal in terms of the Wigner transform as

§+z

xxQ()xa () f(

: k)e_ik'(z_g)AfgL (xg + €z)'S(z)dzdk.

u(€ix0) = [ TWelt;xo+:

High frequency estimates of refocusing are obtained by analyzing the limit
of We(t,x,k) as e — 0: |[aP(k; xq) = MWy (¢, x0, k) AF(x0)S(k) |
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Primer on Wigner Transform

The Wigner transform of two vector fields is defined by:

Welu, v](x, k) = /

Rd
It is the inverse Fourier transform of the product:

y, dy
=)

1y-k Y N
e *u(x 62)V (X—|—€2 (2

— 1 Y\« * y
We [u, V] (X, k) = F (H(X -+ €§)V (X — 55)) )
We verify that
/Rd W, v](x,k)dk = (.uv*)(x)
/Rd kW[U_, V] (X, k)dk p— E(U.VV* _ VHV*)(X)

/ k[?W[u, v](x,k)dkdx = 52/ Vu - Vv*dx.
R2d Rd
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Equations for the Wigner transform

Consider two field equations and the Wigner transform:

8

;s + Afuf =0, ¢=1,2, We(t, x, k) = W[ul(t, ), u2(t, )](x, k).
Then we verify that

8W
S =+ wiAlul, u?] + W[ul, A2u?] = 0.

Calculations of the type

WP (s, eDu, vI(x ) = [e e C9B(e ik + ie (D — €)W, vy, k — = ]d?zdgﬂy

T

WV G, ), vIGe k) = /: Y (g )W, VG k- - S é‘jjﬁ‘;‘d,

allow us to obtain an explicit equation for Ws. The above formulas are
amenable to asymptotic expansions in e.
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Weak-Coupling Regime

In the weak coupling regime, the random fluctuations of the media are
modeled by

(£)2(x) = 2 — ﬁvwf), p=1,2,
2
c%z L : VP(x) = —ml(x)
K0PO

where cg is the average background speed and /4:1 and V¥ are random
fluctuations in the compressibility and sound speed, respectively. We
assume that V¥(x), ¢ = 1,2, are statistically homogeneous mean-zero
random fields with correlation functions and power spectra given by:

FR¥Y(x) = (V(y)V¥(y +x)), 1<, <2
(2m)4cE R (p)s(p+a) = (V¥ (P)VY(q)).
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Kinetic theory In weak coupling regime

The Wigner distribution at time ¢t = 0 is given by
W(0,x,k) = [xq(x)[2f(k) Ay (x), where (A9)~! = Ag" + O(Ve).

The limit Wigner distribution is decomposed as:
W(t,x,k) = ay(t,x, k)b_|_b>’_‘|_—|—a_(t,x, k)b_b* . Furthermore, the radiative
transfer equation for ay is (with wy = ¢glk|)

8a_|_

ot
w2 (k R
= 2(3_71(_)3 /Rd R12(k — Q)a+(q)5<w+(q) — w_|_(k)>dq,
w2 (k) ; Rl 4 R22
(k) = 2(;71_)61 /Rd 5 (k — q)5<w_|_(q) — w+(k)>dq

U )= 51l p22 wj(k)w (q)
4(2;)0[ P /Rd (R - >(k - q)wqu) - w-|—(k)dq.

+cok - Vay + (k) + iN(k))ay

iM(k)
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Why is the refocusing stronger in
heterogeneous media ?

High frequency approximations of refocusing are given by

a2 (k; xg) = MWy (¢, x0, k) A (x0)FS(k) |
where W(t,x,k) = a4 (,x, k)b_|_b>_k|_ +a_(t,x,k)b_b*.

Thus, the smoother the filter, the less distorted the back-propagated
signal uB. Wy(t, xp,k), which solves the radiative transfer equation, is all
the smoother that scattering (proportional to Rq5) is strong.

In homogeneous media, Wy(t, xg,k) is very singular and the backpropa-
gated signal very distorted, leading to poor refocusing. When the two
media are strongly correlated (so that Rq, is large), Wy(t, xg, k) is smooth
and refocusing is enhanced.
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Statistical stability in Time Reversal

T here are few theoretical results in the weak coupling regime for the wave
equation and they are concerned with ensemble averages of the Wigner
transform, not its limiting law.

However such limiting laws are accessible for simplifed regimes of radia-
tive transfer, including paraxial approximations, Ito-Schrodinger approxi-
mations, and random Liouville equations.

Such limiting laws directly translate into results on the statistical stability
of the time reversed signals whether the underlying media change or not
between the two stages of the time reversal experiment.
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Two models where stability can be proved

e Paraxial (a.k.a. Parabolic) Approximation. Here, we obtain a (quan-
tum) wave equation with mixing time dependent coefficients. For a
typical wavelength (width of initial pulse) of order ¢ <« 1, the fluctuations
are of the form

ﬁV(g, 0.

e Random Liouville Equations. Here the high frequency limit of the wave
equation (Liouville equation) with random Hamiltonian is used to show
that the Wigner transform solves in the limit ¢ — 0 a Fokker-Planck
equation. For a typical wavelength of order ¢ <« 1, the fluctuations are
of the form

\/ () V(ﬁ) C\In8|_2/3+n<<5(6) — 0 ase— 0.
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PART 2.1: PARAXIAL
APPROXIMATION



APAM Waves in Random Media

Analysis for the Paraxial Equation

The pressure field p(z,x,t) satisfies the scalar wave equation
1 9%

c2(z,x) Ot2

The parabolic approximation consists of

— Ap = 0. (1)

p(z,x,t) & [ MRy x, m)codn,

where ¢ satisfies the Schrodinger equation

27352—%, X, k) + Axp(z,x, k) + £2(n?(2,x) — 1)p(z,x, k) = 0,

<
Y(z = 0,x,Kk) = YPo(x, k)
with Ax the transverse Laplacian in the variable x. The refraction index
n(z,x) = cg/c(z,x), and cg is a reference speed.
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Cartoon of Paraxial Approximation

TIME-REVERSAL
SOURCE MIRROR
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Time Reversal within Paraxial Approximation

The back-propagated signal can be written as

P (x, k)
= /Rw G*(L,x,5;mMG(L,y, 5,y )x(mxy) f(n — y)vo(y', k)dydy'dn.

After introduction of the Wigner Transform and scaling, we get

B : _ dydk
we (57’4’1 XO) — /de (27T)d'

AEDWL %0 + YT K)oy, )

The above formula shows that the asymptotic behavior of ¥2 (&, k; xg) as
e — 0 is characterized by that of the Wigner transform W:(L,x,k, k).
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Scaling and random medium

The scaled Schrodinger equation is

zmsaai + 2 Axtbe + H;Q\fV(— —)wg =0,

Ye(z = 0,Xx, k) = ¢o(x, k).

The random field V(z,x) is a Markov process in z with infinitesimal gen-
erator Q. It is stationary in z and x with correlation function R(z,x)

E{V(s,y)V(z+s,x+y)} = R(2,x) forall x,y € R? and z,s € R.

The generator Q is a bounded operator on L*°(V) with a unique invariant
measure w(V), i.e. @*r = 0, and there exists a > 0 such that if (g,7) =0
then

—Qar

TRall 700 < o0
le" gllpee < Cllgllere
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Equation for the Wigner Transform

oW, 1
c —l— —k- wag — /ﬁlﬁgWg
0z K

We(0,%,k; k) = W2(x,k; k),

~ Z
1 dV(-, p)
ﬁgWg —_— = 2
/e JRE (2m)d

ePX/e We(x,k — g) — We(x, k + g) -

The initial condition is given by

i(k+aq)y _
o X0 = x(x+ ) Fa)dyda.

0 . -
WO(x, k; k) = /Rd o)

It is uniformly bounded in L2(R%xR%) (hence so is Wx(z; k)) and converges
as ¢ — 0 to WO(x,k; k) = |x(x)|2f (k).
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Main stability result

Let the array x(y) and the filter f(y) be in L1NL>®(R%), while g € L2(R%)
for a given k € R. The refraction index n(z,x) satisfies assumptions given
above. Then for each £ € R? the back-propagated signal 2 (&, xq, k) con-
verges in probability and weakly in L)%O(Rd) as € — 0 to the deterministic

Breg ooy — ik-(E—y) T dydk
VP& rmixo) = [ e W(L,x0, K m)Yo(y: #) 5 vq
The function W satisfies the transport equation
oW
— 4+ k VxW = kLW,
0z
with initial data W(x, k) = f(k)|><(x)|2 and operator £ defined by
P p|? — [k|?
c/\—/ p—K)(A(p) — A(K)),
i a5 PO —AG)

where R(w,p) is the Fourier transform of the correlation function of V.



APAM Waves in Random Media

Result on the Wigner transform

Under the same assumptions, the Wigner distribution Wy converges in
probability and weakly in L2(R2%) to the solution W of the above transport
equation. More precisely, for any test function \ &€ LQ(IR{Qd) the process
(We(2),\) converges to (W(z),\) in probability as ¢ — 0, uniformly on
finite intervals 0 < z < L.

Here, (-,-) is the usual scalar product in L2(R2%).
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Details of the proofs

The scaling of the random fluctuations is supposed to be \/EV(E,E).
E €&

We then have the following equation for the scaled W-x:

oW,
a 8+k'Vng:£gWg
Z

W:(0,x,k) = WO(x,k),

with

~ 2
LW = 1 dv(g’p)eip'x/e We(x, k — o) — We(x,k + 2)
g g ’L\/g Rd (27‘(‘)d g ’ 2 g ’ 2 .

Thanks to the blurring at the detectors, we obtain uniform bounds in
L2 for the Wigner transform Wg independently of the realization of the
random medium.
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Construction of approximate martingales

Let us define P- as the probability measure on the space of paths C([0, L]; X)
generated by V: and W.. Let A(z,x,k) be a deterministic test function.
We use the Markovian property of the random field V(z,x) in z to con-
struct a first functional Gy: C(|0,L]; X)— C|[0O, L] by

GAIWI(2) = (W, (=) = [0, 4 K Wk + £0) (O

and show that it is an approximate P--martingale, more precisely
B {GAIW](2)|Fs} — GAIW(s)| < Ch e

uniformly for all W € C([0,L]; X) and 0 < s < z < L. Then there exists
a subsequence gj — O so that ng converges weakly to a measure P
supported on C([0, L]; X). Weak convergence of P: and the above error
estimate together imply that G, [W](z) is a P-martingale so that

EF {GA\[W](2)|Fs} — GA[W](s) = 0.



Taking s = 0 above we obtain the transport equation for W = EX {W(z)}
in its weak formulation.

The second step is to show that for every test function A\(z,x,k) the new
functional

GoAWI(2) = (W 02(2) = 2 [ QW 5 + K- T+ LN Qe

is also an approximate P--martingale. We then obtain that E/= {(W, >\>2} —

(W, \)2, which implies convergence in probability. It follows that the limit
measure P is unique and deterministic, and that the whole sequence F-
converges.

That G \[W](z) is an approximate P.-martingale uses very explicitly the
uniform a priori L2 bound on the Wigner distribution W-.
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PART 2.2: ITO SCHRODINGER
APPROXIMATION
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ItO0 Schrodinger equations

Let us come back to the parabolic approximation

w —’LLZ . ZkLzy ngX Lzz
+2kL2 Axtp = === 7)Y
We now assume that the variations in z are very fast: [, < A. Then we

can formally replace

kL L L L
V(IR 22 g by <B(= i

where B(x,dz) is the usual Wiener measure in z with statistics

(B(x,2)B(y,?')) = Q(y —x)z A 2.

,dz),
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ItO0 Schrodinger equation

The parabolic equation in this regime becomes then

L L
2252 Ax(x, z)dz + ik (x, z) o B( ZX
Here o means that the stochastic equation is understood in the Stratonovich

sense. In the It0 sense it becomes the [to-Schrodinger equation:

d(x, 2) = E(Ziz _ KQQ(O))MX 2)dz -+ ingh(x,2) B(

Advantage: Closed equations for the statistical moments.

di(x,z) = dz).

L.x

,dz).
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First moment

The first moment defined by m1(x,z) = (¥(x, z)) satisfies

Tlx) ==

<. 2) —
0z 2\kL2

The L2 norm of the first moment

Mo(2) = ([ Ima(x, z)Fdx)l/Q.

B~ Q(0) )1 (x, 2).

IS given by
Q(0)
M>(z) = e 2 *M5(0).
This shows that the coherent field mq1 decays exponentially in z. This ex-
ponential decay is not related to intrinsic absorption. Instead it describes
the loss of coherence caused by multiple scattering.
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Second Moment (I)

Energy propagation is better understood by looking at the second mo-
ment

mo(x1,X2,2) = (Y(x1, 2)Y" (X2, 2)).

By application of the Itd formula we have

d(y(x1, 2)Y*(x2,2)) = P(x1, z)dp*(x2, 2)
+dip(x1, 2)P*(x0, 2) + dip(x1, 2)dy*(x2, 2).
This implies that
Oy iL.
dz  2kL2

(Dx; — Aot + (Q(L“"(Xl - Xz)) - Q) )i

Lz
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Second Moment (II)

Introduce the rescaled variables: x = 1 ;Xz, y = 71 _XQ. Here the

U
adimensionalized wavelength ¢ < n < 1. Defining mo(x,y) = mo(xX1,X5)
we have

= Vx -V — 0) — .
55 = niay Ve Vyma(2) = (Q0) - QW) Jma(=)
Introduce the Wigner transform
1

Wxp,2) = g [ ePVulx— 220" (x + L 2)dy.

(2m)

Then ma(x,y, 2) = / ePY (WY (x, p, z)dp and

]Rd

W) L.

oz kL2n" Vx(W) = /Rd [Q(p —p') — Q(0)é(p — p) | (W) (p)dp".

We thus get an equation for the limiting Wigner transform for free.
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Scintillation (moment of order 4)

We can similarly obtain an equation for the fourth moment:

77’2,4(X]_, X2,X3, X4, Z) — <¢(X17 Z)¢*(X2» Z)@D(X:’w Z)w*(x47 Z)>

We introduce the change of variables m4(x,y,z,t,2) = fr'h4(X1, X5, X3,X4,2),

wherex—"l"'—"?,y—xl;ﬁ,sz’%g—m,t:’%—;x“, ”_Lx We obtain

Omg il
0z kL2n
€;,€j =1

(Vx - Vy 4+ Ve - Vi)mg(z) — Oma(z),
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Scintillation = second moment for the W'T

Define W(x,p,§,q,2) = W(x,p,2)W(§,q,2).
Its statistical average can be related to m4 and we find that

(W) n L,
0z kL2n

(P Vx+a- V)W) = Ro(W) + K12(W)

(x=§)-u

1

Kiow = [ Qe 7 (W -Sa-D+WE+5a+D

WP - Ba+5) - W +5a- 1) )du
KW = /de [Q(p —p)é(a—d) +Q(a—d)i(p - p’)] W(p',d")dp'dd’
RoW = KW — 2Q(0)W.

When the phase term cancels so that “|K1>2W| < 1", we obtain that

JH(XJ P, 57 q, Z) — <W(X7 P, £7 q, Z)> T <W<X7 P, Z)> <W(€7 q, Z)>
the scintillation function, is small. The energy is then statistically stable.

~
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Smallness of the scintillation function

Theorem. Let us assume that Wj(x,p,0) is deterministic and such that

2 2

where (' is a constant independent of n. Assume also that the correlation
function Q(x) € LY(R®) N L>®(R%). Then

| Jnll2(2) < Cn/?,

uniformly in z on compact intervals.
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Weak statistical stability

Theorem. Under the assumptions of the previous theorem and A\ &€
L2(R24), we obtain that

({(0 — ) ) < cnt2iaig

Also (Wy, A\) becomes deterministic in the limit of small values of n as

Cn¥2||\13
P(| Wi ) = (W), )| 2 0 ) < =22
The Wigner transform W, of the stochastic field 1, converges weakly
and in probability to the deterministic solution W(x, p, z) of a Radiative
Transfer Equation.

O asn—O0.
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Application to Time Reversal

Theorem. Assume that the initial condition ¢g(y) € L2(R%), the filter
f(y) € LL(RY) N L2(RY), and the detector amplification y(x) is sufficiently
smooth. Then wﬁ(ﬁ;xo) converges weakly and in probability to the de-
terministic back-propagated signal

WP(&x0) = [ ™ W (xo,k, L)fo(k)dk,

where W (xg, k, L) is the solution of a RTE with initial conditions W(x,k,0) =
F(X)|x(x)|?. Moreover introducing A(&,xg) = X(x0)u(€) we have the fol-
lowing estimate

(@ = @ 0?) < CnlilwolBINIZ = Cnlvol3lul3INIB

uniformly in L on compact intervals.
We do not have such an estimate for the parabolic approximation.
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Scintillation may appear and not disappear

Theorem. Assume that W;(x,p,0) = d(x — x0)dé(p — po) [not physical
in Time Reversal]. Then the scintillation function Jn is composed of a
singular term of the form (with Q@ = Q(0)):

5(x — €)5(p — q) (a<x, p,2) — e 2@a(x — zp, p, o>)

plus other contributions that are mutually singular with respect to this
term. Moreover the density a(x, p, 2) solves the radiative transfer equa-
tion with initial condition ag(x,p) = é(x — x0)d(pP — Po):

O

5, TP Vxa+2Qa = /Rdc?(u)(a(x,p+g,z) + a(x,p — g,z)>du

The total intensity of this scintillation is (1 — e 29%) (so it grows in z
though it vanishes at z = 0).
In this case Energy is NOT statistically stable.
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PART 2.3: RANDOM LIOUVILLE
REGIME



APAM Waves in Random Media

Stability by Random Liouville

Let us come back to the full wave equation and introduce v:(t,x) =
Agl/z(x)ug(t,x) that satisfies the symmetrized system

Ove ~1/2 j 0 ([ ,-1/2 _
AP eop (Ag (X)vg(x)) —0.

Define P:(x,k) = Py(x,k) + eP1(x), where

Py(x,k) = ’L'Ag_é(X)DjAg_j(X)kj = icg(x)ijj
1 5 [/ 1 5 [ _1 1
2i0) = A 2G0T (4260 ) = 7 (47360 ) piaz .

Lj L
The Wigner transform We(t,x,k) satisfies the evolution equation

oOWe

o _ i —id dzdpdydq
Lof (k) = [ (Poy, e f(2,p) — f(z,p)e Py, ) ) T P,

¢(X7Z7k7p7Y7q) Z%((p—k)y—l—(q—p)x—l—(k—q)Z)

g +£5Wg:O
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T he Liouville equations

The self-adjoint matrix —tFPy has eigenvalues A\g = 0 of multiplicity d — 1
and Af »(x,k) = £ce(x)|k| and can be diagonalized as

2 2
—iPp(x,k) = ) Ag(x,k)Mg(x, k),  where > Ng(x,k) =1.
q=0 q=0
The Liouville approximation to the Wigner transform is given by

Ue(t,x,k) =) ug (t, %, k) Mg(k),
q

where the coefficients ug solve the Liouville equation

ou?,
8tq + VA - Vxué — VxS - Viu§ =0
ug(0,x,k) = TrllgWo(x, k)M

Here, the coefficients Ag depend on §(e) and Wy is chosen independent
of e.
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Approximation of W: by Liouville equation

Theorem. Let p.(x) = pg + \/3,01(?) and re(x) = kg + \/Smé), with all
terms sufficiently smooth. Then we have

g C't
IWe(t, .10 = Ue(t,x, W)z < O exp (5 7) [Woll 2 + W2 = Woll 2.

for some m independent of «.

In other words, assuming that WSO converges strongly to Wy and that
5(¢) — 0 as ¢ — 0 with the constraint 8(e) > |Ine|=2/3%1, then the
difference ||We(t,x,k) — Ue(t,x,k)||;2 — O uniformly on final intervals ¢
(0, 7).

The convergence is uniform in the realization of the random medium (the
statistics of p; and k1 have not been defined yet). So we safely replace
the analysis of We by that of Ug, the solution of a Liouville equation with
random coefficients.
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Analysis of the random Liouville equation

The Liouville equation is of the form

aUg X ~
o T (CO * ﬁcl(E))k " Vaxie =

’ng(O,X, k) — U’O(Xa k)
Its solution is given by us(t,x,k) = ug(X(t),K(t)), where

K
Vo

VXC]_( ) VkUg = O

—% = (CO —+ fcl(X(t)))K, X(0) = x,
K __EOlg . 1(X(t> K(0) = k.

dt T VG
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Decorrelation of nearby particles

Let us assume that two particles satisfy the system for j =1, 2,

(6) ()
T = (co+ Vi Gy ) )RP @), xP(0) =,
K\ (1) X4 ()
KO _ 3 OO, 10—

Under suitable mixing conditions for ¢; and for ki # ko, the laws of the
processes (K(é),X(‘S),K(‘S),X(é)) converge weakly as 6 — 0 to the law of

(K1,X1,K5, X5), where X (t) = X Coij(S)dS 7 = 1,2, and where

ki(-), 7 = 1,2 are independent symmetrlc diffusions in R%\ {0} starting
at kj, 7 1,2 correspondingly with common generator

d d
LEk)= Y |k|2Dp,q(k)5’,%p,qu(k)—|— > k| Ep(k) oy, F(k).
p,q=1 p=1
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Stability of the Wigner Transform

We deduce from the previous result that

E{us(t,x,k)} — F(t,x,k) weakly as §(g) — O,
where F' satisfies the following Fokker-Planck equation

OF
ot
Moreover, we obtain the stability result

E {/ (ue(T,x0,k) — F(T. xo,k),/\(k)>)2dxo} .0 as 6(e) -0,

which implies that us converges in probability to the deterministic solution
F'. This in turn implies the stability of the refocused signal ub.

+ cok - VxF — LF = 0.
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Summary of radiative transfer models

We have obtained several transport models of the form
oa
ot

where the scattering operator § is given respectively by

/Rd R(p — k) (a(k) — a(p))8(colp| — colk|)dk

+ cok - Vxa + Sa =0,

Radiative Transfer: Sa

/|2 . |k"2

d_1R(|P P —K)(aX) — a(p))adK’

RO, p = K)(a(K) — a(p’))dK’

Paraxial: Sa = /
R

[tO-Schrodinger: Sa = /R

Fokker-Planck: Sa = —D(|k|])Aga.

Note that Radiative Transfer and Fokker-Planck admit a diffusion limit
for small mean free paths. This can be arranged for the paraxial approx-
imation when R(t,-) =~ §(t)R'(-), but not for Itd-Schrodinger.
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Summary of Kinetic models for Time
Reversal

e \We have a theory to express the high frequency limit of the refocused
signal in Time Reversal experiments using a Wigner transform. In the
scalar case, this expression is

a” (p; x0) = W (T, x0,p)S(P; X0).
The filter can also be generalized to changing environments.

e In certain cases, we can rigorously characterize the high frequency
limit of the Wigner transform and if possible (and true) obtain its sta-
bility. This has been done for the parabolic approximation and the Itd
Schrodinger approximation, and in the random Liouville regime, where
high frequency waves are approximated by particles propagating in ran-
dom media.
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Outline

1. Time Reversal in random media and kinetic models
2. Statistical stability and rigorous theories

3. Validity of Radiative Transfer Models

4. Applications to Detection and Imaging
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Time reversal in changing media

Consider two media with compressibility fluctuations given by ko(x,k) =
H(x)e!T Kz (x, k). For instance ¢(x) corresponds to a change in the am-
plitude of the fluctuations at the macroscopic scale x and T corresponds
to a spatial shift in the domain before back-propagation.

In the diffusive regime, the back-propagated signal takes the form

| cos(I‘IST)zk
R sin(MgT)
a8 (k; x0) = i \/ <) 5000 + _sin(nuy. [ 2 | IKl8 0
cos(I‘IsT)
sin |||k
x e iTK in |7l e~ TV°T/2 a(T,Xo,|k|).
7|k
This is to be compared to the case where Mg = ¢ = || = 0 when the

medium remains the same during the forward and backward propagations.
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2D Numerical simulations

In two space dimensions and in the case of periodic media with large
distances of propagation relative to the size of the box, the filter is
asymptotically given by
2.2
F(, ||, k|, T, L, kmax, k) = @ Jo(|7||k|) cos(2yMoT) e~ 2%

It should be compared to the numerical simulation

o @GP+ T),po(0)
data lpo()I2

We consider some simulations with varying |7| (shifting medium).
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2D Numerical simulations (II)

0 02 04 T 06 08 1 0 02 04 T 06 08 1 0 02 04 T 06 08 1

Comparison of F,,;, (solid lines) and the theoretical prediction F' (dashed
lines) as a function of = with v = 0. Periodic box of size L = 20,
propagation time T'= 200, number of modes in power spectrum: 50.
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Due experimental setting
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Spatial shift before backpropagation

M easurement with random media

2351 EU N S S S _

W eter
LA 4t 43
o
&
el
Ooo
)
& ié%
(=}
£
o
SO0
=]

| Py x
05k — b O LR 0R, 0 &




APAM Waves in Random Media

Back-propagated signal

168

-------------------------------------------------------------

0.4

0.a

Mormalized Energy

0 5 10 15 20
S hift {cm)

Back-propgated signal as a function of spatial shift for several frequencies.
The minimum of the back-propagated signal exactly occurs where it is

predicted by the two-dimensional theory.
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Numerical validation of radiative transfer

Wave propagation in heterogeneous media may sometimes be difficult to
control in real experiments. Numerical simulations offer an interesting
complement to physical experiments.

In order to be relevant the simulations need to consider spatial domains
that are much larger than the typical wavelength in the system. This
requires us to use multi-processor architectures and parallelized codes.

We have developed such a computational tool to solve acoustic waves
(easily extendible to micro-waves) in the time domain.
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Details of the wave (microscopic) code.

The codes solves a discrete version (centered second-order discretization
in space and time) of the following acoustic wave system of equation

; +p 1 (x)Vp =0,
p ~1 _

a—l—lﬂ) (x)V-v=0.

The domain is surrounded by a perfectly matched layer (PML) method
so that outgoing waves are not reflected at the domain boundary. The
(random) physical coefficients p(x) and x(x) are carefully chosen to verify
prescribed statistical properties.

The FDFT (Finite difference forward in time) method has been paral-
lelized by using the software PETSc developed at Argonne. Forward
calculations for T' = 1500 (typical times necessary to validate the diffu-
sive model; for A = 1 and average sound speed cg = 1) require 3-4 days
of calculations.
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Details of the macroscopic codes.

In both the direct and time reversal measurements, the data are the
Macroscopic energy densities

£(t%) =  (pCOIVP(E %) + 5GP (1,%)

We consider two macroscopic models for £: a radiative transfer equation
and a diffusion equation. The radiative transfer equation is solved by a
Monte Carlo method (requiring in excess of 50M particles to achieve a
reasonable accuracy even with good variance reduction technique con-
ditioning particles on hitting the inclusion). The diffusion equation is
solved by the finite element method.
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A typical configuration for the wave solver

Source medium fluctuations 5-8%
20 points per wavelength
(150,150) A=1
300 75 - 150
\

Inclusion (450,150)

Detector R=50,40,30,20,10

600

. PML

The domain size is roughly 20,000 x 10,000 = 200M nodes
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Wave-Transport-diffusion comparison

Comparison of the Energies, isotropic case

1
0.8

>
D — Wave
GCJ 0.6 — transport r1-88.5
w - Diffusion D=43.2, Lex=0.80
p -
i)
804
)
D \

0 1 —

200  400_. 600 800 1000
Time

Experiment with isotropic
scattering (R = 1 for this fre-
quency; the source term is
a localized Bessel function).
The best transport fit is ob-
tained for Z_ulm = 88.5 versus
> = 83.00. The best fit for
the diffusion coefficient and
the extrapolation length are
Dnum = 43.2 and Lex = 0.80
versus Dip = (2X)7 ! = 41.5
and Lin, = 0.81.

Averaged energy densities on detector as a function of time.
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Effect of void inclusion

x 107 Corrections, R=50, isotropic case

x 10~* Corrections, R=40, isotropic case
4 | : — Wave ) — Ualie 1
I _ —t t £ '=88.5
c i 56 Diffusion D=43.2. Lex=0.80
83 S 5
S 34
S ol o
g2 3 3
L) L
| 82
1t
0 ! ' ' p 0 ' : : : :
500 1000_1500 2000 2500 3000 500 1000_ 1500 2000 2500 3000

Time Time
Correction (w.r.t. solution without inclusion) generated by a void inclu-

sion, where the random fluctuations are suppressed. Left, radius of 40.
Right, radius of 50. Transport and diffusion generated by best energy
fit. The diffusion fit is valid only for very long times, whereas transport

performs extremely well.
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Effect of increased randomness

X 10_4 Cor(ections, R.=50’ isotropic case 8%

x 107 Corrections, R=50, isotropic case

5t — Wave
7 i — transport > '=36.0
— :/rVaa:]Vsep iress Diffusion D=17.0, Lex=0.79
— = 3 cC \
56 Diffusion D=43.2, Lex=0.80 O 4 /\
© O |
®5 ©
— = 3_
S 4 S
5 S
o
82 8 |
1t
f I | I == O . . :
500 1000_ 1500 2000 2500 3000 1 OOOTime 2000 3000

Time
Correction generated by an inclusion of radius R = 50 where the random

fluctuations are suppressed. Left: 5% RMS. Right: 8% RMS. Transport
and diffusion generated by best energy fit. The diffusion fit is now much

more accurate.
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Effect of perfectly reflecting inclusion

x 1073 Correptions, R=4Q, isotropifci case

X 10‘4 Corrections, R=30, isotropic case
—1} -0.2
S_ol _§
g . @—0.4
o | o)
8 (3_0 6 — Wave
5_4_ o —— transport £~'=88.5
° — Wave 308 Diffusion D=43.2, Lex=0.80
O 5 —— transport £™'=88.5 o-v.
O Diffusion D=43.2, Lex=0.80 3
()]
—bf 1t
L ' ' ‘ 15 1000 2000 3000
0 1000 Time 2000 3000 Time

Correction generated by a perfectly reflecting inclusion (specular reflec-
tion for transport and Neumann conditions for diffusion). Left, radius of
30. Right, radius of 40. Transport and diffusion generated by best energy
fit. Still very good agreement between wave and transport simulations.
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Effect of a (4 times) smaller detector

x 10~> Corrections, R=40, small detector x 10~ Corrections, R=30, small detector -

8 — Wave
—— transport r1-88.5

—— Wave
—— transport y1-88.5

Detector Cl)orrection

Detector Correction

0 1000 Time 2000 3000 0 1000 Time 2000 3000
Comparison of wave and transport predictions. Isotropic medium with
5% RMS. Left: void inclusion with R = 40; Right: reflecting inclusion

with R = 30.
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Effect of a smaller inclusion

x10™ Corrections, R=20, isotropic case x 10”* Corrections, R=10, isotropic case
10¢
5 8t —— Wave 5
5 —— transport £ '=88.5 5
S o
G 6| o
@) @)
5 4 &
8 4 8 — Wave
© © —— transport ¥ '=88.5
Qo a
_ol
O L I \7 L ! | I
1000 Time 2000 3000 0 1000 Time 2000 3000

Comparison of wave and transport predictions with large detector. Isotropic
medium with 5% RMS. Left: void inclusion with R = 20; Right: reflect-
ing inclusion with R = 10. Conclusion: Radiative transfer is statistically

stable when sufficient averaging takes place.
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Outline

1. Time Reversal in random media and Kinetic models
2. Statistical stability and rigorous theories
3. Validity of Radiative Transfer Models

4. Applications to Detection and Imaging
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Experimental setting; forward stage

W Source

Detectors
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Experimental setting; backward stage

WY

Source

Detectors
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Modeling the inclusion

The detection and imaging of buried inclusions (which are large com-
pared to the wavelength) is done as follows. We model the inclusion as a
variation in the kinetic parameters of the radiative transfer equation that
models the wave energy density.

T he objective is to reconstruct these kinetic parameters from wave energy
measurements at the boundary of a domain. This is severely ill-posed
problem (in the sense that the reconstruction amplifies noise drastically).
Because the inclusion is assumed to be of small volume (at the macro-
scopic scale), further assumptions are possible. We consider asymptotics
in the volume of the inclusion, which take the form

t
5a0(¢, x, k) = —|B|/O G(t — s, %, x5, k) (Qa®) (s, x5, K)ds + l.o.t.,

where a9 is the unperturbed solution, G the transport Green's function,
Q the scattering operator and |B| ~ R% the inclusion’s volume.



APAM Waves in Random Media

Reconstruction of the inclusion

Detection and imaging based on the above asymptotic expansions allow
us obtain the inclusion’s location and volume:

Sources x=10

R=12
Object (90,50)

on/ag | error on R (%) | error on x | error on y,

0.25% 12 9.0 3.5
0.5% 25 15 5.0
1% 33 30 10

Very accurate data are required to locate and estimate the inclusion.
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TR in Changing media; forward stage

W Source

Detectors
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TR In changing media; backward stage

WY

Source

Detectors
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Imaging and changing media
In the diffusive regime, the perturbation caused by a void inclusion is
given approximately by

t
suP(t,%x) = dr Do R’ /O Vatug(t — 8,%p) - Vi, G (s, X, X3) ds.

Here d is dimension and G(s,x,X;) the background Green's function.
When we have access to the measured wave field both in the presence
and in the absence of the inclusion, we can consider the correlation of
the two fields. In the diffusive regime, the corresponding perturbation is
given by

t
Su(t,x) = —47TR/O uo(t — s,%3)G(s,%,%p)ds 4 o(R), d=3
2 t 1
5U(t,X) — ﬁ 0 UO(t T S7Xb)G(87X7 Xb)ds _I_ O(| I R|)7 d=2

Since O(R) > O(R3) in d = 3 and O(/InR|™Y) > O(R?) in d = 2, it is much
easier to detect and image in the presence of differential information.
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Can time-reversal experiments help?

Direct energy and time reversal measurements are hampered by two types
of noise: background noise n. and model noise n,, (characterizing the
accuracy of the diffusive model). Let U be the direct measurement
and F' the TR filter measurement. Then we have that (after a few
simplifications)

U U + nmUp + nyg

SF OF + nmFp + ad/znd; (d is dimension).
Thus both types of measurements are equally affected by the model noise.

However, because background noise does not refocus at the source loca-
tion, it is strongly attenuated in the TR experiment.

In practice, direct measurements are very faint and thus even very small
background noise renders the detection impossible. This is where time
reversal helps (and may justify its equipment cost).
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